Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
os.system("pip3 install torch transformers Pillow ensemble_transformers") | |
import torch | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
from PIL import Image | |
from ensemble_transformers import EnsembleModelForImageClassification | |
ensemble = EnsembleModelForImageClassification.from_multiple_pretrained( | |
"tcvrishank/histo_train_vit", "tcvrishank/histo_train_segformer", "tcvrishank/histo_train_swin" | |
) | |
candidate_labels = ["Benign", "InSitu", "Invasive", "Normal"] | |
def return_prediction(image): | |
with torch.no_grad(): | |
outputs = ensemble(image, mean_pool = True) | |
logits = outputs.logits[0] | |
probs = logits.softmax(dim=-1).numpy() | |
scores = probs.tolist() | |
result = [ | |
{"score": score, "label": candidate_label} | |
for score, candidate_label in sorted(zip(probs, candidate_labels), key=lambda x: -x[0]) | |
] | |
result = result[0] | |
final = f"This histopathology image shows a cell population that indicates a risk score of {round(result['score'], 2) + 1}. Image suggests high risk of recurrence." | |
return final | |
demo = gr.Interface(fn=return_prediction, inputs="image", outputs="text") | |
demo.launch() | |