codebook-features / code_search_utils.py
taufeeque's picture
Update code
63b5bc1
raw
history blame
18 kB
"""Functions to help with searching codes using regex."""
import pickle
import re
import numpy as np
import torch
from tqdm import tqdm
def load_dataset_cache(cache_base_path):
"""Load cache files required for dataset from `cache_base_path`."""
tokens_str = np.load(cache_base_path + "tokens_str.npy")
tokens_text = np.load(cache_base_path + "tokens_text.npy")
token_byte_pos = np.load(cache_base_path + "token_byte_pos.npy")
return tokens_str, tokens_text, token_byte_pos
def load_code_search_cache(cache_base_path):
"""Load cache files required for code search from `cache_base_path`."""
metrics = np.load(cache_base_path + "metrics.npy", allow_pickle=True).item()
with open(cache_base_path + "cb_acts.pkl", "rb") as f:
cb_acts = pickle.load(f)
with open(cache_base_path + "act_count_ft_tkns.pkl", "rb") as f:
act_count_ft_tkns = pickle.load(f)
return cb_acts, act_count_ft_tkns, metrics
def search_re(re_pattern, tokens_text, at_odd_even=-1):
"""Get list of (example_id, token_pos) where re_pattern matches in tokens_text.
Args:
re_pattern: regex pattern to search for.
tokens_text: list of example texts.
at_odd_even: to limit matches to odd or even positions only.
-1 (default): to not limit matches.
0: to limit matches to odd positions only.
1: to limit matches to even positions only.
This is useful for the TokFSM dataset when searching for states
since the first token of states are always at even positions.
"""
# TODO: ensure that parentheses are not escaped
assert at_odd_even in [-1, 0, 1], f"Invalid at_odd_even: {at_odd_even}"
if re_pattern.find("(") == -1:
re_pattern = f"({re_pattern})"
res = [
(i, finditer.span(1)[0])
for i, text in enumerate(tokens_text)
for finditer in re.finditer(re_pattern, text)
if finditer.span(1)[0] != finditer.span(1)[1]
]
if at_odd_even != -1:
res = [r for r in res if r[1] % 2 == at_odd_even]
return res
def byte_id_to_token_pos_id(example_byte_id, token_byte_pos):
"""Convert byte position (or character position in a text) to its token position.
Used to convert the searched regex span to its token position.
Args:
example_byte_id: tuple of (example_id, byte_id) where byte_id is a
character's position in the text.
token_byte_pos: numpy array of shape (num_examples, seq_len) where
`token_byte_pos[example_id][token_pos]` is the byte position of
the token at `token_pos` in the example with `example_id`.
Returns:
(example_id, token_pos_id) tuple.
"""
example_id, byte_id = example_byte_id
index = np.searchsorted(token_byte_pos[example_id], byte_id, side="right")
return (example_id, index)
def get_code_precision_and_recall(token_pos_ids, codebook_acts, cb_act_counts=None):
"""Search for the codes that activate on the given `token_pos_ids`.
Args:
token_pos_ids: list of (example_id, token_pos_id) tuples.
codebook_acts: numpy array of activations of a codebook on a dataset with
shape (num_examples, seq_len, k_codebook).
cb_act_counts: array of shape (num_codes,) where `cb_act_counts[cb_name][code]`
is the number of times the code `code` is activated in the dataset.
Returns:
codes: numpy array of code ids sorted by their precision on the given `token_pos_ids`.
prec: numpy array where `prec[i]` is the precision of the code
`codes[i]` for the given `token_pos_ids`.
recall: numpy array where `recall[i]` is the recall of the code
`codes[i]` for the given `token_pos_ids`.
code_acts: numpy array where `code_acts[i]` is the number of times
the code `codes[i]` is activated in the dataset.
