File size: 200,827 Bytes
c2b7e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "RsCFC9UFUEUz",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "fafe6ee1-558f-4851-87de-932ce91cb4ab"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m19.8/19.8 MB\u001b[0m \u001b[31m66.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m64.8/64.8 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m65.7/65.7 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m289.0/289.0 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.4/75.4 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m24.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m50.5/50.5 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m138.7/138.7 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m59.5/59.5 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.7/58.7 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m82.1/82.1 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m46.5/46.5 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m43.7/43.7 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m84.5/84.5 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m74.5/74.5 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m56.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
]
}
],
"source": [
"!pip install -Uqq fastai gradio nbdev"
]
},
{
"cell_type": "code",
"source": [
"from fastai.vision.all import *"
],
"metadata": {
"id": "mkmZgYtGRsPJ"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!#export\n",
"from fastai.vision.all import load_learner\n",
"import gradio as gr"
],
"metadata": {
"id": "2dvRZVSdKI2Y"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!#export\n",
"model = load_learner('/content/drive/MyDrive/Food_303_Dataset/RAW_DATASET/222/food_items_v_2.pkl')"
],
"metadata": {
"id": "krNUfhtzKkFq"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"source": [
"food_names = (\n",
" ['Aloo Baingan', 'Aloo Gobi', 'Aloo Matar', 'Aloo Paratha', 'Aloo Tikki', 'Apple pie', 'Arayes', 'Arayes Kafta', 'Baba Ghanoush', 'Baby back ribs', 'Baghlava', 'Baklava', 'Balah El Sham', 'Balaleet', 'Bamia', 'Bamieh', 'Basbousa', 'Batata Harra', 'Beef carpaccio', 'Beef tartare', 'Beignets', 'Bhindi Masala', 'Bibimbap', 'Biryani', 'Bread pudding', 'Breakfast burrito food', 'Bruschetta', 'Butter Chicken', 'Butter Naan', 'Caesar salad', 'Cannoli', 'Caprese salad', 'Carrot cake', 'Ceviche', 'Chana Masala food', 'Cheeseburger', 'Cheesecake', 'Chicken 555', 'Chicken 65', 'Chicken 65 Biryani', 'Chicken Biriyani', 'Chicken Biryani', 'Chicken Chettinad', 'Chicken Chilli', 'Chicken Dum Biryani food', 'Chicken Frankie', 'Chicken Fried Rice', 'Chicken Handi', 'Chicken Kebab', 'Chicken Korma', 'Chicken Liver Fry', 'Chicken Lollipop', 'Chicken Manchurian', 'Chicken Masala', 'Chicken Noodles', 'Chicken Popcorn', 'Chicken Pulao', 'Chicken Shawarma', 'Chicken Tandoori', 'Chicken Tikka Masala', 'Chicken curry', 'Chicken quesadilla', 'Chicken wings', 'Chocolate cake', 'Chocolate mousse', 'Chole Bhature', 'Churros', 'Clam chowder', 'Club sandwich', 'Crab cakes', 'Creme brulee', 'Croque madame', 'Cupcakes', 'Dajaj Mashwi', 'Dal Makhani', 'Deviled eggs', 'Donuts', 'Dosa', 'Dumplings', 'Egg Biryani food item', 'Egg Curry', 'Egg Fried Rice', 'Egg Masala', 'Eggs benedict', 'Escargots', 'Falafel', 'Fasolia food item', 'Fatayer', 'Fatteh', 'Fattoush', 'Fesenjan', 'Filet mignon', 'Fish Biryani', 'Fish Curry', 'Fish Fry', 'Fish Masala', 'Fish and chips', 'Foie gras', 'Foul Medames', 'Foul Mudammas', 'French fries', 'French onion soup', 'French toast', 'Fried calamari', 'Fried rice', 'Frozen yogurt', 'Ful Medames', 'Gajar Ka Halwa', 'Garlic bread', 'Gazpacho', 'Ghorayebah', 'Gnocchi', 'Gobi Manchurian', 'Greek salad', 'Grilled cheese sandwich', 'Grilled salmon', 'Guacamole', 'Gulab Jamun', 'Gyoza', 'Halva', 'Hamburger', 'Haneeth', 'Harees', 'Hareesah', 'Harira', 'Harisi', 'Hawawshi', 'Hot and sour soup', 'Hot dog', 'Huevos rancheros', 'Hummus', 'Hyderabadi Biryani', 'Ice cream', 'Idli', 'Jalebi', 'Jallab', 'Jallab Drink', 'Jareesh', 'Jibneh Arabieh', 'Kabsa', 'Kanafeh', 'Kebab', 'Kheer', 'Kibbeh', 'Kibbeh Nayyeh food item', 'Kofta', 'Koshari', 'Kubbah Hamouth', 'Kunafa', 'Labneh', 'Lahmacun', 'Lasagna', 'Layali Lubnan', 'Lgeimat food item', 'Lobster bisque', 'Lobster roll sandwich', 'Lubia Polo', 'Luqaimat', 'Macaroni and cheese', 'Macarons', 'Machboos', 'Machbous', 'Madrouba', 'Mahalabiya', 'Mahshi', 'Majboos', 'Majoon', 'Maklouba', 'Malabar Paratha', 'Malai Kofta', 'Malfouf', 'Malpua', 'Manakish', 'Mansaf', 'Manti', 'Maqluba', 'Margherita pizza', 'Markook food item', 'Masala Dosa', 'Mashwi', 'Matar Paneer', 'Matar Pulao', 'Meshwi', 'Mhammar', 'Miso soup', 'Moghrabieh', 'Molokhia', 'Motabbaq', 'Moutabal', 'Muhammara food item', 'Mujadara', 'Mujaddara', 'Mushroom Biryani food item', 'Mushroom Masala', 'Mussels', 'Mutabbaq', 'Mutton Biryani', 'Mutton Chops', 'Mutton Curry', 'Mutton Korma', 'Mutton Masala', 'Mutton Pulao', 'Mutton Rogan Josh', 'Nachos', 'Omelette', 'Onion rings', 'Ouzi', 'Oysters', 'Pacha', 'Pad thai', 'Paella', 'Palak Paneer', 'Pancakes', 'Paneer Biryani', 'Paneer Butter Masala', 'Paneer Tikka', 'Pani Puri', 'Panna cotta', 'Pav Bhaji', 'Payasam', 'Peda', 'Peking duck', 'Pho food', 'Pizza', 'Pork chop', 'Poutine', 'Prawn Biryani', 'Prawn Curry', 'Prawn Fried Rice', 'Prawn Masala', 'Prawn Pulao food item', 'Prime rib', 'Pulled pork sandwich', 'Quzi', 'Rabri', 'Rajma Chawal', 'Ramen', 'Rasgulla', 'Rasmalai', 'Ravioli', 'Red velvet cake', 'Risotto', 'Rogan Josh', 'Sahlab', 'Salata Hara', 'Samak Meshwi', 'Samboosa', 'Sambousek', 'Samosa', 'Sashimi food', 'Scallops', 'Seaweed salad', 'Sfiha', 'Shakshuka', 'Shanklish', 'Shawarma', 'Shawarma Rice', 'Shish Barak food item', 'Shish Taouk', 'Shorbat Adas', 'Shrimp and grits food', 'Spaghetti bolognese', 'Spaghetti carbonara', 'Spring rolls', 'Steak', 'Strawberry shortcake', 'Stuffed Grape Leaves (Dolma)', 'Sushi', 'Tabbouleh', 'Tabouleh', 'Tacos', 'Takoyaki', 'Tandoori Chicken', 'Tandoori Roti', 'Tashreeb', 'Tepsi Baytinijan', 'Tharid', 'Tiramisu', 'Tuna tartare', 'Umm Ali', 'Vada Pav', 'Veg Fried Rice', 'Veg Noodles', 'Vegetable Biryani', 'Vegetable Pulao', 'Waffles', 'Warak Enab', 'Xiao long bao (soup dumplings)', \"Za'atar Bread\"]\n",
")\n",
"def food_item_names(image):\n",
" pred, idx, probs = model.predict(image)\n",
" print(pred, idx, probs)\n",
" return dict(zip(food_names, map(float, probs)))\n",
"\n",
"\n",
"\n",
"\n"
],
"metadata": {
"id": "B0TzDTyAmAiU"
},
"execution_count": 6,
"outputs": []
},
{
"cell_type": "code",
"source": [
"img = PILImage.create('/content/drive/MyDrive/samples/test_3.jpg')\n",
"img.thumbnail((192,192))\n",
"img"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 209
},
"id": "Bk67K7LHScqa",
"outputId": "a195ca90-e08b-4239-fe47-410169187ec1"
},
