File size: 17,971 Bytes
7f9376c
63b5bc1
 
7f9376c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b5bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9376c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835c841
7f9376c
 
835c841
7f9376c
 
835c841
7f9376c
 
 
63b5bc1
835c841
7f9376c
835c841
7f9376c
 
 
835c841
 
7f9376c
 
 
835c841
 
 
7f9376c
 
 
 
 
835c841
 
7f9376c
 
835c841
7f9376c
 
 
 
 
 
 
 
 
835c841
7f9376c
 
 
 
 
 
 
 
 
 
 
 
835c841
7f9376c
835c841
7f9376c
 
835c841
7f9376c
 
835c841
7f9376c
 
 
 
 
63b5bc1
 
7f9376c
63b5bc1
7f9376c
 
 
 
 
 
63b5bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9376c
 
63b5bc1
7f9376c
63b5bc1
7f9376c
835c841
63b5bc1
7f9376c
 
 
63b5bc1
7f9376c
 
63b5bc1
7f9376c
 
 
835c841
7f9376c
835c841
7f9376c
 
 
835c841
7f9376c
 
 
835c841
 
7f9376c
 
 
835c841
7f9376c
835c841
7f9376c
 
835c841
7f9376c
 
63b5bc1
7f9376c
 
 
 
 
63b5bc1
7f9376c
 
63b5bc1
7f9376c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b5bc1
 
7f9376c
 
 
 
63b5bc1
 
 
7f9376c
63b5bc1
7f9376c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b5bc1
7f9376c
63b5bc1
 
 
7f9376c
63b5bc1
7f9376c
 
63b5bc1
7f9376c
 
63b5bc1
 
7f9376c
 
63b5bc1
 
 
 
 
 
 
7f9376c
63b5bc1
7f9376c
 
 
63b5bc1
7f9376c
 
 
 
63b5bc1
 
7f9376c
 
63b5bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9376c
63b5bc1
7f9376c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b5bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9376c
 
 
 
 
 
 
 
 
63b5bc1
 
7f9376c
 
 
 
 
 
 
 
 
 
 
 
 
 
63b5bc1
 
 
 
 
 
 
7f9376c
63b5bc1
 
7f9376c
63b5bc1
 
 
 
7f9376c
63b5bc1
 
 
 
 
 
 
7f9376c
63b5bc1
7f9376c
63b5bc1
 
7f9376c
 
63b5bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
"""Util functions for codebook features."""

import pathlib
import re
import typing
from dataclasses import dataclass
from functools import partial
from typing import Optional

import numpy as np
import torch
import torch.nn.functional as F
from termcolor import colored
from tqdm import tqdm


@dataclass
class CodeInfo:
    """Dataclass for codebook info."""

    code: int
    layer: int
    head: Optional[int]
    cb_at: Optional[str] = None

    # for patching interventions
    pos: Optional[int] = None
    code_pos: Optional[int] = -1

    # for description & regex-based interpretation
    description: Optional[str] = None
    regex: Optional[str] = None
    prec: Optional[float] = None
    recall: Optional[float] = None
    num_acts: Optional[int] = None

    def __post_init__(self):
        """Convert to appropriate types."""
        self.code = int(self.code)
        self.layer = int(self.layer)
        if self.head:
            self.head = int(self.head)
        if self.pos:
            self.pos = int(self.pos)
        if self.code_pos:
            self.code_pos = int(self.code_pos)
        if self.prec:
            self.prec = float(self.prec)
            assert 0 <= self.prec <= 1
        if self.recall:
            self.recall = float(self.recall)
            assert 0 <= self.recall <= 1
        if self.num_acts:
            self.num_acts = int(self.num_acts)

    def check_description_info(self):
        """Check if the regex info is present."""
        assert self.num_acts is not None and self.description is not None
        if self.regex is not None:
            assert self.prec is not None and self.recall is not None

    def __repr__(self):
        """Return the string representation."""
        repr = f"CodeInfo(code={self.code}, layer={self.layer}, head={self.head}, cb_at={self.cb_at}"
        if self.pos is not None or self.code_pos is not None:
            repr += f", pos={self.pos}, code_pos={self.code_pos}"
        if self.description is not None:
            repr += f", description={self.description}"
        if self.regex is not None:
            repr += f", regex={self.regex}, prec={self.prec}, recall={self.recall}"
        if self.num_acts is not None:
            repr += f", num_acts={self.num_acts}"
        repr += ")"
        return repr