"""
codes = np.array(
[
codebook_acts[example_id][token_pos_id]
for example_id, token_pos_id in token_pos_ids
]
)
codes, counts = np.unique(codes, return_counts=True)
recall = counts / len(token_pos_ids)
idx = recall > 0.01
codes, counts, recall = codes[idx], counts[idx], recall[idx]
if cb_act_counts is not None:
code_acts = np.array([cb_act_counts[code] for code in codes])
prec = counts / code_acts
sort_idx = np.argsort(prec)[::-1]
else:
code_acts = np.zeros_like(codes)
prec = np.zeros_like(codes)
sort_idx = np.argsort(recall)[::-1]
codes, prec, recall = codes[sort_idx], prec[sort_idx], recall[sort_idx]
code_acts = code_acts[sort_idx]
return codes, prec, recall, code_acts
def get_neuron_precision_and_recall(
token_pos_ids, recall, neuron_acts_by_ex, neuron_sorted_acts
):
"""Get the neurons with the highest precision and recall for the given `token_pos_ids`.
Args:
token_pos_ids: list of token (example_id, token_pos_id) tuples from a dataset over which
the neurons with the highest precision and recall are to be found.
recall: recall threshold for the neurons (this determines their activation threshold).
neuron_acts_by_ex: numpy array of activations of all the attention and mlp output neurons
on a dataset with shape (num_examples, seq_len, num_layers, 2, dim_size).
The third dimension is 2 because we consider neurons from both: attention and mlp.
neuron_sorted_acts: numpy array of sorted activations of all the attention and mlp output neurons
on a dataset with shape (num_layers, 2, dim_size, num_examples * seq_len).
This should be obtained using the `neuron_acts_by_ex` array by rearranging the first two
dimensions to the last dimensions and then sorting the last dimension.
Returns:
best_prec: highest precision amongst all the neurons for the given `token_pos_ids`.
best_neuron_acts: number of activations of the best neuron for the given `token_pos_ids`
based on the threshold determined by the `recall` argument.
best_neuron_idx: tuple of (layer, is_mlp, neuron_id) where `layer` is the layer number,
`is_mlp` is 0 if the neuron is from attention and 1 if the neuron is from mlp,
and `neuron_id` is the neuron's index in the layer.
"""
if isinstance(neuron_acts_by_ex, torch.Tensor):
neuron_acts_on_pattern = torch.stack(
[
neuron_acts_by_ex[example_id, token_pos_id]
for example_id, token_pos_id in token_pos_ids
],
dim=-1,
) # (layers, 2, dim_size, matches)
neuron_acts_on_pattern = torch.sort(neuron_acts_on_pattern, dim=-1).values
else:
neuron_acts_on_pattern = np.stack(
[
neuron_acts_by_ex[example_id, token_pos_id]
for example_id, token_pos_id in token_pos_ids
],
axis=-1,
) # (layers, 2, dim_size, matches)
neuron_acts_on_pattern.sort(axis=-1)
neuron_acts_on_pattern = torch.from_numpy(neuron_acts_on_pattern)
act_thresh = neuron_acts_on_pattern[
:, :, :, -int(recall * neuron_acts_on_pattern.shape[-1])
]
assert neuron_sorted_acts.shape[:-1] == act_thresh.shape
prec_den = torch.searchsorted(neuron_sorted_acts, act_thresh.unsqueeze(-1))
prec_den = prec_den.squeeze(-1)
prec_den = neuron_sorted_acts.shape[-1] - prec_den
prec = int(recall * neuron_acts_on_pattern.shape[-1]) / prec_den
assert (
prec.shape == neuron_acts_on_pattern.shape[:-1]
), f"{prec.shape} != {neuron_acts_on_pattern.shape[:-1]}"
best_neuron_idx = np.unravel_index(prec.argmax(), prec.shape)
best_prec = prec[best_neuron_idx]
best_neuron_act_thresh = act_thresh[best_neuron_idx].item()
best_neuron_acts = neuron_acts_by_ex[
:, :, best_neuron_idx[0], best_neuron_idx[1], best_neuron_idx[2]
]
best_neuron_acts = best_neuron_acts >= best_neuron_act_thresh
best_neuron_acts = np.stack(np.where(best_neuron_acts), axis=-1)
return best_prec, best_neuron_acts, best_neuron_idx
def convert_to_adv_name(name, cb_at, gcb=""):
"""Convert layer0_head0 to layer0_attn_preproj_gcb0."""