"execution_count": 7,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"PILImage mode=RGB size=192x192"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAIAAADdvvtQAAEAAElEQVR4nAThZ7BmaWIY5r3p5PzlcHP37dw9PTnubMZiIxaBRCBAEpAEkrLEkiVZtlW2//ifJVsqqcoqCqZsUhRAgiARCHB3gc27k0PPdO6+OXw5nRzf4OeBB//4SjA8al1w6jX13e8kbFMaV+Lhw0C39GCGLJW2vex0Kj2I8s///j/41u/9F7LZ2j/b+9EPfvDow/sNVa1YURFsmS4VEsNEIxwziJGGFYRg7skYCMIAVnB6rZ2+sq0sHr1/9nTPsWuG7dRMJLFwmJJlWlq1mlt3DR1n8XI+CeutjsCEA6RK2snBCWRhE2A5ZbMyk9Zanf5aARmF0NHdPEogYFEwxaoqKZpMyzxnqyBzbK1hqYeHJ4pp9Ta3iaoKhI4P9lxNGJpWZbmoaJlmrKJVVmgYCIhnqQjjvGbqjU3bTxJFtmXDyjjtbPVXQQYEcy1dEjiapYePB6aj0SqPl5HjqAKyJAOLChoGarJ0/fYzeXuTFkIEMdKcjHEuRBbHJ48eZlHQ21pza+2iKjgqEJbqtT5RVQ4Unqfp/KDf9WSrXgEO0iHyh5Wfz5eV1V5T2zWMmVwVy8FgNlmYdothyGBpmbquq0iAPIiyEmPTtsyEoIRRSGlDcXpyy0rHk+WTfaWimcTPI5/6SKIFpJni6O3Ll6xe19J0mkY8i/LYVxW5rKo8IXkusrwYTYb9ftswZFUrBNL2ni5H++cN3Tw+Pm3vblvdOiH6yq3rjW5nOTtr9LIpc+99uMQ6m0zolavNcMYWK+XSulkM8+Hdt+PJrzXstu60ups75/unoKwwJIgQBUs6JLKMbEtFjAAhSxrBsgkZUpHAiHVr6vObrlEcnyzmnoK7nlZJJOGAA1UouiEyVyFSnqa5AFjpb2xomgEQnk2m4SoYHe55rjKpaOzHK1beurSmKFKV5Josl3FyuLff7bZrtWaBpDAuecVGJ6e2ZXUMS+RxFmSxnxqSpui6rGlb7X6apP4ySsK0yJLZZNys11RWKgpWVMuUCJNQOPOrrOICL/NpXg7dZk3PdaTLSEEFz4MiXa0iptGg8itaaS1DrZuGa3RUl5xOihh+up88+ZCcJfdm/nmc5KNcD9OcCsDKimUpLwoknymyXrISE4AJ0VWjRjLDllUMdCEuXdx2urN1UzZgVNdVSdeNMpZ4JFYlRdBP0rBEnWc/p9XXOStEFczHZ/PZ1FYkXlCrbug2QPO0XCyobPhqqFqOx9VFHuUSxAA3Pc/26mOrOn/6qEpiVGZKK5BsV69mkFIFK8jwxqMgSphfRP4qAFSUcSKqUbPh1nSmGiT3wyyNqK06m82z1cIUgNg1W7IlZFqDe/DyRVVJvU6N5SBWJKJq0NnuHDwcx3mmIjg+eHz66JP6zjOmYdebbctzFofHpqZCAXhRyViYqiwzTjABQtJkCUCumQbIZjqOb641XXAG4oEMRLNuG4TPablgUKs1mk59fvoEF0vbqkHZrrhEDIXRKg0DWKT5anl1a21to8N4NV6tNkyj3esVSboaDmRFnS2TxSo0DIMQsIoWRVKqCrAwSlarkyKWMa7SytI1tgrnk1mc5xkTBSeuYzebNUTkLdd1LEPFNBicZ1WVVSCv+PrORehYSV7yIMmiKJXIo8HAsV3TNinisu30b9yUNCdKl0/3DqYx2T9nZx/448lyOJ1OUn9aSHl+j+VBXiHGZJIHHOFKIAQR5AwBwaEAEACOAcQQMIR5iRyhpAoBpnDxzwNol+uy2/Y0r0Y2e96FNUvPgy2CurYDK6bLkqOjNJ9ypAAgIUnrbV60TLNISz9Z8rLMV7RaANkCioEIS7IZqDWblW4Ex6cV4Kqucj80bdlrdoUQIk1QmiTLM8E444ps96hQF2FQAigpJpEBgQRK2M9Zspw5VrmcTkxdSpIVNExVVWUske//YPSFz1+IMrB3RFqyVCH/1k3l8aNqmRTLI/rcy7r9nPvhQz/HqiWj/bsf3/j8tyyzWbPNVqezODwWXKhYQlwQScKyASVJUhwMFdfVaenLxdTAq/UmbpAAhNNkMeVY4hjkFR3NfW1te/vyFZH4PsodR1LkiolsPJuBUNEVJVqtIGVVnnfXmlkUlwQ0tjcUwyCAnA3GmmEYmq4Y7sUr10fDQeRHGqc1kJgMQQy44cj1xuj8TFIkSsvJ8Fw2DN1x0yjRiNJs10qaSwZxPVs1VEVTVNs4PzidrqL1nUt23UlBBhAFjNmO11zfgpLqNvoVw0+OzpJU+vjTcP9k/+mTk8kkWvlZmPlpGVeVgByXlOWIqiIzqZA5LrgERY4hRBALADAShGCk8LKgCBDATEyQAIlaMsYqzhgtswrAyq8+REMgYUlSNOJ4st6ypV4N7G40r17otVx59nBvY63tuPXFasWTSNIaFZNwo9PuXc6iCJixVsbLkydgOmlkGZU8ab2taDrVlFKXtJp+wV4b0VVT1XRdjwsWLiZBkMuSJGkwmoyhaq3CM1xJtmEmaVhv1Xs7mzlgOLIXw3F3vdOrOZaqcck4n6+WQUiEZEwC9cc/34t9enSIGzu05ggTIyFJRRLyaFAzCEJVw5Lmk+Ds/sd5MK5ZDVPR+p1u2O1iIWRNx4LomqnZBiZIV0yWU0Bzma4a/KRr85oEWQBX4/n4ZBlhGzFcJDEjer/dINEs8sMkiDPdy/I4SoPpIu30umEYLabzMIyardYkjGTA7U5DM635YCoJnKSlW7OwpmOGl8GKVqVtqDyKRRZDBRuyptVb7vq222nTaDU+OdYkx2625Va3AdB07/FoMmz3O921joBitpjJZWVC4jTbDaD7aUhhrkJhKnpvezOH2jhiBdDe2j+5v3+8t386nAR+RMO4LMtQiFJwIgC9uNPJwmQ0SQFAzbLiuZZxncmc4TgXKhAICgghY1W53rL+wX/02gcfPnjrraM4KgAHbkPabDv7B0sGkG6zJKsoVzSOECtFXgiRhQinC3Z/5P3NXlx/97TjyF1PuXohvHIhvdivs1JOzxe9bU/BqiAW1nXNdnnlr5tSeXoYjSYpWASQt9b6nXoLEyprCoeUIzSaTutebREXJ9OlhHXI03YLm46R5cFGxzbVesPzlrMxJMCUmWPqxGjJAC6mcwkxVSF+zhAUSOSEy+lf/NWD+xN6eYf5iViT3TxO1juSqFuqPTdMXmXG1VZiIkHqnXNPj5dTdw1pquE5rms7UeBjiQCGhGBlGhqWhoUiaJavgr6TXW1CQkMahedRkUeF2bxgt3ooz8ZPnmxubpRRsJhOB8chUrWSOZAQgHKVYFAyUdJWs91q9RXbQprGIx9LysnBaThctGvNRrvLCE+EyMqi4tzQVA3DVUErobIojLJl23J5skijVSFYe7tn6QZTDLnfYzkt71Ndt2TZZEIREGDZFpTneQxLoWE5z2PVkVVvDWvu03ny0zt3H5yHh9N4Mo2CICryXHAKAIeAS1BGTGe8RIKtW8prn7n2B//0+288a3/refPufvyH70VnEUSQQoERoFgADAWHouPCG+3x53/v6ifP9f/1Hz99erT4u7/y6muv7f4f/ss/skznt3/nxR/97K2fvxdkuYOggIwJQCsJp4jI4WKrD5bLeG/MjxXtowcTr3O42a9tmWjDQS9hc8d0uWBVmUlxhvMw9FeK11GtmiqypGDJKgRhxGkEum6puu3tK0f3H0xSYXe3tzo7GDLEqIpAmaSE483mWiyLEmfbF9uDgwM2G6JYj8JkOZomWQJS4sfxeQxU3USyRnYvdp8ejBstsXvpAgnCJAx6DhCEnwz8DgOAF+f+xFAJy4vXnmuuU5Ytz7nIZUXIGoGqvDqJCFExkVdF6NoqQeYqzBRI+9Ls5pqMIMnmbDqJO9uXN59pME4zRs4+/Zgtx1RlM1iZDdfdbGMsLdPMtj2OseVZtd2rWDeyssySxDZ0mmejwWh1fL6IYs0wZbOsleVqFtqNRqfbWR2fsWVQsIKvQn+VnoRJrupraowf32k0rNZu3zD1sipCf+6ZJksyWwGaTngWHD2crOKCyHrNsVM/VRDp9Na9Lh8tRj/4NHzv6c/2j6XhTImK/SoveMkRoDLACCIOIIWQV5yxgjJCmLzVrn75c+QZfbvWWF3Zgl+82tjcHf/f/rm5iIEiOICMYVRiWYZgMog+fn/yjVeTX7q2+PL/cfck3e5c6v3Zdx8cjapuV2SzR3/ndfJKe+MPfrwcj9BztzyQ2cfDeVCIrz639o2vbP/5D+++d6eIYj/lSjhf7h9DYip92/zOvnj28ukLa63dTVSz8PKcSnqCVVW2CYItGTJdk7PZ7ujsnXQ8a3cUCaILt5/BrgUJnI9GpMpNRQNCDXVHZiKPV0TwIAg1twYq/OGdOzsXLmBdjTkPcraMGcLMqTd1hNKyIsEi/7WvXK3XMpmZWcLHg+TpcblI1bMVtTxXVdxH48laTUEVevp0tCxy0h/3GSQYQygc19U0tcxzzZIwL1kmgjgnlGpstrnBNJkXjCRJ4XotAfFq6cuSWM78wp+ZMlQl2N+6gF2XARSFiWuzVqM5GZxZmgyAGI9GOWO1ek1S5ZPDp1ESq6b1zO4VWdeLIgsC33Zdr9UOkniVJpIQSs3zaraYB9pkmeUUaXBjc03CIkuLRrNFy0oBxD85G4/mpIJZkSRpnFciq6BmSsLFtZ11qkgnlfTdH9z/9NPBoc8m4TzM04pVWDCVSwggIAAElDMBAMAQxYjmUDhYfuPm2q9/s92yTuRORqtSyIDo9Mtb+g+2zD+8H2GZYAgRZAAICIGf83/1neFuZ23juSoLjta6dUDPP/7J2XqL2EZ69Clxb8D1a/w/29z+2Xf2/sPf3d7daA7ne4vYv7BWKujDGxekh097f/Cnpz+6ZyDGCMt4Gi8G8tnxo08f4r+26us7yu2dSxdr6tX1TJkMjRQIrS50J5ebUre+tfZyOmF5fJTnVVlVSlkSUTllVQhcliVRNN1qIIiAqizHJ3EQDxNqGVYJiJ+WzYbnttt+XAZB2Gl3EABZEglekXgYLKOVGrK0kvqXVALcH53G536FDRNbGpXtJ6dnRVDULXKQJkiC8mSCqJAIgYCrMoZAAMGB4KYiYUlexEWtHDeVUcfqMIDKuMAAKZKMBZARYYkvRYs1z84l3uj3OJGiJC2ZJGHNUlAWR9FqbpK6SEJSFmvttqSrUbBUZNy/fQNBKUiyhe/PJuNet1mznSKO95/uSQJ2m3W330YS1jaqelIUWSZJQtVEXuZJxM4PT6L5UpaULCuS1YoVRWHUazu31psNBxY4X00l/Ok4+mA/eff+5GToR35UBCEAnEEmIZ1ALEQChCy4XCEqRIUAglzqC/TiNfr1L8M3n8Gu7k8OhvNRaKYyh5nmcClVPn9Z+flEGgVMQZAAIQkmACiwvD9DP3xv+uYzLgaVDldYBP/o71+6t3f22Td3pIIOF9Ef/PGDZ55Jvv3L9Svbuu0EXs3mTCtnPk9KqazefC5n2k72x77h6G+9fawCoTCRcX8R0Gg+Phqod++Ely9ql9rqa1eu3d6R5dmxtGFT1AUikZVQsXtQ6uWLpT8f4DC0IGtoKidyVRbT+aiSsyDLdYlJFfW85mK6yKuov3NRQNzqrUdxVFWQw+HmztZqtUzLlFFKmgikORXeBX/FxfzEFjBKeZhUCqkkgOPpeVOVei2p2bJdWLBsGcRjwBIgaxAIjBFnpYAQAS4ralryOPHtctJ0mWBFUellklZpqkly6q8SUOmYaiwjhEiuLRt6gVAwW4TTxNI0Avl4cIqhSAGaRcNarw+qnJcwWC0RBFlZAkSTLKnKwrNMTzfi0Xg6XySLZb/Td1Qry8vVPKkyli9XrqoohqQZtqRrvCr86QIKiVWwKlir01M812j3zVa/YCJc+T97+4OPBvmD0+xgBOZBTosFYVEPo2/92ton9yaPPpVLzLhSCUQ5QgxxgQXmAHH2t761+/d/QbS0YzY/OT2pTzNS39iKl3GzLOQGFXbts01yLnn/3b/e51DiAhFQUYBLaBQCCZkhrCo41EFMkLh5af/yWk2XJxkZULQ1eIoP7iVf/CzpeZO1TgSodHjA1y1BJJXUdpVeXXp48g+/fKV1ufrow7MVBaWccMQu2tLnnjF/8LPl0j9++x54+GRt//CjT9YWX7tpOXo3md1tbFQsnMR+FDPWq9cv3+4yVC5GJwfnp7aqGRK2TKmUoJCQZ6nRNNc1S1GM8Xjmh0lWsW6UTmYzVTcVTR9PJjXPMTWlynMiSygWxk/vDg6P81dv4BrMR34el6zbkExRaqpy0RYXesSnMZGhpyiN9ToXJQAaBBwInsTRKl8kaRxqBgRMK6dNPUZASaMo9JfD/aOGKUNO/SwHNK9p+PjpE0nXeltbclEWlC1H0/x8rrlWKajKKJHVYJUQVVE1NYrjgwcPVEVe73arMmVCtDzXZ+zp3cdKluKqrGma3mpBIUBe5LzAgksQFqxM4pRITrhKC0rTojAM227ZUZIqnoMtOzG6jsaL2eEwZH/89umPHlTLcz5bLPJqSTC3JISEbEj40g579lbz7JXaKitPBs5H7w3SQuRA54AgVhKe/9ufHb53T3+2Cb94s9isrTyMTaUGO9pguNi5rKubbSVafGGI3r/Y+Nn+gskG50AIyIUgoDIURACvN2qUzgo/p8xX0YrH2PBUYM3+L/8VufcgQRllM5EmMuXT7TayHTsBWO6blWx22jlEDxo6ueDK96a5bggiy7VK/cJLG3f3ivmQliVXyPzFDapEc2djPVjRILm3cVEoZFO1rs79syiOhSIDRa1fvJYD6fDTT10VebZFiFwz5VbDslSFJpVt103TuXPnXhaHvh8maVGm3NKNcLVsOBYhclxl5P4gTjN0+TnjYm9zcB5MKYsUlpUME9WQCcriyz3z2qXuSiD/dOjpZkA5gBoDGEIAgMiLnFU0S9OsKGtScqMWtUmahERCEVFgr9OsGTjPM13BSZ7rirO1exnrmmrbcV4KynRECKk8EwuIS6BDzS6RLBlKmMSSabdaHdswiySxbAVjVKSxKNLLGxsyY5JKClFIWFktl4Phub3Z6/abgIYMBe3NNa/Wmk39he9bipGnxfHpk1qn3b2wRjnNJ0d7U+Nv7p5/8HS5dxZMpitahqrELQlAgSDAXMIDWv6T/9/sjec6L92Gr254w7Pml241H+0PnpzyRQQCv/jGl68NZ/7d96JBJq22iCWzta6Dy2GrL6Z1k1CO0hICZovJb37p0kFUHPocIwAhw7hSaL7RrosiCBaImEC2LI1aLKgoK5Bh60r5+mXz4LA6PRXmK5a/4q21htMFjGu2xar0UOHWlYsa3JKj+fAf/0Yv4FzD9cQk/99/8vB0dPTcRf7oEQJIfPYXlN/4euO7/3N570Fw5abobvWfPGLHY/jcGzMTZXGeKKUNEamiEuZqo38VZcs4jvLV2PGsnAjFtM6PT6ejSexnRZxiKo4PjnavXE6CJMtjyPije/chkksKSEL1BBa2RPZPTt45IoRzXWJzxRlRJRGg6bodXGIrDmnj4YLWVOO8zF1JlUoigUwjgWC0LGQOgobuv3qx38ba6nToNGvr/Z5eN+IkjaK4s9ZPszAYRPU1q6U6UZiPlkGt3ZaZqPxVzVEhL2MmIgY6nXXTdleLkV2r67VGmhfRYqEhmGUMiQqkccPS7Qs7QtYSP1ocHWV5gk2l12221jeFKEIwufTcJU3XYEqbnqNITrDMg+BMdYz69rbp6MFy/KPD5bv3jz45CU7HM5oWqpARgoBRygAvGkBJoFxxiI+Gzvn5IC/Ym6Xc1sWtZ6CtsusXoInY9np399ZWLFbhecIGS7BCh48XNYm79cryLEMzZouVi6R8Lts2aJeL/+zvbv/P/3p5MhxAJCsSVgAsSvlwQtdVJlkA4QzJAkpVjIisczqeKYq+03S//91Z4tr335l8vqlLdRXkKoI+zBlHM8l0WEkdu/j656UoUSZTvGL57/66e2uN1gH4ZziyFPGtl9cNs/3efO/6rPrstsqLQ4c2/vDf3v/zjw5/6Y0rt7bXJMDL1URWNNs1iaWY+iZL85PHjw+fHMTnuHn9GpPV4ei4ZblrHTuc+8iz8iJ0HJVA4/RsQAHc6jRoVpBmjYNYVWE78VNC6LO78iXP++cfJ8PFdGRwd7vdudhFulyM5ekqn+kquG4CScCk4qwSoizKskipBv3nrtjblpz4qaKbqm0uijRZ0TzLKOOSbYos1K0aE3Luh+Ei9kynbntlGCzGU5HHQirNVnNz54Lh1s/OBlmRytTiSZikOUGQ5+V4OjVMQ1QlFaiKUsmSsFtzNric+q5nGZa9f3TuuY7V3swopyHEBYzTPEhSJCnGxratExtWdx8v/u27w7fvTc/PwlWw5MgnGGAiXd9u64hcu0YXQ3z3YTlc5DnEuhL8wpvab39710SRikXpEwNUSIRX+1W/FcmUq4R4mwJo5uwobG2lhKSEoug4WuQLa7MtVsXxh8NrV7qnD89Aq/OPfv/Zf/dXyp1P9zDTXr9sf+cn2YdP6X/7200TB0VmVXACuDA3VCxgPjRSM3ztIlz/T7qmIVVbqmupUezrlgcrVbVMoIoiz0SRy6RcTB5V1SZGa7bAX3mpm/oBlunf/sX289ft65tFSIPXvun98pf7o8f79TpiYGqawU9/YJ4dz168tvaN129c6juyEGURQd0gtqO5rS3ZYIJPR2f50ejipZ2maQFWiYqqloZrPYoA5JToKtYcxvNLN66kwYpoKrSr4nRwIEC17qg24DZJPnvFShLkWfn9wbKnesXZ6SKSNA4nkXCthkQQZSmjtGIYAmZJ+bUmvuBqNC6KKJUllQHMIJnOA41Rr2HR1WhyfIihVmUsC1YaIaYth+PJajZTFA13ukiRu5trAIMwCSQJNDY304rOFzNTNxWMT0/PZSIMxWOGF1diOlrSs6Hh2FiRsiLZbG8DJHW2NhM/lFVnPlmAghMOCii4Ybi1Rhr4VEh/8tPDv/o0/PAoiqaHZYGZEIjLZVlpJv/VrzW/8GKrra+qPD/31b/6m86nT+Zf+VL/tdtqeBJykuFaaZgdPAthAZNIQhsqIImONjAiMUxxB7QNE0yQXpoxH+lds9VuJnfHl0w4myyiwv3BH09rF370m1+78BtfeYFD0KuXf/7HA9WAHPuFXElKi0UcdQWUQPJooQF7sWB6z7a2Y1l1b76BVUkvUE3w6XI0r3LW3lnDosISApUaB/2Dp3wyvatgePmKsXHNWMvx367BVz+zEQWHplv8vd9sPv3ZR2Ws+aX1Rz8p6q5RVuGD/Wg4CZ4czV6+vvb6rY0LXU9mMI2iisd5WTSvXKttbZejs+lwqhuKpikAyxmKp2dj3bQVIsJlirGkYHA+OLd0iazvbu1K8dl4HsxYFeYLbjxNi40muXy99oM7w+8d0PXzw7/1+Tao5mOtCCWz7fQQksoi47Qok0iki5qKNy2ZpSte7yhcw4yBgiUjP/bnuovVUojlqqlLUQqrEqiWl/nL6PQIaLJlO5Zdm4ZZvdlCSM7iSNDSlOSqKLMi7/c7pmEXy8i1bFUCEpYolrKsgFhab9Ycz1kGvmW7VZgwgVSsqaab+2G08FkmHMMwm5bWahaFHBfVX7x3+BefLo/OpzwcA1AxADlXBSMEAI3IbROSJc7GcbMdyKb2u7+yLtGW6sLjafrvvjd5+SZ+0YpAzXj846quYN1bQ4YJSInQichLKmo/+LG/0Wp2NT/l0wwL+3KPFiydrXLAvZdr37qhHx7G253yxfVps9EGZhnmtf/g67FrG3IRMgri8Zl/Kqoanp+Xuzon1ipbqjG+YG0ooGyAAgJGZGxBEUkIsSITQYAIFLRC2LM1+95HH0JE1/qGKkECqmcuO9lsxmgqYI8u/epk6Eh6ZuV//ePhP/sLYmkQypFGlSRiHz4aHA0Xd/eHn33p+uefWev1bCwDACpNtZCwlZbrzyaj0zM+XbqGLlEYjyftyxYt03gxqukWo9X+vXtra31y84VWsZQeHGRYdQ04a/bg5lqvZ0r5ZFDzmtgoUx4t4/LCdvOkmP/8yeqZ5iYHKK8yUKQwXl3paVIRyRBRDqb+WObAIRKBeHB05lmSZ2qEUpqXNGclgxsX17NwcXb4qNOpARVRCKqicnRN5PnB2Ykk4abnMUanq5nVrmMEhah0XVVUdbXyNSinLBcQmpquQFT40eL0rO5Zo8WqqETJSVnSrIq7G5vdC90sLqiuLZfZB58e/uV9//39yWJwSFisyRLPLQiKjFUIQCJVz72w2a13kzj++N2jL36xZjTkkh0pCYAEZynbvd4t0elsYt75BHx6D//D3+10LlXAjJBwqyAXCVU47nhrb701+soXdMsKG9sW6khsCSMHa/WavuUtnhxf3ylvXWl2jTXAD3nK4N7+INR+dJC+olc7IjdZFlH+7o+ASlRt2z7KYI2IwXc/6m83FXcvgnH9wgbRXFgRlWO7VhN5lcSBpuoCLL3a6Be/jn/yI67W0trWmmJfq7ITZJVCjPbuZIvHg1s7bv2GnCYqgwLJi2niylqGyxwSxok+W2U/D09O5/n50ekXP/fS5katSldq0yuLksoow5hLCk2r+cR3NHm9boNkiRFruFqr2SrzyFRxGGbk/O4YxdM0Khy39sp2Z+Oiszofv7ef1mS1b4PbPfzvP06ND+nXbtkFkBO57vQ2K5CF8UKUmQXyG+v20dOz+bKoSqneNFzLViSprKpSEgWBXDMqQcJE+AVs37iaYDg9PW4aas8xgopSBpZ+DECuWXq94cqalmVllha6ali6wVlVUsgpHM8my6CkM//6td2aZ0zH07PlFBGZlQWr1Kos46jww6K/c6nXv9bsuZxWcZIFEfur9x5+/+50/2TuzwMdVCrEhHPDhXOfUSoEkzDEdz89+0mr+u3fbL/UuF6RZVTSijHZUxRF1CrWl7KFSP7mYfFn3xl+5Qv1G1fWiTnOy5jQqpxhTSVpcvrSK9pLX3IURUUlhUZSljO5tll/4Zri1hnMIQK/8nsGCHlRPkYqZMSmijsaVZ88ONu4Kl95dq08XbQ76Fm9ePgA/9E76mnu/5dfUqqwWN07uvlcr76pF2mVpEyqIhiWyXJOJC47qih5MPCfPEmtTu/qLb52fcPabFKS43oDB4k4DqQzf2dNsq8SDDOpql56eeMLE/rnH4akhBkAWFQSTTAitBCnR+f/ZpHeG6a/+Jkrn3v+wmy0AGWl6qTKckOzG52NxWQYrKaYUZ4W2JCwps3CBAoaVeBo6pNwNU8Xi92e6a3V0vn52X7a6NSASN9/nPTd/DNX6hKQK67//HH08arc+fyXjLoT5kWcRLBKdZgzkdNgBTxkYbmmygyhKE6aprbea50PBicnRBBZyGpzbcMy7WA25X7utRtLP6EyUTSp4qGjYM+yoCSVVWkokgo0keXFeKp7VsbEbBofHi+YjK/tdtda+jSIzpZRw6vXGiaENcIxh3kWLvS2u3b7uRyxnE/G57PDgfzjJ6MfPjgbzuYsmrtYrgTKBTAr+Ht/66rrVfcfzv7kz2ZhoSAiX7zcWAySNU8yjBaWWgxPuRSnQZqEdDSYrRhSbem3/rb3ym4pigzKSjyfcUHmY+h2TAK4ouhI4rxc8iSufCCvW6IInEYHOF5ejlo9WxJhUXIu20r9JS7JrVdOv92ev9pXhSpAz1odRtPF8sZt7b271c/3ws1dYsvAudk9G02RZLJMvPejRzmVXn/FsHAOZKbaGlD0OMijQDp+LHWweP3XniF2q+AxgDlSWbBvnL616NZx51lE5dgfA91xXDO/cbX+s0dFGOQASQIhwTiuCsRQhcEqi+7f9/3l6tOj2Zef3/zspo5kUqZAIxJGsL25FqFyPNkvw0h3HaKKlT9rd9rjVRwXlGzWpFxrn43Lj989mVRSTsuXdpdrOso8PFoln9HxN243fvg4PkoUP6Hbt24A3SrnEU1jlCWmjFLBbd3otWp1S2EVCGlF0wJFGRPUMJx2a20aRxmvdEWa7T8ZHR6mQYw0pDpqvd3OGVQdnWBccFDGCWPU1DTI2Gq5FLxiZZoXVR4Wlza6zlbP0zngOYS42dskQHBENNMAJSgT0dna9fptCTAY+rMs/eHHwdsP+Scno5Pz001bD4lMIRCZAioSlnEwG/7eb7x8e1u78/PlJyc8TMX/9C8H33zd+a2v1U9O9gjfM3A1nFlP9qdBwSLgBrnckKCNwKcf00ovn7+tG3r9ZNJ5dDi/BVcXr3j+KqoWskSAyEFS0nozkGRlPn7UuF4HUMd0zkBd3+oKVvHsAxTnFUCUBp5tr2S5oNzSJBO6RcK++W230Tq3Nd3nUnkWNIjA4SwL8teuq7JnU0ktGMc4q5J0dVbGRd+ut1/9lcDbaRIPCzxVhMGomg/HPNHv7+X4FlMmueXWjZqFdUMv4tOT02rFKSQYVAIBSFSZQ1EmJS5USDXBx6f5NCing1X2ws4z6zrRMW4oC5hbUHPVWlHrLCiSFEtRlLqHG56XRpGt6+TtT0NUFKZtTcdBpps5AB0DtgRMbbDW7Waxn3C4dxxCCV/eqj37ymcyYWfLAxjPYFUgICRZxhLJyjLOkUkULFgQJkGa9zf669vdkiZ5tHIVhY8G/mJk6Eg2PN0xmp0mhyhZRbTkmaUHWUHLvO7YsqanYVQy3mw1VA3KVV5VketYdtPmRZZHfrqMW61NJhAtxdnhOK9y07Y7DZsWxdnpI0yUP3s4+v6jbO/JWCz3f/m5+tFRPFsSYWe9TUvJZIWi+/cWWch7DvnCc3ZSxY/87J1F2llzGvfxxz9ZvLhVf2FjPRrNViNBvdasghmX0pFaz4ofP47fhIPbr15GysZ//798sObQz1xU42GwWCXdq1e0do2nvknGxAhgXsdFRJNAqd0STh6Hw8I/0nEOaUaExLGjWDX83BVDlav0SDPoIinCKd7Yyr/5ov2z9/A//Rv/d64RTSOBJhZU+cn3eYyqxTLUrfSrb5q7RIzuV3/96WD3TfTt390BslbRuQQKmuSr8aGjdxfTlCt0OAMC4GaTcSu0nKLpqm/ecB8+WD04zzjAVVWsXdC+8rktUOhv/3z65OmslEuAKrZc3QuyRVB+7pL13LX+VdthZcBRDiExPK/kNPBXcpVfvnjBtg0M2v5yRd6e0he3mx0Xvm7CiiYEihqBIoxrqlzJaeCvIq549fp4sXj+Cy93tnbnhQinpyRbgiIlggNVBZhgmViei0SJs8A1kL2+0+i3ZAPnOeu2m4v9g+Vq3l5vSqa2iFJT1VheISRXQVplJcdymiYtz7JkjSVl5meWEK4kLcMoKktv7VKW0cXRcc0yLVmXRRxOBpmQ4jTXNc2z1I2dfk55nlT3p/F7w/H7e+OH+0sYhh1RvnhZv7GT/MG/YPMAffv3d5/dVpLjYjEcLk+e7rb5118GCZNGb0dZCX/w4/0f/XgimPR4dy59G1Phl5a+SB0uWTquLExtbf6LX5Bf3ZJgYsmN6OZV/ewJmMXMJlVtw9GaogQDIYcyQZWvVMMFXKF0f8963hHNiywE5SAjusQUSXJV2bR45Vf5ESg1zPGEO+j6Jnh8NB9Ud87MH76dfXmzu6bOxqdKoiWsj3/+uBpU8dW6k4f604f80q3axWcRfk3qX7v94VsfrW0oLU8N5itUjmqmnC0mhw+Hu1c6dVuRWMQpDhdZFo4v1nsv3bKx1phkZlKyp0flnTsPWqh4/gVvDcv/773sPAcZkTUOZZ7sHzyYVhvnpQSoerOrY7mkFucqNmq1dr87H4/OBqftop4X+SrNiVtRFqzOfAoRQZzVdDyeVQ4EWIIMVZqpDMfAMDRbX9t580vQMIvxMPNHGkvL2C9ZEq5WXrMhaXJUZiYpt7t2QUlE8fn5qeFI7d5GsgyQqpiOlQscx4WMlNhP42QWJzmEZH1ziyKsyaUnSfnKLzI6n656Gg/ms3lWrl17xups3v3oHs0Z49Gy4hZGDduMiG0RvNZvnh3sHT7ZZ0pjmpH39sJ3H09Pjs7lCpYZPyrkP/3x7B//Cvqtb9f++C/m8wfL53/xFuyOWQgAPaeJpIvEBhLK1UQVRFBCqQQgy+WTJ9EwYgxoBCNelHVt8cxuUqsH7YbXUapq8Klyeed3f+flf/OH7/m42NjUdZdWYk7kCuAQ8VaZOiKfgUiYG1J5/hbRdryeJTqXeR7ydAklVCHBwwVGTILuYpBGtNNY6ZOTlGOah/7feta5KlbLCilOmS3L7d7G330V3n+yamyD+TipCeOtDwaXXu7d/OyVn33vw8HH4QvXr330g3t1Sd3cxOkk0uvO1e16VQae5QpKBBDbnW2hHFEBmm30qg1XAVyF8tUt3MSN6GHirs2/dOvgwv9153/7d+N3H6XLCAkB1UKdHYQ/Xh0sl6vP3Ox/9uaGF2Yt143U0tQ0CMD58fH5cAKJPA8z8tUXTVmz9wbReMVBgQQVWY42HLVmG5al4ipBMh48Pa+98ZnOK19OWZUMHosqyrIEpHGQLLM0a3R6/X7j5PCQCwLyvAhFBmUOYc1wPLdmSRIm0PW8pR+GUVyGUZwmFReWZW1e2IQY59M5osV4uNR0U7JrrmJgkc7DVWN723DNaH7maMxd3+JITpcRXY5mswnpua1LuwVLV2k1GkbDErwzKB6fTGfHZ7iqMCs3160goestcLFX375kt1v81o1dT9ICNtR4vky1nLQUaykZWcGLLqi1vALwEEO+3a9laQmkK90Ov75b/+l3P03DpHPLtB3VViW8JhXTc3q+rW83vvU7L+bjCWCPinmccwQAt2tSqfpSzYTAKos4nPn7HwQqD9rXdWNDkms2kW0hFDF7KlEFNi/SmHparKjLcDQ0aoLm6i88o5t5QEeKv5I9r8SOPZ7O1i55p2F6MqSbqg6nYlCxNa3LF9bRz85d28snccNUFGjuPRnVewKEaj4NZZymeWp4juopio4KRUFWFwJZSpd0Onv7pyekpty61kSreV3BGlLaW+mlz9WftFt/+MnJjyd0nkgGSMtV8sGDeBIVJ7P4czfWL+FC0LwASNGsdm/j+PBoNR67nkueROLqhdrj+4Gmoa9+8aIcjB6dF0UmdFVbhqmGVUP4L71wofe1bwu7u5xNVsOnuMxWwxGYj2XCnZrr2noe+BqCVc72J5OqAv3d7tQvqlwKZkGZpasgWy7jqiy63XaOORXlha0tpKuj2YzGyVq3lqdFs9VprG2VQJktQloEa+tdw7SWq+VqFam6tYhpmhXZKvUHvuPql2oNpJKTx2eQmyts/XyYfPIkHI6GmGVaAT77iv1f/yfXYTWs9YkBSoTc9a2VUQNFeKJo1v1PpB++fbS1LjU9qpnos7cVM525nrLMYcr0oNCwuWlL8Itvdq/tYp3tfPL+/C9+Oqlh/uu/xtK4QqFR8D1yYV2uaYYJRdJlq4kJRemnAMpC6KiiWIFws4Gh1BSqWS3hFD16f3XxMz37mldJJVxaSYW1JizDRC4XkoWbN9daBaNzJR6S8WmkUUpw0VhrPEzx//PPZ7Ekxbm5Uys0oRsy3b5kX3rxwsN3PuopmlGPp9ESEnK+d6p7slpTHn8wdVQs6bC9aYdhlmSRyHPZpmlUqcSeHMw9Y+1LX18/GmFJrna2qYJG/qEsYt8Z45cVTXvFkh7nE2/jrY9Oq6KSV5muzvC28a/vDn+h6F7pqhGPbYSqPG/2evVmbTUZk+/fSz86fahX+NkrjbVNj+boRiPOzoosDKbL7HQuP3vdad56Zu2Fz4wLNj7ZZ/GcB/PRkyd9T1u/cJFIArNMFpTQbDyd6LJ66eqaZrHTsX8+xF68Ojk6AYzpCt7Y7Aga6wasqU1JBgFNiKAbjabTkKOQmqZVpUnKsiRctvpNAsRiMJyMFk8Gi1y2iqLYaHcHh+dFmpol2BV8dbA3ORw+OSt/PCg+OFsuBgMFVOuu9Qs367/8LX1LfiLXeKhiCByUVZZCKpAqxFwuwx99MJzl6uiJb8oFqvi6bALLzpDKEZQqqioyR5itzmBUVtnis19rX9jt/Yt/MdjpS7pWS5cTw5ElR+ezE8lWMKmg1ZcUC/JAcigrzkihFilGfE6EQ1rqxo4MZv2D9/3pqur7EyelWM7SKsi4JE6ewrnGtO69j+KdHS1cTkUcZCOVLYldE8a6GVbVk71VUpFhwe2ameMsMKBv4otb9Qf3j99+e/jVqy2zFkdxEp5jxxUXboogrjxPXb+gABMRuzCCCiNCbJYdlbPT+8RxLElV2PJym97