    @classmethod
    def from_str(cls, code_txt, *args, **kwargs):
        """Extract code info fields from string."""
        code_txt = code_txt.strip().lower()
        code_txt = code_txt.split(", ")
        code_txt = dict(txt.split(": ") for txt in code_txt)
        return cls(*args, **code_txt, **kwargs)


@dataclass
class ModelInfoForWebapp:
    """Model info for webapp."""

    model_name: str
    pretrained_path: str
    dataset_name: str
    num_codes: int
    cb_at: str
    gcb: str
    n_layers: int
    n_heads: Optional[int] = None
    seed: int = 42
    max_samples: int = 2000

    def __post_init__(self):
        """Convert to correct types."""
        self.num_codes = int(self.num_codes)
        self.n_layers = int(self.n_layers)
        if self.n_heads == "None":
            self.n_heads = None
        elif self.n_heads is not None:
            self.n_heads = int(self.n_heads)
        self.seed = int(self.seed)
        self.max_samples = int(self.max_samples)

    @classmethod
    def load(cls, path):
        """Parse model info from path."""
        path = pathlib.Path(path)
        with open(path / "info.txt", "r") as f:
            lines = f.readlines()
            lines = dict(line.strip().split(": ") for line in lines)
        return cls(**lines)

    def save(self, path):
        """Save model info to path."""
        path = pathlib.Path(path)
        with open(path / "info.txt", "w") as f:
            for k, v in self.__dict__.items():
                f.write(f"{k}: {v}\n")


def logits_to_pred(logits, tokenizer, k=5):
    """Convert logits to top-k predictions."""
    sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
    probs = sorted_logits.softmax(dim=-1)
    topk_preds = [tokenizer.convert_ids_to_tokens(e) for e in sorted_indices[:, -1, :k]]
    topk_preds = [
        tokenizer.convert_tokens_to_string([e]) for batch in topk_preds for e in batch
    ]
    return [(topk_preds[i], probs[:, -1, i].item()) for i in range(len(topk_preds))]


def features_to_tokens(cb_key, cb_acts, num_codes, code=None):
    """Return the set of token ids each codebook feature activates on."""
    codebook_ids = cb_acts[cb_key]

    if code is None:
        features_tokens = [[] for _ in range(num_codes)]
        for i in tqdm(range(codebook_ids.shape[0])):
            for j in range(codebook_ids.shape[1]):
                for k in range(codebook_ids.shape[2]):
                    features_tokens[codebook_ids[i, j, k]].append((i, j))
    else:
        idx0, idx1, _ = np.where(codebook_ids == code)
        features_tokens = list(zip(idx0, idx1))

    return features_tokens


def color_str(s: str, html: bool, color: Optional[str] = None):
    """Color the string for html or terminal."""
    if html:
        color = "DeepSkyBlue" if color is None else color
        return f"<span style='color:{color}'>{s}</span>"
    else:
        color = "light_cyan" if color is None else color
        return colored(s, color)


def color_tokens_tokfsm(tokens, color_idx, html=False):
    """Separate states with a dash and color red the tokens in color_idx."""
    ret_string = ""
    itr_over_color_idx = 0
    tokens_enumerate = enumerate(tokens)
    if tokens[0] == "<|endoftext|>":
        next(tokens_enumerate)
        if color_idx[0] == 0:
            itr_over_color_idx += 1
    for i, c in tokens_enumerate:
        if i % 2 == 1:
            ret_string += "-"
        if itr_over_color_idx < len(color_idx) and i == color_idx[itr_over_color_idx]:
            ret_string += color_str(c, html)
            itr_over_color_idx += 1
        else:
            ret_string += c
    return ret_string