if gcb:
layer, head = name.split("_")
return layer + f"_{cb_at}_gcb" + head[4:]
else:
return layer + "_" + cb_at
def convert_to_base_name(name, gcb=""):
"""Convert layer0_attn_preproj_gcb0 to layer0_head0."""
split_name = name.split("_")
layer, head = split_name[0], split_name[-1][3:]
if "gcb" in name:
return layer + "_head" + head
else:
return layer
def get_layer_head_from_base_name(name):
"""Convert layer0_head0 to 0, 0."""
split_name = name.split("_")
layer = int(split_name[0][5:])
head = None
if len(split_name) > 1:
head = int(split_name[-1][4:])
return layer, head
def get_layer_head_from_adv_name(name):
"""Convert layer0_attn_preproj_gcb0 to 0, 0."""
base_name = convert_to_base_name(name)
layer, head = get_layer_head_from_base_name(base_name)
return layer, head
def get_codes_from_pattern(
re_pattern,
tokens_text,
token_byte_pos,
cb_acts,
act_count_ft_tkns,
gcb="",
topk=5,
prec_threshold=0.5,
at_odd_even=-1,
):
"""Fetch codes that activate on a given regex pattern.
Retrieves at most `top_k` codes that activate with precision above `prec_threshold`.
Args:
re_pattern: regex pattern to search for.
tokens_text: list of example texts of a dataset.
token_byte_pos: numpy array of shape (num_examples, seq_len) where
`token_byte_pos[example_id][token_pos]` is the byte position of
the token at `token_pos` in the example with `example_id`.
cb_acts: dict of codebook activations.
act_count_ft_tkns: dict over all codebooks of number of token activations on the dataset
gcb: "_gcb" for grouped codebooks and "" for non-grouped codebooks.
topk: maximum number of codes to return per codebook.
prec_threshold: minimum precision required for a code to be returned.
at_odd_even: to limit matches to odd or even positions only.
-1 (default): to not limit matches.
0: to limit matches to odd positions only.
1: to limit matches to even positions only.
This is useful for the TokFSM dataset when searching for states
since the first token of states are always at even positions.
Returns:
codebook_wise_codes: dict of codebook name to list of
(code, prec, recall, code_acts) tuples.
re_token_matches: number of tokens that match the regex pattern.
"""
byte_ids = search_re(re_pattern, tokens_text, at_odd_even=at_odd_even)
token_pos_ids = [
byte_id_to_token_pos_id(ex_byte_id, token_byte_pos) for ex_byte_id in byte_ids
]
token_pos_ids = np.unique(token_pos_ids, axis=0)
re_token_matches = len(token_pos_ids)
codebook_wise_codes = {}
for cb_name, cb in tqdm(cb_acts.items()):
base_cb_name = convert_to_base_name(cb_name, gcb=gcb)
codes, prec, recall, code_acts = get_code_precision_and_recall(
token_pos_ids,
cb,
cb_act_counts=act_count_ft_tkns[base_cb_name],
)
idx = np.arange(min(topk, len(codes)))
idx = idx[prec[:topk] > prec_threshold]
codes, prec, recall = codes[idx], prec[idx], recall[idx]
code_acts = code_acts[idx]
codes_pr = list(zip(codes, prec, recall, code_acts))
codebook_wise_codes[base_cb_name] = codes_pr
return codebook_wise_codes, re_token_matches
def get_neurons_from_pattern(
re_pattern,
tokens_text,
token_byte_pos,
neuron_acts_by_ex,
neuron_sorted_acts,
recall_threshold,
at_odd_even=-1,
):
"""Fetch the highest precision neurons that activate on a given regex pattern.
The activation threshold for the neurons is determined by the `recall_threshold`.
Args:
re_pattern: regex pattern to search for.
tokens_text: list of example texts of a dataset.
token_byte_pos: numpy array of shape (num_examples, seq_len) where
`token_byte_pos[example_id][token_pos]` is the byte position of
the token at `token_pos` in the example with `example_id`.
neuron_acts_by_ex: numpy array of activations of all the attention and mlp output neurons
on a dataset with shape (num_examples, seq_len, num_layers, 2, dim_size).
