File size: 7,890 Bytes
66662af
 
 
dede4f0
b273b9d
 
 
 
66662af
 
 
b273b9d
dede4f0
 
 
b273b9d
66662af
 
9bf11f8
 
 
 
b273b9d
 
 
 
 
 
 
 
 
 
 
dede4f0
 
 
 
b273b9d
dede4f0
 
b273b9d
dede4f0
 
b273b9d
66662af
 
 
 
 
b273b9d
dede4f0
 
 
66662af
dede4f0
 
 
 
 
66662af
dede4f0
66662af
dede4f0
 
66662af
dede4f0
 
 
 
 
 
 
66662af
b273b9d
66662af
dede4f0
 
 
b273b9d
dede4f0
 
 
 
 
b273b9d
 
 
 
 
 
 
 
dede4f0
 
 
 
 
 
 
b273b9d
dede4f0
 
 
b273b9d
dede4f0
b273b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dede4f0
 
 
 
9bf11f8
 
 
 
 
 
b273b9d
 
dede4f0
b273b9d
 
 
66662af
 
dede4f0
b273b9d
 
 
 
 
 
9bf11f8
b273b9d
9bf11f8
b273b9d
 
 
9bf11f8
b273b9d
 
 
 
 
 
 
 
 
9bf11f8
 
 
 
 
 
b273b9d
 
 
66662af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b273b9d
 
 
 
 
66662af
 
 
b273b9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import json
import os
import shutil
from tempfile import TemporaryDirectory
from collections import defaultdict
from inspect import signature
from typing import Optional, List

import torch

from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download, get_repo_discussions
from huggingface_hub.file_download import repo_folder_name
from transformers import AutoConfig
from transformers.pipelines.base import infer_framework_load_model
from safetensors.torch import save_file


class AlreadyExists(Exception):
    pass


def shared_pointers(tensors):
    ptrs = defaultdict(list)
    for k, v in tensors.items():
        ptrs[v.data_ptr()].append(k)
    failing = []
    for ptr, names in ptrs.items():
        if len(names) > 1:
            failing.append(names)
    return failing

def check_file_size(sf_filename: str, pt_filename: str):
    sf_size = os.stat(sf_filename).st_size
    pt_size = os.stat(pt_filename).st_size

    if (sf_size - pt_size) / pt_size > 0.01:
        raise RuntimeError(f"""The file size different is more than 1%:
         - {sf_filename}: {sf_size}
         - {pt_filename}: {pt_size}
         """)


def rename(pt_filename: str) -> str:
    local = pt_filename.replace(".bin", ".safetensors")
    local = local.replace("pytorch_model", "model")
    return local


def convert_multi(model_id: str) -> List["CommitOperationAdd"]:
    filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json")
    with open(filename, "r") as f:
        data = json.load(f)

    filenames = set(data["weight_map"].values())
    for filename in filenames:
        cached_filename = hf_hub_download(repo_id=model_id, filename=filename)
        loaded = torch.load(cached_filename)
        sf_filename = rename(filename)

        local = os.path.join(folder, sf_filename)
        save_file(loaded, local, metadata={"format": "pt"})
        check_file_size(local, cached_filename)
        local_filenames.append(local)

    index = os.path.join(folder, "model.safetensors.index.json")
    with open(index, "w") as f:
        newdata = {k: v for k, v in data.items()}
        newmap = {k: rename(v) for k, v in data["weight_map"].items()}
        newdata["weight_map"] = newmap
        json.dump(newdata, f)
    local_filenames.append(index)

    operations = [CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames]

    return operations


def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]:
    sf_filename = "model.safetensors"
    filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
    loaded = torch.load(filename)

    local = os.path.join(folder, sf_filename)
    shared = shared_pointers(loaded)
    for shared_weights in shared:
        for name in shared_weights[1:]:
            loaded.pop(name)