def color_tokens(tokens, color_idx, n=3, html=False):
    """Color the tokens in color_idx."""
    ret_string = ""
    last_colored_token_idx = -1
    for i in color_idx:
        c_str = tokens[i]
        if i <= last_colored_token_idx + 2 * n + 1:
            ret_string += "".join(tokens[last_colored_token_idx + 1 : i])
        else:
            ret_string += "".join(
                tokens[last_colored_token_idx + 1 : last_colored_token_idx + n + 1]
            )
            ret_string += " ... "
            ret_string += "".join(tokens[i - n : i])
        ret_string += color_str(c_str, html)
        last_colored_token_idx = i
    ret_string += "".join(
        tokens[
            last_colored_token_idx + 1 : min(last_colored_token_idx + n, len(tokens))
        ]
    )
    return ret_string


def prepare_example_print(

    example_id,

    example_tokens,

    tokens_to_color,

    html,

    color_fn=color_tokens,

):
    """Format example to print."""
    example_output = color_str(example_id, html, "green")
    example_output += (
        ": "
        + color_fn(example_tokens, tokens_to_color, html=html)
        + ("<br>" if html else "\n")
    )
    return example_output


def print_token_activations_of_code(

    code_act_by_pos,

    tokens,

    is_fsm=False,

    n=3,

    max_examples=100,

    randomize=False,

    html=False,

    return_example_list=False,

):
    """Print the context with the tokens that a code activates on.



    Args:

        code_act_by_pos: list of (example_id, token_pos_id) tuples specifying

            the token positions that a code activates on in a dataset.

        tokens: list of tokens of a dataset.

        is_fsm: whether the dataset is the TokFSM dataset.

        n: context to print around each side of a token that the code activates on.

        max_examples: maximum number of examples to print.

        randomize: whether to randomize the order of examples.

        html: Format the printing style for html or terminal.

        return_example_list: whether to return the printed string by examples or as a single string.



    Returns:

        string of all examples formatted if `return_example_list` is False otherwise

        list of (example_string, num_tokens_colored) tuples for each example.

    """
    if randomize:
        raise NotImplementedError("Randomize not yet implemented.")
    indices = range(len(code_act_by_pos))
    print_output = [] if return_example_list else ""
    curr_ex = code_act_by_pos[0][0]
    total_examples = 0
    tokens_to_color = []
    color_fn = color_tokens_tokfsm if is_fsm else partial(color_tokens, n=n)
    for idx in indices:
        if total_examples > max_examples:
            break
        i, j = code_act_by_pos[idx]

        if i != curr_ex and curr_ex >= 0:
            # got new example so print the previous one
            curr_ex_output = prepare_example_print(
                curr_ex,
                tokens[curr_ex],
                tokens_to_color,
                html,
                color_fn,
            )
            total_examples += 1
            if return_example_list:
                print_output.append((curr_ex_output, len(tokens_to_color)))
            else:
                print_output += curr_ex_output
            curr_ex = i
            tokens_to_color = []
        tokens_to_color.append(j)
    curr_ex_output = prepare_example_print(
        curr_ex,
        tokens[curr_ex],
        tokens_to_color,
        html,
        color_fn,
    )
    if return_example_list:
        print_output.append((curr_ex_output, len(tokens_to_color)))
    else:
        print_output += curr_ex_output
        print_output += color_str("*" * 50, html, "green")
    total_examples += 1

