Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ import os
|
|
15 |
import numpy as np
|
16 |
import json
|
17 |
|
18 |
-
cache_dir = '/
|
19 |
os.makedirs(cache_dir, exist_ok=True)
|
20 |
|
21 |
def get_image_md5(img: Image.Image):
|
@@ -33,7 +33,8 @@ def calculate_md5_from_binary(binary_data):
|
|
33 |
@spaces.GPU(duration=100)
|
34 |
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
35 |
global model, tokenizer
|
36 |
-
|
|
|
37 |
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
|
38 |
|
39 |
this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
|
@@ -78,6 +79,8 @@ def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
|
78 |
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
79 |
global model, tokenizer
|
80 |
|
|
|
|
|
81 |
target_cache_dir = os.path.join(cache_dir, knowledge_base)
|
82 |
|
83 |
if not os.path.exists(target_cache_dir):
|
@@ -90,7 +93,7 @@ def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
|
90 |
|
91 |
doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy"))
|
92 |
|
93 |
-
query_with_instruction = "Represent this query for retrieving
|
94 |
with torch.no_grad():
|
95 |
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
96 |
|
@@ -166,53 +169,91 @@ def downvote(knowledge_base, query):
|
|
166 |
return
|
167 |
|
168 |
|
|
|
169 |
device = 'cuda'
|
170 |
-
|
|
|
|
|
171 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
172 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
|
|
173 |
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
|
176 |
with gr.Blocks() as app:
|
177 |
-
gr.Markdown("#
|
178 |
-
gr.Markdown("""The model only takes images as document-side inputs and produce vectors representing document pages. Memex is trained with over 200k query-visual document pairs, including textual document, visual document, arxiv figures, plots, charts, industry documents, textbooks, ebooks, and openly-available PDFs, etc. Its performance is on a par with our ablation text embedding model on text-oriented documents, and an advantages on visually-intensive documents.
|
179 |
-
Our model is capable of:
|
180 |
-
- Help you read a long visually-intensive or text-oriented PDF document and find the pages that answer your question.
|
181 |
-
- Help you build a personal library and retireve book pages from a large collection of books.
|
182 |
-
- It works like human: read and comprehend with vision and remember multimodal information in hippocampus.""")
|
183 |
-
|
184 |
-
gr.Markdown("- Our model is proudly based on MiniCPM-V series [MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6) [MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2).")
|
185 |
|
186 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
gr.Markdown("- Currently
|
189 |
|
190 |
with gr.Row():
|
191 |
-
file_input = gr.File(type="binary", label="Upload PDF")
|
192 |
-
file_result = gr.Text(label="Knowledge Base ID (remember
|
193 |
process_button = gr.Button("Process PDF (Don't click until PDF upload success)")
|
194 |
|
195 |
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
196 |
|
197 |
with gr.Row():
|
198 |
-
kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here:)")
|
199 |
query_input = gr.Text(label="Your Queston")
|
200 |
topk_input = inputs=gr.Number(value=5, minimum=1, maximum=10, step=1, label="Number of pages to retrieve")
|
201 |
-
retrieve_button = gr.Button("
|
202 |
-
|
203 |
-
with gr.Row():
|
204 |
-
downvote_button = gr.Button("🤣Downvote")
|
205 |
-
upvote_button = gr.Button("🤗Upvote")
|
206 |
|
207 |
with gr.Row():
|
208 |
-
images_output = gr.Gallery(label="
|
209 |
|
210 |
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
|
213 |
downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)
|
214 |
|
215 |
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
216 |
|
217 |
|
218 |
-
app.launch()
|
|
|
15 |
import numpy as np
|
16 |
import json
|
17 |
|
18 |
+
cache_dir = '/data/KB'
|
19 |
os.makedirs(cache_dir, exist_ok=True)
|
20 |
|
21 |
def get_image_md5(img: Image.Image):
|
|
|
33 |
@spaces.GPU(duration=100)
|
34 |
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
35 |
global model, tokenizer
|
36 |
+
model.eval()
|
37 |
+
|
38 |
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
|
39 |
|
40 |
this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
|
|
|
79 |
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
80 |
global model, tokenizer
|
81 |
|
82 |
+
model.eval()
|
83 |
+
|
84 |
target_cache_dir = os.path.join(cache_dir, knowledge_base)
|
85 |
|
86 |
if not os.path.exists(target_cache_dir):
|
|
|
93 |
|
94 |
doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy"))
|
95 |
|
96 |
+
query_with_instruction = "Represent this query for retrieving relavant document: " + query
|
97 |
with torch.no_grad():
|
98 |
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
99 |
|
|
|
169 |
return
|
170 |
|
171 |
|
172 |
+
|
173 |
device = 'cuda'
|
174 |
+
|
175 |
+
print("emb model load begin...")