The third dimension is 2 because we consider neurons from both: attention and mlp.
neuron_sorted_acts: numpy array of sorted activations of all the attention and mlp output neurons
on a dataset with shape (num_layers, 2, dim_size, num_examples * seq_len).
This should be obtained using the `neuron_acts_by_ex` array by rearranging the first two
dimensions to the last dimensions and then sorting the last dimension.
recall_threshold: recall threshold for the neurons (this determines their activation threshold).
at_odd_even: to limit matches to odd or even positions only.
-1 (default): to not limit matches.
0: to limit matches to odd positions only.
1: to limit matches to even positions only.
This is useful for the TokFSM dataset when searching for states
since the first token of states are always at even positions.
Returns:
best_prec: highest precision amongst all the neurons for the given `token_pos_ids`.
best_neuron_acts: number of activations of the best neuron for the given `token_pos_ids`
based on the threshold determined by the `recall` argument.
best_neuron_idx: tuple of (layer, is_mlp, neuron_id) where `layer` is the layer number,
`is_mlp` is 0 if the neuron is from attention and 1 if the neuron is from mlp,
and `neuron_id` is the neuron's index in the layer.
re_token_matches: number of tokens that match the regex pattern.
"""
byte_ids = search_re(re_pattern, tokens_text, at_odd_even=at_odd_even)
token_pos_ids = [
byte_id_to_token_pos_id(ex_byte_id, token_byte_pos) for ex_byte_id in byte_ids
]
token_pos_ids = np.unique(token_pos_ids, axis=0)
re_token_matches = len(token_pos_ids)
best_prec, best_neuron_acts, best_neuron_idx = get_neuron_precision_and_recall(
token_pos_ids,
recall_threshold,
neuron_acts_by_ex,
neuron_sorted_acts,
)
return best_prec, best_neuron_acts, best_neuron_idx, re_token_matches
def compare_codes_with_neurons(
best_codes_info,
tokens_text,
token_byte_pos,
neuron_acts_by_ex,
neuron_sorted_acts,
at_odd_even=-1,
):
"""Compare codes with the highest precision neurons on the regex pattern of the code.
Args:
best_codes_info: list of CodeInfo objects.
tokens_text: list of example texts of a dataset.
token_byte_pos: numpy array of shape (num_examples, seq_len) where
`token_byte_pos[example_id][token_pos]` is the byte position of
the token at `token_pos` in the example with `example_id`.
neuron_acts_by_ex: numpy array of activations of all the attention and mlp output neurons
on a dataset with shape (num_examples, seq_len, num_layers, 2, dim_size).
The third dimension is 2 because we consider neurons from both: attention and mlp.
neuron_sorted_acts: numpy array of sorted activations of all the attention and mlp output neurons
on a dataset with shape (num_layers, 2, dim_size, num_examples * seq_len).
This should be obtained using the `neuron_acts_by_ex` array by rearranging the first two
dimensions to the last dimensions and then sorting the last dimension.
at_odd_even: to limit matches to odd or even positions only.
-1 (default): to not limit matches.
0: to limit matches to odd positions only.
1: to limit matches to even positions only.
This is useful for the TokFSM dataset when searching for states
since the first token of states are always at even positions.
Returns:
codes_better_than_neurons: fraction of codes that have higher precision than the highest
precision neuron on the regex pattern of the code.
code_best_precs: is an array of the precision of each code in `best_codes_info`.
all_best_prec: is an array of the highest precision neurons on the regex pattern.
"""
assert isinstance(neuron_acts_by_ex, np.ndarray)
(
neuron_best_prec,
all_best_neuron_acts,
all_best_neuron_idxs,
all_re_token_matches,
) = zip(
*[
get_neurons_from_pattern(
code_info.regex,
tokens_text,
token_byte_pos,
neuron_acts_by_ex,
neuron_sorted_acts,
code_info.recall,
at_odd_even=at_odd_even,
)
for code_info in tqdm(best_codes_info)
],
strict=True,
)
neuron_best_prec = np.array(neuron_best_prec)
code_best_precs = np.array([code_info.prec for code_info in best_codes_info])
codes_better_than_neurons = code_best_precs > neuron_best_prec
return codes_better_than_neurons.mean(), code_best_precs, neuron_best_prec