    return print_output


def print_token_activations_of_codes(

    ft_tkns,

    tokens,

    is_fsm=False,

    n=3,

    start=0,

    stop=1000,

    indices=None,

    max_examples=100,

    freq_filter=None,

    randomize=False,

    html=False,

    return_example_list=False,

):
    """Print the tokens for the codebook features."""
    indices = list(range(start, stop)) if indices is None else indices
    num_tokens = len(tokens) * len(tokens[0])
    codes, token_act_freqs, token_acts = [], [], []
    for i in indices:
        tkns_of_code = ft_tkns[i]
        freq = (len(tkns_of_code), 100 * len(tkns_of_code) / num_tokens)
        if freq_filter is not None and freq[1] > freq_filter:
            continue
        codes.append(i)
        token_act_freqs.append(freq)
        if len(tkns_of_code) > 0:
            tkn_acts = print_token_activations_of_code(
                tkns_of_code,
                tokens,
                is_fsm,
                n=n,
                max_examples=max_examples,
                randomize=randomize,
                html=html,
                return_example_list=return_example_list,
            )
            token_acts.append(tkn_acts)
        else:
            token_acts.append("")
    return codes, token_act_freqs, token_acts


def patch_in_codes(run_cb_ids, hook, pos, code, code_pos=None):
    """Patch in the `code` at `run_cb_ids`."""
    pos = slice(None) if pos is None else pos
    code_pos = slice(None) if code_pos is None else code_pos

    if code_pos == "append":
        assert pos == slice(None)
        run_cb_ids = F.pad(run_cb_ids, (0, 1), mode="constant", value=code)
    if isinstance(pos, typing.Iterable) or isinstance(pos, typing.Iterable):
        for p in pos:
            run_cb_ids[:, p, code_pos] = code
    else:
        run_cb_ids[:, pos, code_pos] = code
    return run_cb_ids


def get_cb_hook_key(cb_at: str, layer_idx: int, gcb_idx: Optional[int] = None):
    """Get the layer name used to store hooks/cache."""
    comp_name = "attn" if "attn" in cb_at else "mlp"
    if gcb_idx is None:
        return f"blocks.{layer_idx}.{comp_name}.codebook_layer.hook_codebook_ids"
    else:
        return f"blocks.{layer_idx}.{comp_name}.codebook_layer.codebook.{gcb_idx}.hook_codebook_ids"


def run_model_fn_with_codes(

    input,

    cb_model,

    fn_name,

    fn_kwargs=None,

    list_of_code_infos=(),

):
    """Run the `cb_model`'s `fn_name` method while activating the codes in `list_of_code_infos`.



    Common use case includes running the `run_with_cache` method while activating the codes.

    For running the `generate` method, use `generate_with_codes` instead.

    """
    if fn_kwargs is None:
        fn_kwargs = {}
    hook_fns = [
        partial(patch_in_codes, pos=tupl.pos, code=tupl.code, code_pos=tupl.code_pos)
        for tupl in list_of_code_infos
    ]
    fwd_hooks = [
        (get_cb_hook_key(tupl.cb_at, tupl.layer, tupl.head), hook_fns[i])
        for i, tupl in enumerate(list_of_code_infos)
    ]
    cb_model.reset_hook_kwargs()
    with cb_model.hooks(fwd_hooks, [], True, False) as hooked_model:
        ret = hooked_model.__getattribute__(fn_name)(input, **fn_kwargs)
    return ret


def generate_with_codes(

    input,

    cb_model,

    list_of_code_infos=(),

    tokfsm=None,

    generate_kwargs=None,

):
    """Sample from the language model while activating the codes in `list_of_code_infos`."""
    gen = run_model_fn_with_codes(
        input,
        cb_model,
        "generate",
        generate_kwargs,
        list_of_code_infos,
    )
    return tokfsm.seq_to_traj(gen) if tokfsm is not None else gen


def JSD(logits1, logits2, pos=-1, reduction="batchmean"):
    """Compute the Jensen-Shannon divergence between two distributions."""
    if len(logits1.shape) == 3:
        logits1, logits2 = logits1[:, pos, :], logits2[:, pos, :]

    probs1 = F.softmax(logits1, dim=-1)
    probs2 = F.softmax(logits2, dim=-1)

    total_m = (0.5 * (probs1 + probs2)).log()

    loss = 0.0
    loss += F.kl_div(
        total_m,
        F.log_softmax(logits1, dim=-1),
        log_target=True,
        reduction=reduction,
    )
    loss += F.kl_div(
        total_m,
        F.log_softmax(logits2, dim=-1),
        log_target=True,
        reduction=reduction,
    )
    return 0.5 * loss


def cb_hook_key_to_info(layer_hook_key: str):
    """Get the layer info from the codebook layer hook key.