    # For tensors to be contiguous
    loaded = {k: v.contiguous() for k, v in loaded.items()}

    save_file(loaded, local, metadata={"format": "pt"})

    check_file_size(local, filename)

    operations = [CommitOperationAdd(path_in_repo=sf_filename, path_or_fileobj=local)]
    return operations

def check_final_model(model_id: str, folder: str):
    config = hf_hub_download(repo_id=model_id, filename="config.json")
    shutil.copy(config, os.path.join(folder, "config.json"))
    config = AutoConfig.from_pretrained(folder)

    _, pt_model = infer_framework_load_model(model_id, config)
    _, sf_model = infer_framework_load_model(folder, config)

    pt_model = pt_model
    sf_model = sf_model

    pt_params = pt_model.state_dict()
    sf_params = sf_model.state_dict()

    pt_shared = shared_pointers(pt_params)
    sf_shared = shared_pointers(sf_params)
    if pt_shared != sf_shared:
        raise RuntimeError("The reconstructed model is wrong, shared tensors are different {shared_pt} != {shared_tf}")

    sig = signature(pt_model.forward)
    input_ids = torch.arange(10).unsqueeze(0)
    pixel_values = torch.randn(1, 3, 224, 224)
    input_values = torch.arange(1000).float().unsqueeze(0)
    kwargs = {}
    if "input_ids" in sig.parameters:
        kwargs["input_ids"] = input_ids
    if "decoder_input_ids" in sig.parameters:
        kwargs["decoder_input_ids"] = input_ids
    if "pixel_values" in sig.parameters:
        kwargs["pixel_values"] = pixel_values
    if "input_values" in sig.parameters:
        kwargs["input_values"] = input_values
    if "bbox" in sig.parameters:
        kwargs["bbox"] = torch.zeros((1, 10, 4)).long()
    if "image" in sig.parameters:
        kwargs["image"] = pixel_values


    if torch.cuda.is_available():
        pt_model = pt_model.cuda()
        sf_model = sf_model.cuda()
        kwargs = {k: v.cuda() for k, v in kwargs.items()}

    pt_logits = pt_model(**kwargs)[0]
    sf_logits = sf_model(**kwargs)[0]

    torch.testing.assert_close(sf_logits, pt_logits)
    print(f"Model {model_id} is ok !")

def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
    try:
        discussions = api.get_repo_discussions(repo_id=model_id)
    except Exception:
        return None
    for discussion in discussions:
        if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
            return discussion


def convert(api: "HfApi", model_id: str, force: bool=False) -> Optional["CommitInfo"]:
    pr_title = "Adding `safetensors` variant of this model"
    info = api.model_info(model_id)
    filenames = set(s.rfilename for s in info.siblings)

    with TemporaryDirectory() as d:
        folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
        os.makedirs(folder)
        new_pr = None
        try:
            operations = None
            pr = previous_pr(api, model_id, pr_title)
            if ("model.safetensors" in filenames or "model_index.safetensors.index.json" in filenames) and not force:
                raise AlreadyExists(f"Model {model_id} is already converted, skipping..")
            elif pr is not None and not force:
                url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
                new_pr = pr
                raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
            elif "pytorch_model.bin" in filenames:
                operations = convert_single(model_id, folder)
            elif "pytorch_model.bin.index.json" in filenames:
                operations = convert_multi(model_id, folder)
            else:
                raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")

            if operations:
                check_final_model(model_id, folder)
                # new_pr = api.create_commit(
                #     repo_id=model_id,
                #     operations=operations,
                #     commit_message=pr_title,
                #     create_pr=True,
                # )
        finally:
            shutil.rmtree(folder)
        return new_pr


if __name__ == "__main__":
    DESCRIPTION = """
    Simple utility tool to convert automatically some weights on the hub to `safetensors` format.
    It is PyTorch exclusive for now.
    It works by downloading the weights (PT), converting them locally, and uploading them back
    as a PR on the hub.
    """
    parser = argparse.ArgumentParser(description=DESCRIPTION)
    parser.add_argument(
        "model_id",
        type=str,
        help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
    )
    parser.add_argument(
        "--force",
        action="store_true",
        help="Create the PR even if it already exists of if the model was already converted.",
    )
    args = parser.parse_args()
    model_id = args.model_id
    api = HfApi()
    convert(api, model_id, force=args.force)