|
176 |
+
model_path = 'openbmb/VisRAG-Ret' # replace with your local model path
|
177 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
178 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
179 |
+
model.eval()
|
180 |
model.to(device)
|
181 |
+
print("emb model load success!")
|
182 |
+
|
183 |
+
print("gen model load begin...")
|
184 |
+
gen_model_path = 'openbmb/MiniCPM-V-2_6'
|
185 |
+
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, attn_implementation='sdpa', trust_remote_code=True)
|
186 |
+
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
187 |
+
gen_model.eval()
|
188 |
+
gen_model.to(device)
|
189 |
+
print("gen model load success!")
|
190 |
+
|
191 |
+
|
192 |
+
@spaces.GPU(duration=50)
|
193 |
+
def answer_question(images, question):
|
194 |
+
global gen_model, gen_tokenizer
|
195 |
+
# here each element of images is a tuple of (image_path, None).
|
196 |
+
images_ = [Image.open(image[0]).convert('RGB') for image in images]
|
197 |
+
msgs = [{'role': 'user', 'content': [question, *images_]}]
|
198 |
+
answer = gen_model.chat(
|
199 |
+
image=None,
|
200 |
+
msgs=msgs,
|
201 |
+
tokenizer=gen_tokenizer
|
202 |
+
)
|
203 |
+
print(answer)
|
204 |
+
return answer
|
205 |
|
206 |
|
207 |
with gr.Blocks() as app:
|
208 |
+
gr.Markdown("# MiniCPMV-RAG-PDFQA: Two Vision Language Models Enable End-to-End RAG")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
gr.Markdown("""
|
211 |
+
- A Vision Language Model Dense Retriever ([minicpm-visual-embedding-v0](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0)) **directly reads** your PDFs **without need of OCR**, produce **multimodal dense representations** and build your personal library.
|
212 |
+
|
213 |
+
- **Ask a question**, it retrieve most relavant pages, then [MiniCPM-V-2.6](https://huggingface.co/spaces/openbmb/MiniCPM-V-2_6) will answer your question based on pages recalled, with strong multi-image understanding capability.
|
214 |
+
|
215 |
+
- It helps you read a long **visually-intensive** or **text-oriented** PDF document and find the pages that answer your question.
|
216 |
+
|
217 |
+
- It helps you build a personal library and retireve book pages from a large collection of books.
|
218 |
+
|
219 |
+
- It works like a human: read, store, retrieve, and answer with full vision.
|
220 |
+
""")
|
221 |
|
222 |
+
gr.Markdown("- Currently online demo support PDF document with less than 50 pages due to GPU time limit. Deploy on your own machine for longer PDFs and books.")
|
223 |
|
224 |
with gr.Row():
|
225 |
+
file_input = gr.File(type="binary", label="Step 1: Upload PDF")
|
226 |
+
file_result = gr.Text(label="Knowledge Base ID (remember it, it is re-usable!)")
|
227 |
process_button = gr.Button("Process PDF (Don't click until PDF upload success)")
|
228 |
|
229 |
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
230 |
|
231 |
with gr.Row():
|
232 |
+
kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here, it is re-usable:)")
|
233 |
query_input = gr.Text(label="Your Queston")
|
234 |
topk_input = inputs=gr.Number(value=5, minimum=1, maximum=10, step=1, label="Number of pages to retrieve")
|
235 |
+
retrieve_button = gr.Button("Step2: Retrieve Pages")
|
|
|
|
|
|
|
|
|
236 |
|
237 |
with gr.Row():
|
238 |
+
images_output = gr.Gallery(label="Retrieved Pages")
|
239 |
|
240 |
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
241 |
|
242 |
+
with gr.Row():
|
243 |
+
button = gr.Button("Step 3: Answer Question with Retrieved Pages")
|
244 |
+
|
245 |
+
gen_model_response = gr.Textbox(label="MiniCPM-V-2.6's Answer")
|
246 |
+
|
247 |
+
button.click(fn=answer_question, inputs=[images_output, query_input], outputs=gen_model_response)
|
248 |
+
|
249 |
+
with gr.Row():
|
250 |
+
downvote_button = gr.Button("🤣Downvote")
|
251 |
+
upvote_button = gr.Button("🤗Upvote")
|
252 |
+
|
253 |
upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
|
254 |
downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)
|
255 |
|
256 |
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
257 |
|
258 |
|
259 |
+
app.launch()
|