    Args:

        layer_hook_key: the hook key of the codebook layer.

            E.g. `blocks.3.attn.codebook_layer.hook_codebook_ids`



    Returns:

        comp_name: the name of the component codebook is appied at.

        layer_idx: the layer index.

        gcb_idx: the codebook index if the codebook layer is grouped, otherwise None.

    """
    layer_search = re.search(r"blocks\.(\d+)\.(\w+)\.", layer_hook_key)
    assert layer_search is not None
    layer_idx, comp_name = int(layer_search.group(1)), layer_search.group(2)
    gcb_idx_search = re.search(r"codebook\.(\d+)", layer_hook_key)
    if gcb_idx_search is not None:
        gcb_idx = int(gcb_idx_search.group(1))
    else:
        gcb_idx = None
    return comp_name, layer_idx, gcb_idx


def find_code_changes(cache1, cache2, pos=None):
    """Find the codebook codes that are different between the two caches."""
    for k in cache1.keys():
        if "codebook" in k:
            c1 = cache1[k][0, pos]
            c2 = cache2[k][0, pos]
            if not torch.all(c1 == c2):
                print(cb_hook_key_to_info(k), c1.tolist(), c2.tolist())
                print(cb_hook_key_to_info(k), c1.tolist(), c2.tolist())


def common_codes_in_cache(cache_codes, threshold=0.0):
    """Get the common code in the cache."""
    codes, counts = torch.unique(cache_codes, return_counts=True, sorted=True)
    counts = counts.float() * 100
    counts /= cache_codes.shape[1]
    counts, indices = torch.sort(counts, descending=True)
    codes = codes[indices]
    indices = counts > threshold
    codes, counts = codes[indices], counts[indices]
    return codes, counts


def parse_topic_codes_string(

    info_str: str,

    pos: Optional[int] = None,

    code_append: Optional[bool] = False,

    **code_info_kwargs,

):
    """Parse the topic codes string."""
    code_info_strs = info_str.strip().split("\n")
    code_info_strs = [e.strip() for e in code_info_strs if e]
    topic_codes = []
    layer, head = None, None
    if code_append is None:
        code_pos = None
    else:
        code_pos = "append" if code_append else -1
    for code_info_str in code_info_strs:
        topic_codes.append(
            CodeInfo.from_str(
                code_info_str,
                pos=pos,
                code_pos=code_pos,
                **code_info_kwargs,
            )
        )
        if code_append is None or code_append:
            continue
        if layer == topic_codes[-1].layer and head == topic_codes[-1].head:
            code_pos -= 1  # type: ignore
        else:
            code_pos = -1
        topic_codes[-1].code_pos = code_pos
        layer, head = topic_codes[-1].layer, topic_codes[-1].head
    return topic_codes


def find_similar_codes(cb_model, code_info, n=8):
    """Find the `n` most similar codes to the given code using cosine similarity.



    Useful for finding related codes for interpretability.

    """
    codebook = cb_model.get_codebook(code_info)
    device = codebook.weight.device
    code = codebook(torch.tensor(code_info.code).to(device))
    code = code.to(device)
    logits = torch.matmul(code, codebook.weight.T)
    _, indices = torch.topk(logits, n)
    assert indices[0] == code_info.code
    assert torch.allclose(logits[indices[0]], torch.tensor(1.0))
    return indices[1:], logits[indices[1:]].tolist()