histo / app.py
tcvrishank's picture
Update app.py
4f0665c verified
import gradio as gr
import os
os.system("pip3 install torch transformers Pillow ensemble_transformers")
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
from PIL import Image
from ensemble_transformers import EnsembleModelForImageClassification
ensemble = EnsembleModelForImageClassification.from_multiple_pretrained(
"tcvrishank/histo_train_vit", "tcvrishank/histo_train_segformer", "tcvrishank/histo_train_swin"
)
candidate_labels = ["Benign", "InSitu", "Invasive", "Normal"]
def return_prediction(image):
with torch.no_grad():
outputs = ensemble(image, mean_pool = True)
logits = outputs.logits[0]
probs = logits.softmax(dim=-1).numpy()
scores = probs.tolist()
result = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(probs, candidate_labels), key=lambda x: -x[0])
]
result = result[0]
final = f"This histopathology image shows a cell population that indicates a risk score of {round(result['score'], 2) + 1}. Image suggests high risk of recurrence."
return final
demo = gr.Interface(fn=return_prediction, inputs="image", outputs="text")
demo.launch()