a0CseYl6JU1jOKjpkEle5k96o4f/iVXevXjvbP5oH8tWb0v/591/57nePvvPeslxV/JWtV26vsTxQVB2HvmxYSRKT3S2HL/0b6+pujb39o6cbt3ZVS5W9dH6+MFrenQfLYaP5917/jdzqrKbn6dljPZqVq4mlE9MziASIBBfzeddzzZqH/MQyjaooyjIRRTqd+4FSGqbV7vbyMq3360G4ihJKNA0wUaRp3bJURMAqjEdjZqSFwHHJ2js7BBPOqsngtMyqjaalNjqG1xqcDnSVX97eVAwFIsri6iAk35nzR0+G+dEJkQgV+Le+3vr93yJZdlTNJLlSYUD+8I+qza3hG79qEeZzeqZTgIocEStjMEgrU7YlUqe6BgAGvJBFApI5Dc43NnDH01UlYmHAluIrN0W/gZgcqusdzTCCgwF4+Njebq5mS1Mti4LKjgxNLAqDZ9lgINMx2HBjETDpaoHq3vrLrtGjplGIcIE1SWm4xwfOJz8fbteVraY0frqqK8eWYuSFTLG/9UJNcfA4TM8+1tap8Z9/Q/nT+9GT1DQN5TOXDVCGXBZ9K/id37i9WKVHjwuzDOIg9a55QkmtSi71hNFSVxiFXHMw5EW0YuFJq1bmxbmvrtdJu8RyFU7no4N8q9sDK0lWqU0CGGbcNXiRdaWqiB7/t3/fULzb5sW1P/7h+//suwc0Z/fFilflaBBfu1Hf2jBggC2j1t9QyK0GW5ZSnuZxrtz9eBrk1UsvbEAOm83GqBTORrf/xq+ii6/PczZ4ck/2BzAYq3nU8hzKcRTmQlQSMSHSiSwM2zUMDaMSARDOJrpib9dqkmHM55O1zb4MRRqGDBphSWkQShgSSclpVqZZFnPV0IMoqve7TrOZpgkvq26zqcnKIslTUGmaUm96Kq52d3ZU1w3K6pPB7AeP8nceByBYfvWNtqFQUzdfu1KQ1b4OcR5UCq3ijLKcZGlZsJcsrobj2eK4/MpXLvyz74zvP45V1e62JLeWiwzF84kEym//0uuWstLE6IUXVNUFDPQFMy0j6NwkilEBXUkrNLq/yE8XGqNFwu49SS/tCl0jMgNVGGiNW0JJ/XtTSVhgR+O8QmEBTEwM1NltlHGW5pIkuqcz6+PD+M5p/cFJetGb3VhHMsgVSaltAMYhtsS9p/noILFLWzFWly6jYSBPPhzcvKCtSav6hoNalpqc+bH/b/5mmE7htW392iVOCvXnf11eugnaTUPAmDOOEKKFEDGvCma95I6/NyX3qGyV8AutcLh0Wg13EKd7tgFbCiwqHOUKT0hhuYZFyz70Ny5qZnd4MuE/+6uzRc5VCZbT8O3sbFiqizyyeLvIy7AKJF6QTVmoNeXpOCtwbXsL9DRxeu8xY82Bv7xz5nde+dVv/tY/iIR0vv8gPH5oBpN4NGxoMq9YEKW6rAX+su7YAUsn8wkXlQG5ojDXVhuOwyvEigISCXNQxPkiz0guJEcHBPA8FzktYEqRGByca5YbzCOK4HqtlURxlkQSpxiTrKJ+VjJVsRWt0dcMQ2GaESH7bz765C8/On///qoYLdrt4tabaxs4WI0SgQmobNXrM3e48oMilz/3BUWp2YbaTMd7uqaobXHxVufDY/bzd33MACrzIlmYKbrpstc+c/HNb26EYWnJHuQFEwIpFCmB0S2rtIziQkpZGYDkKLBkndQRbNQb3HQuILtGgB/hqAKTxcmomBTUJTieRbjJbHcL8KuTpw9oHjQ3m9g2Hz6dHw2DWr9JnyqF2Hp8egrifdRDvEMrhy5DPnuY372LbjXsZkcwj0JSrknwN58jXi2XUdbsdk8GQ5qHfpRogESu9JMz0thyTDR48EA+W8Ff/hIAENME6ZbGy6IqiNmVZONs1lSKy7t8E8OsdBoQ+JlmUbmKWJAgAMIGoljVd1tms83u76kcJqk+fjK37Oi/+rsb/9n/4/AokWRFSMXydO8DpbicJdqrN1VMgmiVkfFK5nhhI0lnlYwjDnSoWT+9H75zHnWuPfP7//F/zZ3G7Pj+4M5P9HS+HA2qtCjDJVbkne1tKITesCM/iJaZoqum4cCyrMqiKiGtWMVAriqNdiuP45PxrOt5DbeeYRxVuefVg+PB46Njo1tfv3TBcuqzIKn3unrTLeNlmYTT6RxU3K53t2+8kCmOkCUZ8SBNZyX65MnZn78/ef/xIJjPbATiGfvv/8c9m4sqZ//gN+qX1jTbM6GqmTbQCg+gxLjglvFdzizN8zde/BxQqm98yzzbG4sYU1GWEDg2vXVJeeYaINKIgYjGPi6AbEh0MYvzQDGbZa5ipmmGbXt6c6MNeMWkCpsNYyPLOeWezcAKwI3hp4+FUG6/efHf/9Hd5kb/4vX1Qu8f/PzTx2/tt00IItJ7bs20ibcKaBnS+YDpscqF46xXNGKqihu1+x8/zX1JYRWSqNWFVtMQK3G9TVDD0TyA6l1syj268Jf1YJlSzJccBQL+7KGx+fX1668uzw7CVQRsSw0XibFmyIARhecZkxV5880mMi4jueSLeyVbQmppOyq6lIIEwsJr8E2MI24BPp2wOJEVzEc59NpCWtzeKX/9Re2v97JMRsGsSiJxd+80YRIA6PM3O+sb2+TuMHruunrT1l1RsayQti8Nc/Gj/U/F7jN/9//+32kXLh9Ph08++pmczOLZMFguqyRRbLnTa8mKUBBSiIRYWpBKN5QkSSBnmSjyLGFCSJYutRv17c3Jg8cFgFjXCwAD3yc6YWUWBKt2p79164pl6ZPzMxmXusR57NMsUlRYazicy0KvCdNFmlukGWIVJ/LP7x3/4M78k0eT5cxXUMEZARwmOVlJQghlf1Txml6IUHVgFlQfvDPy6tL1bSbgSq9nNC+EPCGw7urRjR1+dD8IU4Ex0lvq85+/ZnXloqx0QthKn+6faDKWIKGVbV7ecepNthzIkk51ncoUI8CKCvFVng2N7nZcLWVbQcKRtmZ1HLHk+M1vdjdeuHg8nv3gewdnDyZXPV0zpGIWzfYettZ6T8P5lY2dG33pvacnWeYMZKlzK48g6nWbujc2gWS3Vm4dyDpDMc5XKVEKbLpyXeV1xGgpID5fMsVwvHoKl3LXzU4ny795q/W5F/iNG1yRVF0GBrHyJTy/GzUsiXgOMxoUz2CWS77FgpweocEkVmtyfaNAiuBUIzSEKC4oxaXOIE0XXKrEio+sekcD8Jc+m27cbKSS97/8y4dBiRskE6OPywtX/+qd42+8qZPDMetveW67YrCya1oC439/Z+lduvGf/jf/r80bz8+mZ3tvfS8d7QfD08XxscryrV7DcQ2OSBgmrbpXlmWjXqOFFqwimhZx5Fu6CjFqba4ZDVdxjDSMdCIJ25Y0RRBiyLWaKUSeGDVzbXtbVbQgKqsq67jq8vSgvnVB8xqmrfNSnM8SxfUU00yymMXJbLX88GD0w/v+u4+myfBMk0sqZM4lDisgZRJGGpL7/caygMY0SmcLSPGztzxs5iQ9Izxnc4UxhfkfIrVhSOmzV5TZKYqAzOSi3a/1LkhBDAzs5vOPa/UrB5+wB4uTV7/oWqwoKl+uXQziSXW2kGXEXInUbJ03fvD9O7JG3/zFwshnANhC1Ro3borxx0f3lmLdXM4P9n5avPIi/uLnXJszE6WsIKs4/ps/PP7oQShemNZNqEB4+/WN6/2lQ+gHH6XexXzriv7RX0z1ddxf7wTj+XBCe1d7Unsl4TrDGC2P5ELd22f5HDpG9LnrgkW50jJf+e0ts2KuyxDSGONCjiDDIOamqheY4JaFEaqGhPpTkJ/NzsWjA5gjdrOu6WoLYZ5TCooIcgQKLixBe9byg4gXeBVDISd6k+qyOHla/em7Z4OgvHLJ/Ptfvv7grb2bzwTv3l3/s3cekwsX9EdPxo6+KRrIJ8XjB4v+jRf/4//d/8m5+vJovnj0sx9ke+9H/vLk4AiEvuMZmiq127WyzAXHEsa0AtPpVELAdp28rKbDeK3Xdjwv56LIKtWCcZhIiu5IqkCk5ByLglKgqEq7v5YyFi/nLAg0UkFOBGdVnoEC0UxMh7OiYIQtUkbKgh1Mjp9O6Fv384dPFuHpKVIKBQqlAqkoChkDJFkUY8Tu78eXP5bsbJ7M5UlW3LiV3JYyMWJVCJKAqR6THM6qxXwZelrzjVcbn+yFst3ZaqjDux8yy7YbTUwgBSdXvmzu8LZmkuTQzwPSohC53TIIcHr2wV8u96Yw4fWDTyff+oY53Zt4Dghm/mKad3cZUanatWcn+bXru8pnzgBdPXqk671+aT7RW0q9R6Z/HV2/pHqdFPrka19qfuPXDLFaVuciKqUnTx++9urzP/5+/KMnc8XRbYjHs+Lh0eLay8bu1Vk6wNPzAsEKATktEt3AAMDPfEHrXdqSBC/je2WqfvcPQbclvfzFFtNWWkftXLzMkpTFJ8Gxu3+n1E3W7cuZrggvfvbl3bUNEuzT03eDqlysXaFeXceaAWWVcbgIADdQgbXJaaIUQgXwV15qD/3q/lSOwrCzhna/0TYd1nyj/j/8b3fJ9W32biAOQ/zOcHLsF89/4fd/4R/9p1rDnQ0P7//8+8und8RseH427NfrFRaeLWsKhqDyVwvARDCfQU4dy1BVtdaorfyw1qg7rqdoxmqxVC0ji7Lj04FqOKZp+nFYM3Wb8NIPhSRVVNU9O6eZJJhr6oCQOM1JkjmWlmUVAsAiYnmyH8wXMZdOVvm7R+WHx/Hw5NAEaSZIBsSlvtHxvI/unlYSApAWGnv7sd8z7Jf6SqeLk1D88/81Xz3fePYCo/EqpfLTD6tm37h6Q5qPdNOtT+cj15M1R8ZZbkKMHRlhYLttqE65tCxT/eSBqM5cf7mQGved9QvOtcs8XHz10qvJH33yw58+/uIXrr7yCp0eLYEj52Fx/FEME33zzcv2hT1UzOdnGdYzmRnPvQYlEcYrXhSpKlnf/IrVaOOT87KzUXOtDAVPQcWxFr3yWn1aJYoyf+2N9bt3yyLjEz+RZbi5Xp+drSScdDvr/bVmxXxhKZ1nNopwKhO1fnk7i+C733vcq2sPPo7mI03BOeLbuiYJJpLZMDhPpKGYzqagksxeVUjaJw+T3iYABviTP1/OH4TPbdHNNVdFWZYxARlGkEGjMLWzBC38sFGzbcWdD46t+vJXX6fPRs73vgdgWd5+iUWD0rZmdbQkMpeg2viz9w82X33mb//v/4Mbr/1KTGpHR/cOfv7n0eG9xenpZB42LKVpKWEKQVWEqyWRKlWSF6uFLCHXsWQi6Yau6pqkSl6jpuj6dDY/Oh9s7OxkfiCpel5RmTEAhGtbYnLKyiQqyjiDzUrEeaAhXlRhxhjHFpHtyWCVZFFdVzUCmKPtz0O1t/v04fzB/vzkbJ/ACCIAqRSUbG299q3ntL/1+u67T9M//skgLpx2H/7ir17dAWU0P+Aq0BXpNOLyQc5y6Ate3+gUOBmONdWujVfBZJ6eTzKAyl94o0YrfbVi5iYP5xHEAWZY8Ta63X7OCl48jk4mnunCet03PV1BN19QL29trm+4+4eP9z4seu1wbYPaNT2KAMSq0VDqVzaC5VTlAnGcFGPF0Grti6KK01FycT19fM/5//yzxTf/tvX5FwsRpCkTMCKGzZtWCeJ7Ny+7l9el4VM+iVTV5PXtOZTldNU+PUqRPG9syK1tS+Cc2bIQ6nQ6Wo5Zr2PNjzIh6Dd/T9dsWKERG+WIUVlnzQbiLSN/IuykWHNIFdEXOubj4+TffLxndozXfsm6vCmjSq5OjULEbs1gCH9yb/Hzcewzxa1bk3G8f1K4SO7l7I3L7ZvrFAyBgeclNa1a3QL4V2+vkf6L1994qVcv+q99/Xfr3Z2wLE4+/u7dd3/inx8dP7gbzkfr/X7dkBRIMS8tzWw2XAG5ZVqQCs+1dU2eTkYIOZTRKI5BVU3nizhNVVXPC1owYNc9SZUNTZYEzbMwDUJEKEXIa9Z1U3Xbxnw6a2yvaU6NVtpiHu3tPdnZ7cmqlPn+cJE9GJaLlf/2/vxwf18pY8FRxIRr0E7NLlez67uNra7av7A2C9nb70y/8WLt9uVYC/XFmFy7cW1tp8pmZ/JS5qD9dJZKMjMBPz8p4yw+P48Fxhc2wfOfFWtbOskspHJOIs2SCWiXJwGTuX7BUyxeiKmKk4olEmwYdr1Y7e9eoEuo//Cv7zKG3Lr93Gd6cXY0XBSG51B2lPrs7Z+xGx0N+Inejm1AioRBSy6Ry80rFR9r5MBq6zGrJCn3w+L9R3BHE0xeuGsAClRESZpZhyehbWOnWWXQ+skPUl1N23XgOogAVPhjJHMpkedZ4w/+5DEp8KYnPLl4/sXN/iVbstcXB/cIVRCXlydLppfULP0IbXTFMmBnR1VnjV5UgNlEuy/gTlvJovbpMJw8mDiuJOvyZB785E709kLZ6di2zms1a7AXTxfp9Rc2cNXAxePf/GpzCVd//W/9z39uLZvC8uSU5GtfvXD19m7/RsXs8fDxvTvfWdz54Px09snecDaZ3N5sdgyogCyNClZkEnbGo4ndcA0dCQ4p4ys/WC6WBIrZYp4XqaPpuqExACZBZCLY7W1ACc8W0/X+BUfBDz76sFaz7ZpBAaoYli01K3zF9ohshEEaBPHx4ZAxkhfSdLUIprMPj+MnZedJtPx0/wkuUynl0Gwarm5Lk7Zdff2zXq9tJ1RyLek//OWr33zJfONFJMc5AtR0oeE4VmtccmC18GIZz1Nk07qcGot4wYvFFz+zPpuVxKw2OjKyk6LQoazRcgpxICoH0TjNRuGqr6u1g9nh7V2TmoakyygKNOrnfvzWW+VsoD7/vHXhBsCa/+l72Sf3qrUL2c0vgfk0+5t3lvYL+s2dVskLPZJkTwFmDoghTO/+R9xKh80aee/94Au3miWjH7zDartKf0PmecZxXkjAqLcKKZwmXKrLkyU/nZFaHVIeX7t+UZVDmKX+hIMVuXO+Oj6tRIh7LxVb15huKU8eBgzT7Z6J6RADFMzIJ/fRn74Dtk36n/++kq9inLssyOt13N9NIManH2ZJ8mnr2vadVL23vxoMoyjifqbvLSXLKGwpv/r6BU2T5VK//qw3fvqYg7CcaYWOblxeM82ZVnVuP+sS7fN/p4JeHETHj//90Uc/XB2e3jtZPXny2CT8akdrGkBAnmZ5VtGG4yCEGcCLJC35Kg+znIkkWPAs86uy1q5dvrwpCQEFUG0v4GVrvUMUYzodEchdw0C0QhWrNTFRyCyqVNN1Wh4Jsr29OF4lLI1oxcuwAJI1XZZavFoG8cNE3+fuo8d3YLqUS4PJqHexNANWlJKsyO268ujB8frGJVsLd660+QVdNzLIKlgcdzUlOf7EXkfaGi7yIl4xUiBdTko4rzv55Ya7eUEGtwiqcaYIMM+yOLTkLhzOJCzOjzIj0aoy0pQnkoNefLUlc51qLZb7iC6Q4jzYjx7dW21oioWmYQDQXNlo9UY7tHVLglWsZNUzz+9uv95VyIgVLWqoVDuTRCznCsvjp6fH/Cw2S+P9D/P3f0n7wiX3m7+MgifLxbisqZW2LqKyMiG7eaP26FOaciakqNuxFCKe/9JLnWdJNDpbnrnf+c5qWbHnXou//qbxve/G21dxEtPv/7t552r54gv6kzvH1zZIkcYPD8H3HrBxxL98XfIU5efnYZLR0xOJUvm1l7JSis5O4WbfhDVt99eev/M/fr+cMs9WmjVxc5V2PPXmmnf2pKyy+d/9jRtGvGSoJC354/3lkyfqxevDTtdqNN0UxiSJotP9p++99db+4/ez1dQf+f5y3LK0XsMmNCaAL+dzR5e77abtObomV6uKVwWm2fp6wzQUX6pGJ3NN9drtdimALGtZmkVxCjihBUujeRnF6702T4t4uVBlDcl2nFVJnJsmquKUMKRCTmQtKQ1i6qZWzGdLE0fqzlWRaavx46cPHgSxLwAKEbZltmFl42l5bbf+D7+t393P/uqMfilcdWoauXBQY0sJaULOKSntNSfyGatSYtQkY6ujCtmdxosimcmurW1f3xLqklYkCk+tWr1cTg3JgmCMgPPxT6uVnz33kiZVMUmGWKjYbXLbA3LGkyWCkKXo1o0r86fK4HicWdqdt+OdDnrl9Uq1hXtBYqxqruNf393O55PYj2RnJ8xSRWUKSquUCmC/8OIzb4cFK/L1BqGLaRUC17Dq1xqiWqYp1Zip4aKMls0WeIjD994COdUVpfrcN92r13B4vjq9I50+TDcc87lL1a3XC6DQS2veWsP9/p+eB1G1YwDXrlpvqLy0v/Ovpp8egywHv/aLxq21PA1Z03NYVQ5HKffMo7xr5XSeZ3cekfB8/l/8g9v/0e9fmj9dwip5zik+86I8W/Drzxh7n3h/8vOTP9cnN3fmNy4CgOQvfLXxfIRXA7i6nxTuIfYg+af/0z85ePhkcnaeRlFeUcqlS6Z0Y7sNRZUFHHHh2c7u1np/o1fAarEYrW/11KLKyhxJ5XqvS1g8PeVezYvTLGaVVFcWq2Tv8Mxwa3acjQbHruPwNJ+dD+ej4WIxExLx49XOzkUiwGI4DVdn/iozOlv62nZ/Z3c5HiJl/+JW+3HR+vOPBp8cLqLxkEBcAJAIVcnTDdLsXxH/we9stuT9xajovrbz5GQxvHv2yvXXGdfz8FR2C44QhNTAKoiRABEnsyAE06horG+0LmpodnZ2fO6n5zJ1+w2CQnV5JOlbWDbtu28tDz5cPfNsS5VdteMIthSUQQI4KIpgoVXZdH8WzEngz10NnQAKZO0Xvlmv4imsjd2s1NEmJACoCYvvVUHBmJpGcQqYjQ2Yz0BRDEb7qufe3Kkt4HH/+cauoPd/GE5mcOum2N5o+fNxOldWcdbtIEBTSeELX4Iafe3zXujLP/3eQ7qqgI8uXGS1boE1qVzIuss8HMJSrF+27JvKK190pTiUa1Xo57gmWjHZvdj69V+xVbB8+rMJLXCzBRjF7W34vUf08T1/vKATVm7V4Pxb7+7c3uj3cTyUJg+DC0alYeo0kutrTPp2ZxmtijlSXsHTRYSz+v3H86215tXb5HjM/4c/Csn3/t13WJWLnCKoYGxwXF3drK17MhekVGsIinar3Wh4WCKAU4GgrhuYxos0JUhJknBtvbuYjNOyYow7rSaRDSp8SZavXN7FBGnKZhJGk+EAcS5LZG1rR3Gd9bZn2Ob5wTniFRBSf71ZGZ69uYVMB6hBo7eWQ/1v3n76/qer0clMq5jAgFOLiNUzl7Q3nkODQXL60d7SwZ7mdPFo/RrYN+x3Ppg6rs9T9sxtQ0JyFvPoYMJXaqoixZqeDfnb76ZMCmWLEpGnoZSGRpUmn/+CpMknhQ/fuG4fvhc9+u5yoyaXh8mjILj8hoXbQpi6KkliNVJkA3AE46lKtSdHs7Vub3NDP3/i62haUCM57G5cTljCKsoArhQaolQOGXRrBDEouFqVKsaCFezT9+6ighEAdncaqpkbzuaFK56BptPRUJU0ljuWqnOaSbLbXZfsTjEPwMmRjyLiT8rNvq2TKIwLOJc0C+dMhszRpZBJq+e/uoa8iwBnnHBeMtMIv/aLysmdqvRnbBHGpJBsGcmlogPNsO/dY3sPAw2DfgcSAAzC339r9rXeBaW7M5+dDGfxWl2+uI1gnWs1/xUnxZ4y/pSVJ7JUorOz+ZMP8vJKZSC1v938lW/bJItyLAmkGIIpkKV1q9jpeJ6ObaeRFeXK96mo5sFSKaSKV+1G++mTQ4UxKEk12YqTwtB01bBUzYJEhkgejGdxll+8tCMRGmdJd219eEKPDvafvXWr1WnlZYVtvdVzZudngoia1zZ0uRSokHUiocVidnI2tCX5h3v+O/dPhnvnmOYMQAEBrOhlF/zWN1VQRRdr1aWN5mIeG83caBoWNP/kx+fL8fIz1/ReM4vOI7vT0JtmNsWHT5btbUmUqcRAy0K1jvb0fDkuVZWUkglvv9o/nJPHBydf/7x3chbzSPIUCUu40sj2JVPXOK2wEG4WYJkoxGqVma+6kpBUo8OMTe8zb7YXp/De3Q8PZwEyyW9falpqWHEOgLR6nE0Py/oL27Kci6wKAiDLdZr6Fy/eON4fZNitX9RkIQkjZqqNyig8U/xBjkSQPApaW96NW/aDt/goCW8+t/Vv/+RgfFr8+i8ZmqxkSxIMVAIoB7kAJQYFKApDg8KzKKnkLBGiQjIpxkgx0zyyJFFdvs4Ho9TcMHZeMmHGykDaP0pjGPz2l2G/jvNU+7Ofho+W2o+/m9d6dz/77c9EtBnLDwpty9OnXAO5pdOnfu1Ss3NTHPw0ny3h+k7+W79EZAUEw1lIgxd2t4hlWEiVGJQAVUhe7Pb1tY6FKMWYSxLKisyu1RQZB6ulqSg1zVkgGctIQJIXQMH89Hy4DKOtRjeMsuHJPi3p+saaW3OicGI5NtaUzloPCGa4VpynM3/Vr20xXiiG7DYcjqSooquohJqwlNXgbHx6eE6Z9OdH4N7RUBS+AJwqpOK8205/72uWloNP7hS/99X6+jbrtRV/lXxwDn7wbl4teb1Vvv+Q/MK1FNYFVwtYU6X1mjkWnS1XlEiVU8NKCl54tbaiiZq1EinfuOr/2V+S27fa9f76j79/ry37m1dw/0pPvUyJlPAqD4+K8VnGNFNqwa36NjZ1ZbOhMOfly9c126v4UTHOty5deO7rfm3zGcQiVAayUUuiBUxZugB6VGhWQBgG2COGZ9rt2WkZLVO9ZkSrHC1yTUJLyqvp0ckw1Uiwvak2G01d1bMMV2A49xMgws1No2XXzh8nO5ug16pMkNFQTVPZsyRJixDzoTAg7KVBDsETLLGEGsnpsr0Dz/bN0SnqX4gRIU6/z/D5apTHZ96jR8H1Pn7u+apCuUj1vw+Vn+6BB0cpSxCP79W81qNHvEjnn38W11EurcHgEyxXvaqO7uUfjVO0vmFb2/H4gVaVrelpdLJaEK4jB9lAynzGAbO3vNI1cZbBQsAKEF0zdQRYluerVcXZgBZNHVmWGuUsTyMAcFAlza0NybAczZ4vpx6kTc+dhimKwiubzUzhqAQqEgqEAqFur1vrdtL5BKW0ZpoJIJWs1T1tMJhkj/dIuNQk+y+Oy6cPhqmfQAwlImFadR3lt7+iNW0Qr/QvvmYiPfvkXnFtp62pwI2qPp/1rrbfvzfRcHz9pY3zwXQdlmorUzTnwnaH8QzEE1TgspS8hrPeifMkS0LhddMkwXmYGTV2eG9veqBLu/lwxLpK8aWbRKm7gNmEhBcuMUoLwG2QHkYZd2uu4Gz/49N6Y9xYZ+tbQqUVhVPmf0raV4TTZ/6YDxgxzN5GoSYLOiklj7AU3TmcF8J8963j4WmlmvTChQZPVg1dgslcpJnmpr2+V+s5tbpzcjI/3GevffX2u//y7vjD8xeuNjf7zdpGWxGrJBu6bWNRiEaX6GuQpYBRDC0XSaqUFQjSdJb7xxQtzHQVmOPJJaVTLSOzj6PZLJ3l5bSSFfHMs+2OF1ABy5jKqmhclb5xTb49wEA2YBKz8VCH3k/vB3VFvWQ7ess4Z8L/4RNqKVdfVH/Rkx0bpjkqWCi8ywXrCMgIkhTGAOQQcqYQ7tlOlZVpXOo1K0yiIPR7rZoigYvb6yf7+1kSWlotyyuOEGV5FlSbm/1K04iMFc1qbW2rWYY0I4kiiUKWc8GXmCPL1IUEQ1paphmv5pm/yn3fdhsZhobrqF5dj4MgD61Lz9//2ZMHJ+fB5ExFGSRQZErLlb79y62dWk7y9NUvEocoRWA63kBqHKqgf9mtYREcPJi/ft165obcW+9g2x588mn9fiX3ZMG0008nl7awTDIVAgVilmUnZyUAcO2mFUcqF/D8OOahUlP6niofL7IkE/OBaGjMbMSmSicnOS6NZsc8/nQqMKvVwMovV0t68aLLxTGHerCkosCUsIZeUOKLLDV1ZTKbYmBgALNcpbCnmirNxg/vn290tq/fbP7lBx/fGYwUZGiJUEXVbZiv3rzg1KmqAQrsSTEDtoQM/bVrzZkGUmiezCAEI7NXUSJKXMG6om/alQgq6pmOCbyUlvssVecH2sMn0v5e8tWrRXTKg5G6fmmZTso0xJ4WaCWrCoj4rO8gxEyEZNUhyJBZVmhF1tXxx0d0+9V2bTf92hfhzofIlsrRflUdxrubppzmxKPMtkkcQr1QFd5tk+FixrHtND2i6i7hmDOogbxpckdXizSejaYN2UiTYH2j11/vBtNBzXJUsDk8H8RZrlmO13IRqMycGFg+W6wMLOmGzgWDqrIKlioWmm7QSugmwViWddWPU8yRhCDMIyS4broMq7rT4FguCbEcXVIu/PXD5AcPF8fH55IoMVQqVvY3+K9/+zVH4vfevv/izQplk5NzHSF5e9fhMcbqQsPkQuPZ7Tf8VVYmS14WRb3TZLWaiUmxzM/GE4SBpCHFAE0oSlplpSKwBUlqdMxFmJcUEoyeeVYO5mcrP/Nc9xt/m1h2wIldZRkmiq1ahtmk0QoGVZqH0VqFNbvd4aqKOPMUtcsdyvzxchWXwwMqQhYRGUBL12ilqG4NQsYdXcH+6y+3DSFBiXFzjpCum53VUhyOpzIhj84iUulXb2FZw/c/Gd27t3rlzQ1VlCGw9grAswIXflnojmtRuq8Yan3LpWgKITOcVu4nqMplxymo8OehIqFxTj9Iui84w4ZIOLKnrbVgVtQdeDKJHk/UhgFvE0b9mJvc3XBUSeerivtCUBr4RVkyzYadjaiJkXmRDOPAsdfxqqRlNj0u3nk4X69LL79JYL3QHBWsSpEv1KIgtOQFoohDHbCb2w6PA7/KipJWZXHt6iVT1xbTSbKatyzVNXVflYuKthqtestlqZ8HyXzhC1kSkFRJ6EhgMZkzXnm2BnmJZZlpMgdoNV9lUd5wauVsqbgE6zpERsolrBg5E8JPooB+9PD8ex/Mnx5MYV4BIihWKoYM1z48GJ4/HL+8BaTKDU787Yvo03vTZNVxXMRTAMhJY2324E72o3cqYEopWF5qOALRBeRGKTSW1S97pKNVPuVQlEyTrBZdjrGcAwUkRYoIef4Zd82tRoiWA2Puy2UcQDsEMS0Lj3KiwLTMn6KSbGzoYUpVYWHAeD0/fbzSdRWJgUEEgqV/Tmdn+c7lXj5dUkgWC65oUk2WKM1kURKYsDLz5EJSyGDukwWJZvsYlQ0NsFIO5sViuCy3XRXrIuHxlM9Pl4N5b8/Xf3Lqe4bjcnJyvnRr0bUNK5ovVSwjWQpiZ7q/MFFc63ugIrqEblw3nuynFOKfvh+RLfRcE//xD6sHSvDSjrrpYm5qLbeeT08ZYKas5AQVFc/n2f4nQU1Wezftm3yu5ueMIW4Z5vPs9ND70Y+mv/r3lKLSP/hhfXgyT0ihy7QiKpZKIbH1a6SvWjIyiSFpHMcwR1tNZ7tB4SJZ+LHbbrZaTcGrMqUaxn6SLyYzXua9bisouVX3LNsaU7FIswgSqqkoKYPRsspjKuSa66z3a4PjwXSZtjybQVgwsHbhQrEMijj22s2Kq6NZhHXP1nSWZ+VqeTjOv/fR+aMnkypYaAhRSCueYKzRxPYH4dc+b968oinBaNPVdYO+8kVM/enxUzCbsvomvegI27EpXUWhiKeV2WTKmsIZsCrotlvAwowqg3NYrXgFM1UtTwfRi6/ZAITddbW3xm7chpohmzWPSkExzh1dF2kMeTk7GTmNvtL34vERZrJQJLNmgaKolpmpiQ8fLBcnbGdN7XVlDOhiWlGRd1uiyujjw3yyqFpt0rsACODVSVCYZDxcGN5Wu7kVRHuX+6lkiE5flyRIgKQT3VEThGMgsldfbN66bFR89vadyUfvTdMQTpmuIfTVa059E/gs8JjkH/qy0/iXfzrPZvnLz2K9VRog8pdCpo2ffVwBufz6S5Gco3jb2FL5DVN95XkB+KSjyJy5s0wjAS11bnVMpKNCMKcvt9tdrgWdWiVFyxRpuZA4M//Nnxx3ug7RobPdbkyKUxp3LN7RqGppRKtl40DvCGYqeSUTDICATCZSt2Y2rRWqtNUybrTbRVVKiqJJ6mqxrPLy7Pjs6u52u9tZnpwnVR6sWJWXxLLctY0gy8NVzKI0K2gBJadhItWiivP+x3tXFwE0FclRBYarLAyK2MudMC3PR8v+Ti0MwqpKkuXqg735x4N4NJsooKwgAhVEXFJV/uoL6jdeq7lFoHitOMwGx9MurtdqzVyMKwykPtGatMyrbp9+4+vNh48RzkqprXN9Ziwoz0VlYBLj8VgcP8w9BLEVRn6pKrDZbAAQ65p084ah6ouUUatrP9uo1qcSpDGNZGBW3YuYohSgjt66TeNBBTtID6vxEOa6ZDiNNm7r3EXi4IEPgRIsNaOeG3VmOcUVpzt/O7z/NNi9lq6vSzyYhpXauXHN8NqP3j+9/3SpWRuabuYxgHLeaMG6JySsKaSJgczK0rMwpzIaxdE0WTEVsNOGDne2dv/9u4cvX1131WI23JPKaQp5qSpUk5W6q9TzuOIPPmWDIYTEkc1kfZ1pUPnCLSB4oCDBagotC62Kszkdjmj3IjIgRiDWHbb7qsrLBQuYQFoWMLVf4aosjvF6DZ3shXd+wl7+tv3CV69vP2ON79xfJ2h1mJ8vFDXWan0m95MyjQhRBawsFWftFmo1GrRg3ZpsmpLRbEocpLORpqFey4uyVO02M4RkIgfnE6Zww9K9tXVK1GU8ghAQw6h5Zk4rCVTRLJQgJgpiWMIyrjk2LpgCDUbV4bAYZGK91chG50Uu0nT1/il77/7Z4PyEQciRJFFOAecSywrx8KO9L1/v6TUdYuv8OLwoi8efjrdlt+VZ3Ssje2sDSGa2HKM8d7TVqzc8mqpHezNBko2eiZUiW2R+plcxc+taFXKJKRajn7tFdHEKMhny0LIxpFhdsjCMveusvcZ46XCYTz+mxqYmtUqGlkRqrQqFmAVNJAY8uWOlkN18pp6O6ZO7Z0woMJMsixprxE+wXsK6G77xXLl3Xw9mq/bmJrWgKRiOw5M7B+cHJS3MkYCLVbZM8oZO148X19tEUYCNdZlXHKVJlvMMFAV4fl3+8jPtn78fuW1x7rOPn+iXrndEPwvOzxvC+vWv4+Vs4dhA8RShW7ormk54sQlI0zgcpU+OiC5nigJc03zxxahhSlKDHjxGP3wkrdcLryLj+6G9RqSLRLO0itK33y8v78DmpipUiywqkU6+9jmR6aq7DSALs8XTmtuvf3kXBEfLD9T7h1Gz0YAl6uUzz2SEQQyEsFRS9wxdFdRQt9f6AEECQbBclFG0tdUpMSaxxCEnEg4X85xCa6vreLWECwC4LEEOmKbKeRIKXiKuRouCCnHl8kXT0MLCr7I0TAtRcs+xOJY6vS01HrBsfjhPD/zsZyfV06MBy0sCJS4AA4JJglH+7FXvb321X4ZTXtOz5AiiwHJq/ih772cHX/lGnxCrLGUg5ZKH0YREMzAeBFlZSbJqWOikjNf73mrCUr5eNzJVr8fifOuWlKegWhXZkipGCwjJn2bcxKKQc5CDXJckwZUV1pjtQQhTXYIgnazmU3vnipAFncTpkkmmUGs6i/MCZgyjzkaTJDDPp/11BWCSFNy0lCZJLQUNZ/No0bAaa8XqKDt7KlFto9EoGHh//yDA7ooZ8xl7PI0+BnnLZM9fK164CTRZi09k1VSH4XTnirt2s1Kd3ahYDU/nVQqGkym7Jl98qakCWbVgd4cUcVTlUwglUEJZTl59TWlsk9Gg/fbb0wtXrHa/0HVcb7RFlcIKhGEUx1X3umUZlchpHheKcKsoj0fxVUmtZxUYJktR2a4N1p0yLogMonmhU111q3jyviojKOtrL0t/54aAhQ+AToGEGSRYNghMbB1oCJRZLjgtsmwZBHZZ8KLsNetZknJaYQxMVa6SSMWAVhXnPAjjAkKnpUNYybJo1byVqLJS8LJI/UgQ2bOMweB0facfLKeSbtbrrYKVfinMbi99sGfwiFHlg+Po4TCeLGNZSIAKhkSBOAdYRvi5a/YL1yQlbUmyfro/L2M5d9HOtcauxwA4jyLkdgwEI5SzfFHF4zxbCoqBrWmWTMLpJJIpo7yiUSloFs9LmsWla7WMdHoucv34PtcsezHC1C3cDQ0WFcSGUMZx7P70+9VrV6FrVJgrPJKmh2G36SjrFqqfezJLs2NL6oh2z7PYJcc+eTApy1LCTJFyvS6WsHrwkCOOPI07bTybLwRq4wrVmg6EUpTCIEte2DESvfHdjwdhpUne5kkYBuVUHpMSsC994dKV16mE8l5gqq4FbBYsQldJomp2uWegfGyZlyVNKdNFpUqCloonMCtAlhIqdId6TUe3MusqcQxTtXK3zqbj4q//ijQb9PYb7qUtv/2bdRVmrCjVhip5qmJLAFearejbOFuWeqrbPI/HU0Xx4BDSItVaKmnngBJFNSafLvcP6NXXcfIEr3cxskNkIkYhMVRVQWHL4gakrChKmk/nM2BovXYznM0824rSYLBaWp4zGY14ku+srx2eD/M8gxIRErYta2NjLYuDPEsIAhtrveNHTzzNbK9vLtOos9ZutZssDgxVy5JoGYdKc30+m/BwJeXs8SA4DsDxcA4EhgxAAbgQDALBTElJOzU3XaSakk3O2fyMa4revKi5XiogzwNsGyqmM+rDdFCxIduwcd9Gfi5YmeiUOJ5qy3Iuh1orSSZ+96K2WODHD/zn39zs7nam0wLiVllBBkTFM0unQFW4WCFJ//GPrR+9E97cRaSoUJVVk2I+F+ne8vaGF+XR+f2FjpgEE9yNmVq4l21ht8uR3zYhkhciFWZlxAvorWneVuvodPHxw8w8+OiV2x4iUPDY1MvddSTh4tH80e0OAnVXtluf3FsC2lgKNCjAEvcMh1XpytPDaLH4wZ8ONMW7/bz+8recVM6smpktzs9Plzu7LSKIkCPAQpFzlDGJSE5bC4IyHOXTAdq/z7BSPfdKU1HrT+7twRswnQHTBnJrUVRMNtuSZVUooSAlGKtNK2upar5enfliNjUpzuYRlqGk6IOjvDzm3npV29LPh5CktrlgH37I6Q2p31JVJ4SIEZFFTYte6uoaz2SMCgQ3L1/cvXVjupxCyNI4DEO/1ev3NtcH58eCIwQRQSgv8kIIpGrz2UKRJZozwoVuqqZjWK5Rs9ySZgALq2FxAgEkw/MpkHAlSXnMltNDNl2sIvnOhJ8MZyDLCUAAMcEFgAILzAUSgmUliiI83jsNl3g+0TgIX3hdb5gFT2JN0bAqlVVZVVh3N+Pjc8QWhikIRmHFWYZlRU0zNp2Irmt5GzQIRGenpriD0dOj1prDNaWoFCHA2cyviwzey4qKrV1RPvoJePdnk1/6datVQwcnxaUbjuwRRQ0GR0fPlq3Iz77/l8GWRS4My/6LEdmMmaXWN2rUkHm0hFjLFz6t+HghUdM9+Kn/eH+xsdGWpfTkfG6rLV2HvAotTVzpuo2a/NXtS5MKU1W70e1p5rrrRqpGV+Pqwb8bmMnsxkbs1qVrfRcjM1uMtBa1NHX4dDkb0s2LrmbPgVKyCkIgcUGqikPKkMbthsZoaZjQtU0/jAcT/8a19V/8ak3zVprOi4ldcoZcj6ucu5rAEAsuOOMCqoUiMGKWNjuT1jZ6oB8nbRlZ1lohWAKK8+D8w3H/suxdRyRfvPzLuuax+JGqKpogKXEk+MrtS11wLsKwwMSr1xvdflxmsq5wXgX+Sggm6fpovkjzCmTFarxMK1qvdWVDXyQZgCQMUn8eduqOpKI4S9r9Tr4MFVVRDdWqmwQrmmGtzheqZcu2E2aIruaQw73EuDtPV8uFyblAggLBMQAQEIE4CjkDg/lcvlnfbtzav3/o1ssL16/2LnoiOYF5BbIyBLK9fVkBAQpRiUQagg3PJKIACCcF8pegjABQm+PRYv1y3QeDxWHkCQVmhe+VQYYpko7PToIKXdu6sDo/G49599r29nb4jy4ELYu+8zEAvU6wxNk4jYF14qd/+kEyq8hd06ycAgDtL//N/Nd/p9EDFOgEC/304KDVMxSzG4R5oVZjP7201r50gSIJLoPm4vT8o4/Gu9tuo6NKckpAWpdFPHsgCa2/eV2t4aOnP7tzGg9WxnAUXfGyL+4SQ9Ihjm483xpOfE44IzoL4XKUNDuu3QmEFJeJygsgk7zgDOgy4kBAxsJIJRCgot1h67v6dBxPTk/aTqW0eVUmo8dy77kGN60snuCmLBsyXa4kQQFWwnEFjNhwnLRA9z44vvyS7uACCVbpJnYtCVbRFDmGpPVDQetuzpdH8TItmhcNkHCy21Ve7Kuj/dwPin6daJY7DpeWZdAs6/a6xWplKMoqLe4fnCsYa/kK82z7+q1KcvxVgAVkWaxI2PIcxTU7TY2l4WB/VGYwzCOr5YCoSPzZ/Pi4YJXhOoVqhbOFJYlo/fX3Prm3Gp4ATphUCQAFYpBBVFgYp5ksaIGP7ofyl+qKVfY32oaZd/rmOz8ZLAezz9wy8mF4MBj1fWnzNka6oq5rizFehEBVtbKqwjlOSgytWHYzSXLComqs99753sGOI6+1dOjUh4uszKJwGp4Mw/q2c/X5awff3c+F53kTllf/6j74oa/7QbzMUl2RY79ACGV/8XZJK0tSDmIqH7JFjB79yfK3v6IBc9821tv1Sw/f/mTjatu+6H51xwWsJbFApP6Tp8l798KG7AJ58ujRUnqIW31aU2WM7TTzoWYdLu7O42QegvGeUoDckKsi0zhHzhWZIS/K6PpFE8qQZxWH2fVnNQEZRSkAEGDELQEVRQlzbOlUYqxghAKKAbObKl7n0ZFnVPGyuH8EX7vSOrwzdzZVingwLXXHZmAmQT2dWHsfzZJi2ejau2/0sNpzekHgRzCqsCZVq7hEIwSFrDo7r20IUMKCg4xHg5lmqJcvN4ajsphH5OqWB6IxpDSvuGWbWJZVAFleqliyNW3qB+fDoaxbNI0xIpoMdi9dZIZ2Oo/OzgYSYYaGHMeZ+kuVMOjgcDJWAKAQxUnUVluDg5N0uSAArW9tpopS63RUTSKl950P5w/O5mXsS0QGQgggccAAVBk2S5wgxnd37Oef2VpGsYWZqhFWZg8+/TTNjGvPXVCdmUTVtRLO906arZrdVVWLWQ5ZniUSwYVKQE3hIZIEJCEV4aqApKr1/Hx931x/MPDhYFoVRrYcb9U73bZ7fDhurm3vPvucH8fEaLzzuPzzvfQEBAIzLEthWiKEERW5YBCjhNIwEyUtGAA/OSzv/MEJE+qLW/f/m19ZA3rnf/1X0ZXN2LIWlrx07KTVynY21GmIF8dR/7LKq+rpA/DwjhSilQRyISrAOUVMNfW/8x92NztFUsbE6p7d82vrmaomQIOLvNx7AhZTvr1l1Lc6AmIkmqOjM7vpO3qJQhRPymwClM1S+f+z8F9NmqaJeSb2uNe7z7v0tqqyfHW1nZ6e6ZnBDMbAEAQ9gpRIUavYlQ4kRUg6lf6ANjYUoZBWWi7NLkGQAOGB8b69K1+VmZU+P29e7x6nA+o/XEf3Ffe1hEAC2BhDPdGbBk3noqBQqq1WI+cJKMtaw3Q8rZCKiXTTGEBWigjQUnl5kqi63VrJiAaRmtZ7mrIwslhyuVCUJkozEfN5SI3lU+aV+dRomkgV1Kzok/Pxxz/E0zEkG22LTY8QEoZp6pZpuCZM0sVsQSEso3g8XxiWo+t4c9lJpn7dsznlNEmyIECAOratEgVSqtAiG47Ow4mhItvy0iL2Koamg+PppO56G2ub4yDLclrDOMXk8dD/1Rf7Iz+EGCmigAACAAXUuQQCzTtd8jvv3Hnl3urB84uHhzO87FxrSdvJ1694mtcGyCwnfSSAXXWqiQIo4WmCUebU7XJkIQ7ryzYhIL4oy8TNM8bBbNHnyfmo4L2T0Ay4kgSifzlOxtN3bwkbl4uA/eKvvnj797YrykTo7vcv8nMmOYRSAAgl5EBXFMY5woBJITEUBAoOMEKFqvqGsmzSr73lmnjU3rl69uujk/cnS1VldzVMsmQW8vWN2jd+w/WvTst8hlXHCCERq5cnZ8F07mrojbtdSfPL0xEZ4zVXS0mZsNmCxONhXj00nRVsNRW10QrzKUJa5Hsn55cgLZ4+Xnz39yuSJWioBfsRU9TqbrdcRMXp/OQxi7DYvRZWd3qgu4RAOfrkVJWBSJDrSsoLaDCkUckITHs0ohief/O3XctuAL1AGufF4zTMoY6j3BNBxlhUcZGqtC8vyvXltLJu5lYFpSEoIc+ICnGnnmiuJIYIiSxCP8iYSTkTachzpiN0fnqkqmqr26s1O2UyabjqQpFlUqYlD5OZqeCaY2i6jhACgneqDouj+cVAt3S7gg3bSUFqO/rejetFUqRMMqQEUaCOpoOF/xcf7J+MwjzLdaRAxjlGElAicduFb9ytfOc3tneWrZ+/9/iP/93+l95qvL5pABCqAKS+j4gkWiuOKcxEpaNWWmYc0aKIVMy4TkJdHVyOlybQbFYoku+fzI8mOXLpdstWGY3ic26lo4ROApJLi7vsw2G0VPMg9uxkFGUHS06+KMBYgZnGcQQVJBFnBCOQU8CEkLIAguuyVCDUsKLqoCZ7DNaeyNAu6buoUcv3llSv176/h5oOYHD5xUV6NLgoiWE1WHwGa3p9cydCZLKzpuaZoiHcrdL+cc4kO/sVS0TpbWBAi6ubVcdO/FK+/4tk+zXrys30/tcJfRE9/0zqVeY1U3HLrK5Xzz6O4su0s4lcjfOLwWxU1Gvkyi4ejyTy8+j8fPhyaqnk4sXIIqzomooZzxdcaylGVVPIzdnEffTRR8vN+e4NwssAuF2W0yKcKcAbheyDLxanw/J3/sBYvqL9+s+HRk81r3nIYzqA+TgFEjATFqzcfVurdSGhqS/zjFLpB+lsPFVLqComAOXKUgsAUK9XwiTmXFQdE9Xco2g8C2PdMh1NAUJQINKiwCpqVS3FUdNgplpOtbfan/h2vQYBJBifzeemi6IclEz2+6OHZ7PHl3mwCHVRSoQlQFwCCWnFUv+bf/GNO1tzswzj4amLQdfVr651ltouD2eUQ8gpz1NCkKpV+xfhy/Ho5uurdk0DrEwXi5cvhyWxA4NNjiJlrL3004MoP41LJUYyl23HHs+i0dlUcVqMLVrrWxQ0Un98nADI4U1L02JZaDJkSARQRTrBggDKhYRYFoIBDQEIMSHIJSUUUoFQEQ7V3Rdw7cLwlkgSTi3x8ve+1BqOF1hIhhKzzvda2/VYEjc6+gLWra5lCyZInGZnZ+n2VXc+zWfJfDQrTcdFpcJg0Gi1hYxNu9SrmJp55XbTrJpc9lGaTc4BipWlVe6ts+ZOjUF0cMh3dnvuepydzmHGFYasduVi4D85h7G06JMQZb6K8NJqE+C4oIAAoiPLBJ6Kppf9hx/+Kl2peh2vySYRMh0uIaQcZJalmWf96a8e5Dc3mjeuEoimr9yuem0C9TyalVBERgMXC85RYXaQrpv5IiFxENDhWMoaBAQDVLX0QkjLsjyjmiYJKzPfD6GqLmSicZEyKS2v3mtZsiAoGuXMqVZEHmi2ikvZ21odh9nAjxKOOtVWXmSDyz7lnCNFMbSm6r44fPl4fzgKsUgzS7AQWAJgwpHEIk2Lv/rBe+Arlkvx8Mh//eu9/9v/9dVaBaNFiqBB00xXJOSU5RRjJynSRqsDcp4FQ5kKQ7qbDY3jcn137T/8OPnLX/WFTgwCTaAECb8sQsRK10FlmWfBqNBFlucMYCwVnvm8CNUluqo7qlJcZv6ahsZJEUOpIaDbOjaVjGbQVhkvBQbYxFWEDQ5gVqr7aDXP/uE/MVqVSvESCVCA6mKpZkFMVRd98SQ96H/xxtd0XWQ1Q63Vw8kE/c1fpVFRlEm91uvNF3NXlS4qJSelkBHiGYfdtsvJANS4ioiuIIE4BB7AtrNGIEmwItKIml3r+GFRTKHWzYJD0Z/Xd2800OQlr8Iv3gP/6tfsyYL+49/0/uvvOEnSJ+3y5Se8BNwCWv8wDT5j6zcTzyZfvunW3CorF1Q3SFWhPDOIaRkbxfx4HpWBQFfuFYjEEqhJFiuxZXgIMa2cU6sFsKIlKa019eS8+OSnJYFxgIRGY79RrbZWqqpaSkqklEVZDseTpITQqGGgQQWNLvumZWLHwAgAgBZR2FxaF4xHYQzbLlEJEKIsoJBFpVFLozDjISLCdbs4jypr9dLoKqPwLPOTeAYREBISziQgWMBSl4wpl0dh8x/Vf/TXIS/d+xRXiuMmcjJVOx/ETVexgQUSgVDJhX18zmt155efBmUoF89Ft4cwi3C79YuHsx9+nnLFrSu6w+aVDppl2OP8xhKyNTrVy7iA0wJGxcksg7pQPFVQnmk6T3JkiYqNo3/w3fqduf6DR6OTLEkqhBNOSyAlgRrQGGBpHhEJhX7D0N68Tt7eqVpVWV4q/nM0DqSqhiu2+TjEogFu3HO+c0067QlExFu2CyqZqF675/q0f/yg/OyLk5bjfXSwqADXBBLo0fZ1KykT5K4nwbw8ig1LIyJEgjEkkKupy0AxCEQ2YGUx1B794AgzwcIUl0o8x1Lt2ssXZRFf3zN+Ny3uj/Hvf0/FOogDVDXj9o6imYUQ9uUslinQs6plGUymiZy6XZWzFIhQ1ZQMSOLYQkovB1+/a1x9nXOrIMJ2uhpUhFAwQU2WxFCdKqXEVJkc8vMngACTxHE+m4bNdn3v9Su5KFghijw3NGUazNMitypdPwfMD3BYBNPZ6tZOBjEVIoyjardjOI4QgBI1D1IqyoOjvp/Azqquw4guYl3H3ZWVNDDnQz8vY2qI41k6TEGRBBBKDiCSHEiCIRQYIKattCgpw8VsdnjAN7n4zRuygwuozDutMvVZ/6xwHQ2YMVf1eB6//7eP/uwB+K1/sPo4mvzx+yFBWlkyf5G6TX1tqTALNh/KZtV9Y6+5YguPjAnhqfQipnNFbi/vne8/Cqbh0ZS8hPSK20jn5IefTy+lciLG3SvL/+x7987D4IePn50FuYqxBBzRUhV2iYkuyyWuf5nk37zKpOkcnBjaPPaHuR82PS3GNPH1+vGp2H0T1dcpE1KUHatz7ej5y8tRTFn65tvtN9+0jg/mzz8NBtP2jCDT8K/soqU99+J4cbo/WtrrKgjpkNGjI5lSpUKkwzCWjm7kvmCpwzPQardNx46NrJ9NE5I9ePT0xg1bA2ylDX/7exvAWDLtl09+OpdgwxQs7l9OfISX3MuO1G3zQ1Wej7JSpD3dWArSJUTaTIWsUBNFgjxINdLOv3tfW6oJPi+yWWFJgLWo9FWWm08+nF1/teFVlLIs//I/B6PL8p0vc2K0l4Lz8+ur7TiPNN1Kc5qnYbPasq1GvdlMSpCxpIjmg+nFWqfJBXA6nYiyMJiv1qoc4CLLirQYREEY+DmD165vmy6CPAE0JXpzPI1Z4M+l2RJqNBp+ejCIAl8KgSSUQgAgIZQQcFUgjNide1Ue4H/y3T2LZOsqQIuLLEzNuhkECSq1MAanZzFSOEZJQ0EIq7Cgi1H61a+tvfzT55MhuLGV/dZt62VfXUwW07xIJTi8HPNZpF5raF3FUrQVpyO4wasLrzbp9bbS2XR9NLu2MFxD+fTT7HkAHpf53HJd+3LAJ2+vNf/lnY0/+eDscZQJPVUUEOQ5gHavRNeT+H5Ttkw0hfZ//KNDT4VtpPCUBALd+daqKNjxz+fNeoXJpMgrutEU+oYwebUXXzwJvv8/He6+Ur1143pVo39y+ukswT6n33ulJStwSpX1xgp2dQlKOtunkENTh0RBiURhxibs5b7y4jJTa8yq6BeTceFrSxvVe7+hfv54/j/8O3LzZtMklwWliXtZjC7qAd271+wX2b95xEAXMzU/qjg54TyPBDUNo0ZGsZUnWwZZ0lVzATeiaLMB5JpbuUY0HscvRRGgqC9tN3F6Qq0RRUu6Br34KLS/atttqnja9AT94Y9SsrW7ns5POy3TrrmXp+NwEFZbJmeF67pcgPF8DARrNSqLdGZYBtQNs1K3HZcYOCtSVdERxpbpzs9miuC3tteRARgovHq1H8rzUea1NSmZVu2qirP/+Pn+MMmSGAMJBZAASCAgohRiyfAr972V5VYaXuztlDUt0Ap+cpoG0uDDqIjgUgUwyhuNBo/h5fF8aQVDB7gt6F8srtzofKNL/DR97Y4mbe3Zs0lFA0LFUWHU6ka0GH7yTJwMnE6FeGTYrtVMtfr+0el3f/++3sm7DXHF7BVo+nDsn85zuUGa24lUxEOAps+Pv3NlRapOJjEBmSglAbKaxzcg/eqmYffgJLYpjGtVMDitozrzo/NvvN7deF1dyY3VLvdcX+YSQYGqxtOXk//0N0/WGulrt709WBudBdHgoT/yW17+tI9Lqpx9uhC3zVtfeZ3o5nzyGV1M6nUDeNWSqopbxULI2ejFy+ThsTkuvdVt9e3fuvrio5eTByMxKfNx+8q17t/86OXjnwBX523x0lNQkpWjHf1pdH5CtQdXexEJ46BUNQXSUpOQgCwGRCAyQ/axX4qsqCTmfQv80532ikfjixkdqN66q2mMKelgSKa5tqGpBs1X14wgsDmNNUu7tqsrIoSckErd6DQ8HqfTOFqMZpbmaAjwks4mCyZhGme95SWv3lJVVGShpmIqqQpZu9mM54uTkwsda7VKdTGdahISkWcpKAhSTaWQOsZApPnxRb+5VSsz48HBdJ5LVmZISiAhhAhCCbBgAK41zb/z9Yb/8qK3TFQSTy/Z5sZmd681HY8cvdzaqIgEMNXgVJm9HF9rYLOGFhx4poCAUpE2VtyLZ/h0UAkoQ8ht1+NeU8tSMs1DU7OK3D0dhtjWXv1a09YWySx4+LMUlEdf/0ZZ8zKQnitE/sPf070d628u5WE+izKSWkBq6n9+PhrNEEeqViA7KK466I6h3KzgGzecIc8Rbxx8/nzJ5qiRMlppLbdvvGklZRRe5oaRaboCmMYZhOrGKHj56SfTU1AbLM3+4B/2bt4qCctubzgVZum47/ZsYRn+NG46/fF4UF1K6ssEqkJ1lSIVigNYIktFvchgZi3ZdbJ7w7Dt6PoV+xJrUM293kKxsn/+D9fmcy0H7uB5H54m7buvvl+VPzu/0Kwa8HhSapgzMy95nkMVqHYpeRnNS8QIYQrPYcqin5WcfaH8L3aW11eANO2cyvTiRNpFvbHzs/dGVE1311SOhNstsKpArt+6Y2xvMkXTCBU0p7A/SDkAFBp2vQZEXOblcOxj1UQKNjVNqbe6N2/7ZwdMIkqzfJEZDPjDWbwIKyurVqWytLOb+YM5EH6AbM8dX85hmTUQXMyyRc7t6ak/D744DbNSAsGAQBBAKSFEEmJCJP/Nt+yrekA2s2rNWlnv8u4EmWHVdFejJTae89DPYMWq2McPjpsIdDWcYERKUjNSTUFZYtjdMrfCD74YVis1ibI3v+q0K/CLz9Dp87Lbq6p1j4hkNAh++QHeWrV7RvHma+DBJ+ceddfWFktrmt1ZskHwnVeK5TXxw0/mhtMaUP75KE1sz3EBHc33ltyv39+8Skp4njR7XukMWwxEs7BikiUCVat8cTbgpfO3f+b3WqKh6s9eLv7F/7lnkRwzB3B9d6XxyjVnrSLe/XKHlezJg0pDl9PDEZTk1bvm1pdanKjx/Dml+91ugyZJuhCkAjHmCsBFmSKlRYVJi6ECgqs7zd02Yv4EMTEJo/qKaVhOkWerK2Xgj6ZnYBDgqF4Zg/6zCHLD4iBOyzxPCy0vOBeUwBgCZSoQBRbUVQZolGMOMAe5B997Od2mSu91C+hKBogfW72ae57OYhQblpv5c8M0oZ1P+zjO0+Vt4+hFpLOUpGnKNTeOM9dReeFnXLqYlAVVICnzUpVqMp5n4kVWpNPpTDVsS00RRjGlfjB3FJ0gJQeQYeViGikQlpmQRWniolrRaZ5lTFYqpiGSXz2c9iPMykQCKTlHEgMgAJIQSSzhtW6+2eDPD7CFeDE7UxlhKcRNWabF+cEAxkKzVds16gpueCQqMqK7NCuqkDeM5vwgYOrkrWt8XopxNKYMaOp6o+t96etOVH48HS56LbJWF5rSffp09osfxoaG/sX/Dv3+Bpvvg//P/6AXW9G/+O3sxk7DUI7f2E6uWT1T2jPF+yOB/vLn0cYaee1ezSgEGg6pWR7tpwNJ71wFrmST/dHVVbvKlE8fFZ7t5yybHuvxNGi/rhrEA6yI00KrSMoeh/3we1/qbGxYL04mP/zhfLsWr79q2jdKzQJaldDsVEWqqQPksXhUDJ7mJMI+S1e2qq2bq8Nn5wf7TxcjVLOrBGb++UF5bQkbXBREEbVgGGVtWeSmQM31azsST7kZ/7JMH3GfA5dkZcnDlOYm1ipEq6goyUu6oEVJGKcZLDQEDBVqCOch8UDe1YE/mfizpFKCitkOCOR6Wauw7/3uUq9GLj71L/cldOVlms0SuXImnjwsrl2zST4e64bpo6TWMP2pX+RFgWiaJpwLz/HyNJ+Npm469uoVd2l5OI8spAgmIpq1urXhi5GkYBFGZew3bLvimEkwK2eTrGQ5c8xWG2GpLE5V3eqHKKGKLCMBkAIEAVwSJAmUkldcR2M20sq/fB95jvq7V2ctS0LH6V9Odq7sYOjOL4P2uoTDkxXALwrtaQS/bFvMj2oWdI3S9EKDwNJG5cQJs+y1t52tnR4QSbp4WMX5JJcYsKpJ09lidw05DcNP1Cfn1mR/+AffWn09P/mTny9e6s+suezsdXVD81qNbLpwWfa/etN+FelMDK4ue6CIiIaDS7i1JN1GikYWhVTj7OJJmBRQashtKP/gOzf7B+GL57Kki41eDSyizz8m6/flkj3ddqRebx5N9P/Hf3w8TsE333XTEneahjCmiirSvpyG3LANr1WeP5rbKlY9ACMNFyqVlfOXByJGUKDVijlJ5ITmetXgzGdME0DkhfP88WyjhzjvZ0rK6saH59PHQTQnFhKS0hxACAEJyzzgdGYoRCWKooMkNRSs6TooKEsKBAFGxd2a8e2V6uLxQsY0I4OPfzVYviK8Nd3jFhZqFAydngACHR1KnxGs6ZPjs2++oy9taAT5Mcjp7la9UTEN0jk+m3JMO0vLZinygkIBFvOZoRFbMQoucJZGwwGjzKoaaVJITPwgSLLZkovX11ujue+6BjGNs5N+s90jlSrJmKsLSsEsOxJc8lJiDhHiEiKBMYQIMLG3qZSF5HTlD/5Z+ssfnvghwIB2eoZKtcWMLjXWDO2wous8DgtAPjrJR5rTuZSMNsbpor2u2g3BZMEj7fAk7uxYb75bnZ4cLy7nGop7ZlNfknGepwVJEhwnSVDy/RT89H8MWwa8d2X2ze9qVsMys5SH5Pi98dWvWqhNFacCh2ez82JvzakuA5bkGCthIvUaanQVAdWzx7Ku6/WmBlEeRNqS7p08GP3gx88bGqnaURjCw8NZqBV1oyWnITnIIcE5Dqru2ne+vPXJ4+nyyvr50/H+ILr16npDp5mMC0BtkwjAO+uep2l5FABULqbz+eMLGcIylgiWWTKHIms0IJERMtmIZYvL0KpVji5mJKhVW/UvRPBHB0+eznmmWDRlIF9oKoIaTEWOMTBNXSIpEYAKqtarOlbSIIniAhs45gBiCWjWNux6S9VlnC40FYhG1QNQZFGqEVXBGtZTaxPPA2twLK9d11yVL3cVLAuyOL00elUFp2nKKBVVz2EsExAKjKM8dD2n55oyn2ech3GoGyTPCwGERhyz7jAWT0YzwsJ6w8UywYhyKYjltFZXvc7Sfn8cDkd7K9X9fnwRZpwLyQGRCBHAIZAAE0F7VXXHQ+uroQTSkMk//gfYDCTMTewmmqpenJ6umk1ZyQxFPp2jxOgdJqdlkf+7H8V6obUN5rwKa453cQqSedZskrtfupYGhUYud7fw4/f0ukmsejanTAhP1L1FcaLMlZRG9VX21a9snJyMr+zBW3fh+aew07AhgOOnSQWWSkWOJ1Sz648PJ25stFfNekuYQezWKCzdeKj32rNKo4IJ0HgCYtFqtiRP9l8kE8n21rUpTw4vqkcjcnOZXd/whsEUIu18mO7cMr7zRv17X74fF5VH0/5nT4J//350/2b7zm7blYGex6Zr2hV0fjQWoGyuaB5SEmOu5eCLB8k81BOFchitNZficex1gB+I8TAW02xWiMnxfEKD8X3nKdLgShtRSWKGFBbzuOQl5tJUVUBUq2IDKHRD4ywP03w2j7AAhqEkaUkkQpRqZek6Zkrj5mrDoJPF8ZRmntWi0BymM3j2DOzdFrtvwu1XLbtW0rmp6BVeLogQICsyLB0Vm3Ewdh0jTGQUhnFW5Hmxs7upEvToyagMQl1ViIqrnoswQQDHcerVzdHZy4qhqKqeMhlmhVOrzWdxHJaD5weBJLPxdMNRXlxGC4bLPAUCCAAYBAJiyEXHFf/8d6/s1WWjkUE9ffi3qSaVWzfUpl0iEWoq3t6r8bgk2/BkXqQE1trqSQxOw7zrklsO3F0G6z2KRewSVOlicxksrXXf+8sv3ng9LUU0nyk7N700zECWJXOwCBdLq3heSK9iLGFbX0zvbDn4cNTpGvp6Q8MJ5TQYInGZ9hwyOsBXrufdVj6b2LW9Dk/PRJwuxsr+02SpIUxbhNnMrrlOxbs4i88ujvzZIgtBu+Hu3fMiI52ioj9SNvZUBUVJRNLcUlFvMmtQy9zvj/78gy+GMwDLhhhdfjE/KY6dip7cu6PUqu50cFFtWvZSXYoIg5yYWQOpkqz8+AMah2mzAWUoXnwwv/uuYxOr2VmK0gQZlSCTwzx9MGMxVNH5NCxLAogUlOkC2KDZbdmOywUHGFJeZGEueRkHoaID17DKmItcolTDqiAlMRwPKukiCR5coA8+ZLaWfe+76vWttEaxdbXF8Jy4QiQpSxgxbMq4xBqJpWg2W1qlm0eKQpLEv4yCzKzUEOM118r8GdCwZXmu5wFeepaJMYmT4rR/Wek2mw2nagNclIN5mkLk1Nu1peU4OZq8HLi1VrvX8/v94dnlLPVSqFDqCwk45IgDBAku+Tu3W1+5lZiOr+iv/e33nwJJMWp9+Aib9uLuvYoN5iyLHHulvro+Kyad1dzURn/ne6ufnCnR0cWNK/JLry/Hi0hyv7tqcCmanZ4fF2F44VhqEqFbX1VhjWNb3XIMOqg+iy97K9WHp4iW9K031a3q3KLl/Njx09C+aarEieeDam+5Utd4kGkkO9svd+9UNMrC4+NqD8qo1X+RjfspDXJairXXlpGXIzrZu7usHeIHzyMdk+4SuQwGMDb6x2UM5bXbzSQMXp7APF3Ue/o0Df/8g+cvh4mE0HAaLolv3sAtnYWLbONq+8o9jeSsXjcnAzwL07UtM58vsKfQEQ8Hc3+a7zQs14RBf6YQpFFGeGy7NVMViMN9i6WUFFzKnMaIyYqWcUkgkUS6DUv37CSngkNFKkIAyRCSGlC44imCI5aFNlWdkDtQJhdB7oH1uwoUBTEs4orFTP7gr0Pn67XlWoQrU2I0hUZUkImJSIpCsTmGKunsbLQ3txNBxkM/nvtrHbfW6UFijMdz3TCn4wkCvLm1hxR9crwP4qJIEwokwshxLV3Dm9ubjz54oOsuVbFa8DKjo8GQKGRlrTuhDEiZczDwcwYVzgUQQkjBMUIQKZLXXJyG4cRv7Y8ef/Yp73mo4iyws4o56ia4iaxnn52stoP902y5Duqr+OmRnJ6E//SrN99DUWuD21VyfigoobgLMXBdY7mcjV99U9XaVb1WLdIJtAxZUCamqpmsbZsCCllkv/O2cmslgAvt/DIDlmb1dFrOEWvZjlOoqaLT04McWA2rblB1cX5WnH+I3vmunD/NkFZ++TsWTd35ZNHdtWSE/DPI7QBydOM6TApZSvayDzVcK2X/3Xfrs2nx2XN2MIGrjoLm59t77ivLeU8j1zu4e7XEuomD5unL5BL4SAgQCRamkOeNuqvUXOwo+++lFdesM1DMw+sbyEaszKUGZaNjQyiz6VwkAgsWBVk/pwuFS2iayGYGTmkmaKlhXHU9CNQcgIwJAlXJEWNCxUqRc0wqnPHYj7QMsmGxpNSudpUonVI+N855q+d94xV4b0f79Xuz4YX24/eTL32ZtF1kG4bMieAQ6Y6BdUgGPPSJ0amXVGqKgpSCarJQPUpkEPgcEH+WSA56q8tOp9cfDCImNM5pEq3srkySmJRFMeVRLlOiLDVqfugTmo9evKhoSn1zvdCxQuHmxmoa0/7jM85VTiUSAjFZSKVEEArx/fcmZeGY7KziwRttRaRWGAcZmOyuuXmmj9TuIZzWVAIrqz9/7+jvXjH3A3400nunT++9glmsn15crt2o6r2WsBRBDdXV2/QZNLVYVJ58dF6cyjd/N7BcAnIH1TI1KyPf3GkwktPD/YzOiK25DAe8cEQhKC64gpxNTLSm5WjD/dHqnoPhxbUtNOmrZ+8pRxfsdFp+x1Ov3YPdmxUJYhYVVJEKFlVb9TTt+Yt4ENKzgAu4uHfLXPXkH//F2FpCnKqDBfvyO93eKv0NU0UKURnO8oWzaht56BWJ6um3tzkbT3UgFUVJkkXBBK7oS/d3Hv/gKK/S62+0oiz98LMsGWu3r1qNG1aO4Xk/pvMYGuWo5CLSbMm0hhxkGZdCVYjjal5FjQFGpqNQ5GoWQTjLEltV0ywuKRAiQ0Ioi9xa4PhUDPXogea8t4Bv32nKByPH81Q5rznZ977lDg9AHGNbg3a7QcV08IXt1IVun5pkmdMIAUqCMC45itOxZegr966Ho0tOga0bpeRllpqWUnG1wcGjIInLbDEvad02C8poyREHNE/6xy+X27Vupypk6dXqg7MLopl2pRWG0enF8Ora2vjZeVgwLtB/sV+CCABLLJCUxv55Pg/m37nHr69gwdFZbHJmiWDxwag4bzg7d8xXv3zNSvt8NFtZNz98P2yt7OzesT772QO/9OT54K23OuZOV2Zi8WiWWdn6dY+lsEj8yYNi1Id3X6sCKqBV4VQgmGI1EzyteNxwSRHWpcPcjh0uyvOjqOTa7l2oVVOGmIZIu+vAGzEuMmnoWk9dXZOPn4Z6F7KI/eF/jL/FjS9/G+T+BayajluXqd1/GB0cJJp0NA4W83x3u3hjVfv5B7PD0l5f0G/fNK++nbWWiK4vV+EiON8HhgIyQ9cN1RmWMDt6xk2J15uKTcqKS3UNADUuh6yuEwnpIse7bQgS58kYvDgI7v+9a3A9KxmPLH1wmTmSahT2BAkRmQLecRHEqqx6QpcFSzzX40AvggRIKpjQVCVPCp4JrWBSD2lG1VyVU7puqIYDs2xeb9rTSdlyUXAwbGxoUgFEK9vrdnwY1tc687F//D56NsnfeoutmV5ZckBRaVtkPF3UJdZ0teIZhq1lC5mFNE1KCFGlYqkqKorEIsKqO6JmDY9OU1oaXFKhzPw88xcS4I2dq0cnZ1hXSk4VQwdAGUwWCcdpLhIpRxmLBWKcIiA4wAwRCBgUhYSoVPWxBI+S3lJyutko6s12HSxlB+MHU7XQtF98dvSLj8vffXdj9yqH3f7+BW111z764tFw3pjM+P21quJOaD5LpmTq43qzQ1j08JOos2TdusN330Sw5oOoBhQDGDVa6kaNK9Mzz2LNNYz0+g/+eMDU8dVNo/9j+3BQoAZva5XcV8YfHty+u9ro4OR4wGuCNMtqJ1pHtfY6u33DGgfu5p4uZKza1wlPCn8YRerTp0EYEkVzFcQtHd/YTrpamvAuWOqJ/IxoUbthqFyW01PDZOpaR8KwUjW4IVPqhqUKpHJwnPbPso0uvn3DUEgOMdEyLpLF7dueXq1FZZSm+ZtvVt/+xvL23Vbpf24i9d5V729OovMAOdhhnH73nd5GEv/5i3m42Qog4xx5RtUUWpLxKCuIohKiSC6DiQ+khERoM9CK6uoJbFH/7ftGxdWXKklQgOFRlHOhaBVFNQAERRYBjJe3XazD+dOiyAnEk9Mzc6V7owjPoOYwYZHO0nKv0zk7eRnMCsKsMi84B7ppKgphnDZarYJmrEyKIq91O2s7O/P+pCj5YOzHybRuahtbV0djvz+JOr2WZVqQw8fP9hma51LzatW8oP1FXkJN0AgJLoAqJYGQQywgTCGBmk5+5659r6N2a+aQmX6RLuJAnRdHpzY01Xzu/Xf/7fH//n/Nt+uQUflnf/RJf5jev92qetnT54vNVU8pI2oo3TvLVRfn075TlXFW9C8hXrIaugVBlbMY6xortSJPTEdpN1Rg+kU2WVlHRGGjSTqek+G08sX/dI40ZBs1zyhb2ry7hMto4XXrSCnXroLutipTIvN4rVsQ28WlKQmg0zmcMulLnkOJ0HAxjXO43BC3thTD0AtLOzh51qzAhVCI8NKT9OLp1OyB3vVKuDCfv58svb7c2yG9a1P46Gg4JRqgjZoV5qqnESx1Hkwk13UzIYDqyppaydb1yfrtK8EoPvyE+tPF6s7SrXsbf/2Ty4MRq1bY15vFb7o6PXc/mfMRAomlCi7mII4Lamm66Vh+4PuzgDDoud6Uzr2Cv6KJ7V1dAajVTm+vs67DnlyYoeXpbVC5VQElF6UdRTkmUBKEmd7uaTtvNlafOw8OhkptMdofonar1pBkdX2dl2XV86Lp+GI+r9eq1U57Pp3lRe7WalDVESTx0FdtM6HAsisMLBbjoNNqCc6pP+dxEMwDxGW8CGnNns9mEMCVpV5cgoQymtJ5UAigCkaBkBJALKVESCKJJVIYW3WUbfWgqmQi0eswEcWF1mXXQjOc5Qy1FYzv/UZ9pRPCIKhZqOnJd7600XCGy93yVwUajqSlNAjJs+lZ1eilcbzR5KrRYHbj7HQeHBW9rZG1Uy1LSUxLAj25lIsFRwHSINtb45DoSdzhxjTXpoLBpECSRbs9SZIxHzhaBRJW0BFmhMSTxfvvEa8CX7lNmT9KSzWDUkeg9CExjEbXDVkKTKX/1P/KlzQPsIdD9zgOPJE7HNWqnWBmxqNgdK5ri9Ry/dr2tTyc/Jv/96M/+N++0rPJ/Rva0bF0Tde1cslLyDEQiupVWZSBMhXTIpKXetVqudXFxfjHPzwMzuh0REdF9MYbr3S7s0LJylj++pfTnoeutXrBwTg4n804sDfs7s3uRMMhpdF8hqHwDK1erZaLaCeQHerWTdpq5p5pDQbyic+6byhVu9xer7QbLnabIDoRBQsjFRBtdbcTxWVuuJ61/OnH+7pTCUbis89B+1Za3zRIludZFMZh2Gi1yzQVAEwnY4QRVjCXKM5kVvCEAoLUkgFeZHlJJUCerYEijUBR+EOYM4VKDRinR+cAint3b3KsnX3xIqM8Sdhw7ANYkZQKCYUUGBRcSig1yRUF5DIR740rWadBguBmd97hbB4rnRpdohsno+TOPfj2V66C+UwKf3nJ2ri5bDkzU1ID0m9/uSpNQ3V1XJJinp2+zONIXUFxkRehcnHlejH/ImO+AXMfKZYgGSRIdbWXL/w8hGu90lHVQmTCnOa8nKdlCRTVgE1P7O54mhKWeVFpmiJni+NEWXbCIXjaz11WLT5Kb7TV1GchlWrLKCEMzgbI0JbWzDiRhuJeW6W2VfvwYzafz+4v199aR3evuR/8YkwwD6no5qZZWMSa3ngdfXCQ/9v/7ovXV/U7e6YNonZbqbV1QH3qZ0VSQKuKESUFJsTjfJH6mRrXZsGxTQvLNTumInA+GZ7fv+ttx+DihQ2kfpbNBJ84DfzlejcKCqDI+GjAhgmK0PbVTpEXw9N5RQk1gWApw1D/nLDZSrbdMcYvC7/Cms9Fo9mDmbqY+j2pcDnXTK3ZtgpKkpRJrFU39w6fnH1xcPlb79R/8qfH01xaSZLnWyQJAgxFViS61TI9a7EINKlNp4MojF0HN7tNx3UhZEUaqVGOEKg2bazUizKHgi1mIeBSKnhzY01C9bjfX1trOjbw00zRlUxCDuAwoxLmWskmCsElB0JCKaUUHKACSnelUlt1SXL86uZ6YUR//V7sYVzz8jtk+LVbjfXXkSw/y0dRhHWsFjA6H1+UjVqkuTibq4OnqWqVRkWDWuMvf3jx+u0e2qbEaeqzGMeic6MsyownlqxvQIVTemmvlKtW72/+ZHz0KXz9Vk2QC6Mo7l/1uJ5Dze7ZVhNHWI2L9XVvQ6PzYtGfOI42PGOfPIOebXz+GTtqgFe+itsiSWn7yTAZXoLRpWY0iGHHVSz2TM01YNaxOT//F9e7d/Z4b7OqGUbdnJ8fotlCa9wRrLUQouK2jGtr+sznR8MIIXOvLYcTHzttNifJRWliBadxWTAisOlRqRJVp8RAGrBudHv+LGc0Xbtew5jmvuzU7KpRRCleRNWT6aJQIGKFaUrH8Yr+ZBnCmz3SQPx8lOqJstypBhH7eBTnhLOc+wfy7Mivea5M8menTnMhsIqPp8FW4KqyWsRTx1OE7/7hHx7t3tp7tSbe+9nRlkPUnGoImBZZ7bX4IiGGrh4fvNAxKKMIYyzSbBHwJEen54vR8Ojq9umdW2ssKxeT+ebqchQtDMsqKa9XXWwZM3U4nvhm3ZAa0gzFTnRMtNEoWaS84EC1rGvra+rDuYgBkBJJiQThQpGwQIATGW0sa9/8ypZW5I2lZl6d/Pv/qD4/UO/sKuGJaGvxzoZeq9qF0unP7XQ4VIU2Y7zRrh8dFWTNwCRQMQJJDRlEc7I3X7cNHZBmRSEqmTKeMKJBUajv/dnMufL01pc2lOo2EKJaxa+8tfzpX+2PfXr3zSYtcyLF11QxTxMkExswy7UaG1fCePH5Lx4s67pWRXmcGAhyHf3m92wBlTS0qp08i8pwEk9j5Y8els2285u3zGoZGCbHGvYwvLNGSZTMD8T2Zi8MZs16DfJi5Wr2xrsNhH0xDY1UvHu7eXA04xRaSpmp+NFz/IuPJm/cMqo6pgAKASgkjBhlpijcUBgoRVhp2FJXkpgLYYcRDuZDT9OZkKatq45pNTWsWg8/GBRZQRkasSlHiqEpOhfBZVpOs6blBhN/sshNICAUBSYqsgEAUSLX6p5ho9FslmWYAW90YXfdRKSGkMJoVjevK6p+Ptq/rBOUGXYM4K2v7Pz1z45/+P3RbheRJApdy+RxNLvsq4paUJZlwK3VV9e2s/gwngV0PjUsT5bs8vTMNHWGWV6yUgcizZrt5YOzKQQIO4bjmU3mnZ32keKFJUhK9sor9y/7YVqWAJlSACwkApIhCAFWQGlr4N0v3Tg9Ov+zn59+5271X/yusWQLZxekEXxwhr/7Dqz2aJ7G0lObV2xPIYsRKLKSQzEa6ZeH/mpHNiqO1zCnyQXQNAs7f/LHF3/3n72bR9P+o+HeKmoz/eJcjvdVr5GwyTEyW7jiJAlQ5cWNPc9RUJkLTTem8YiXSgLo5p1lx2FGU0c9//ivzocXSfdK7WIcFCVqVLRr62Tjfjk4Z5NnilhYMTBng2JU4JCULYDtVKtXtBDFQWZf1fBX37JffBSCwpycHZtdvrzVXF5HueBZkIEc6i0T1Se26mUnztSP33zTaOw2RjQ6OByyvFpdtiGYYc1gUOfASiJOk0KPoGRJfVkvsLAtVfC8yIv2UktBsKSqLisHJ8nheRiOippTLS2wCNM4zlIqYCmaRlXGSQNbBtKPFxNH11xFPUsSSrAJoSJywhmmxDJEt2F/8vFkfWOl6iJSxADEUaAcHBzdvbNmqeLRe5NgYc6msrpOnAb+8ps7P/jLJ0lBiJCAYEXXTMjpfDoHRNnc21kEQd0zLEWdDsfPNLy0RZaWlwYXZzYwCSS8KKIgBWXJObIqbqPdNm2PYKirKoJQVZQsit1Ko6AiSjImABdSSAEBhFBImCAIIZT1ulcy/ee/uGBQW24uwcvRG5vRYeT+v/4kJFBZblrR0QIWddIY1jss9yiUBBcwT+aaYi6y4uBYDM34+h1Uq68dHU6rLXTrLnQ62WBcXAwNtSQSs+5aJfbT6DQ9QXD1PkMONO1Wr5v4SRSOotFpWHcdQ+hcFbota9eqBEccASHFcrvQ71UwMh4fDmjBVAIbS8bgYWQQXaXZ8RMEnUioLJqr60i7SebXGgqxzOOxhoR0h/7V203TsC4PfUySbs0lzjiJRbKof/hhsNHV7ajQsHFxyi8u0ntvdOs7fcMNd2/6KgfxySAzqtWuyEUBVZ3SUkKJVUgUmJc4CyS3S69meTUV6VRxmJBYyavPnsr//v/7WZw7jEnHlhTgeZgAomFFJ0LAZL7VqHRa1awoXcebJ6XGcN0wcwBFFGx0tK+8s3Py5HR+GmsdBdGcJiN/AAgnpoX9C3i2zzUyxrnx61/xuR/Zijm6jGioLrmObeBRKAkiGiIiShauaTBM6r0uR2qWpKQQDVsd8pK7NeQ6yFCW11fjRRAsgjQuihQ6hnZ+ebK81t7YXp+NJjlC89nc0hW3qlOMz/1k2B9PxwvBpQRQSMmhABBBIIHAHKLhIvnPP/iY5eo3bnl3diIE4qBEf/vr2dMQLlXBacJUop7uh7Car8WOadkVB1RgPh5zRmNgWnGh+OFsQ5oGs5JkTIL53lVUbZ40tpy//csyjZFeK7SGOOjT26tkvStYOkW8JqUgNStTJ8aS6mg2DUQScbM03Q7WdFjEl7oFZTwheWaZzsWcP+kLwTGSZciDV69udKoCKmOpQIK50+D3mt4112ipI4b40WkYc9eA6PwoUVWtt1VfA0wEKJ3FtqlbNQc69a/Utx/97MnRI3bz6u7w5fMvf72xel3H1jb1B7VmWXkV0KZRLmgQCwGBiFIpFAyxaiilzHgugtnUdKtBFDYqdYJ5svDLHE7GweGTtFfTL0bseJqdBBhAyCUEnCJJDQWaNWwHIcmTNEn9VF76pekqIcvTnFcYokEqo8ndOyvPH5wcPkPTGZoFo43Vpdo6n4U5l/Ltr3R9gT59OBlORb2KV2uy61kaQLrH7txWDRWQWrs7OT3Jmaiatkuw22guQtA/m17tNdp1w3nn/vK9G5Il/rCvCqno+vnlWZlxw3GQxLqhttpuEi3ysHj58tRxyNpGN+MJwiiJI+xHvGSccokBl1IiIKFEUoHSlEikLCkRs+zK7bvuIJ/Jem3wMiOY7FhMzQHOIKnqqRRFrn7wZ2mjzr/3bQcG0oLGK/eMH38ap6I28+NpUnaWZ0vbnKXmo1+zgW/d/869xs5M+FFMlRcvYmhBohbhSMjSxtWZUAbIXtt4azmbZ7PzvJQiwwRYibXmFnig1rHMhChV23L3n4w/3p/7zEwzbup50xTuhoMlO32eLSJBp8rSXu+t1xvJ1tHxi+qPPs4dK2s0RBkApoCPfj5ZnwZ7SwYpVYqL8IyQLrOWLoU2Y3pZ2g5v86s7y+v3dhKK9h+eX13rAoFUKyaNOC/E5QBG06xmCwVxBihTWetqu7PdmM/OHAd41SoC+vDiFDMQTfPYp00Nv3KNrK3w3bL1o8/mtkM0VVsMFzVTVTTNT1kkOCOEY+xUjIoqjpMolKzIhIYrcUxfPBm8+3ty7cbSe7+YQEfZvdpb3d0r8MlkUPZWMr0bP/nEIY2lpeV53ZyvNgpHbUdhqW9Yt2654vyScAChZXJDzyXTAPCPDhXLadX0IAvsen15eSvJZJmXFbsCBU+CkAJea1bdWr0/GFEKy6yQMlFUTXc03QQ5k+c+nZV6VsKeBImuCoIghxxCnckCSQgAwBmEWIGajpCOi4++6G9Yovpt5+E42liqt+qhmKaDI+tZ5LumASjIiIwA/aMfxIlP3nmDfOfLVuNployihsvLOD19MbVN7eVl+d6z7I3OVMv2f+OV6vBC0UW80nLu3Y91xFEOEdbgJAVuhtxY5PkP/ip977HBirgD2atvkDueUMOFwFq2QJauqg2JDBMLxU8o0lwAyptdvaJEBCs7y9b5oHg4lWKcJT8eXL9v3/lGe/XWHJTT9/4GEC1fuyZQiMKjeMKc6qa0CBaFMtuPBydg4+7ya7+3QVnPqGYA8cMH0x/+4fN4wNv/pxs6QjpuUZhLI5EGwk0xScLxwDEIaplyNGfNu1UdDsH0kgFNGo0sBaUsat2lpJw6MihztbPjVdqVri24gWNKThzOYhFnLIzpwjOeJyLPsaPChomAAw/OHYKTRlOiUiwCMT7jm7eWtnOxuV6uNJqA5YtLIIrQ1fX+IRFR+PZbZrhXVQi2ITv5iNFTXmsl/iDjESJxGglKCZcsTACSWMFIwZ1uN09CRUGxP/EztphNtzdWBGPhYnZlZ5OXPMoi27Uzifx5pptY0fDq9kb/7KVGS8uxgwX3LM2fDnPkAgjBf8EGQgRUUjrCGEOlBMKRFNQapKY0v/Kqud6Id77dnB7lnw5DgvXL6fxsCK/tgPkgVoxqXsiz08gwZc7BsJ8aFmU8qrqNMoWUIKqgjBbfeHd1bzv2Xzy0mXFlvVEkwJ/wPFa3t5kAURZNUF5lvqcXxcsn+Wcf0xeXwZ0rpImQSHj2kPqcGfe3zI412H+iIj3LkG0qBMZpGqi6UBSDqFRRYgALnkObEBaPF6H48X9SllenNc+SGXjtLV5f0Vgps5HGWELURaUmszmK4nlvG77/AX7vw37vhqa6YcXot4zyx/863n9hWh3+q38/7K0HX/pm3I/Bs32vtgS379mDZ+R4kBCoWwZ59nFc2QHLS0sgGPCEFzG3zWVq5If9fsELp+JmU2BgPPVHjPkrzZVZoOwHEwhbGaMZmzmaopeZqikJzaGmVLFiS644yFI4S2VaqudHfO26v7SabmwQnPrD0WIxDlyFpYtcI/Le/Y5iynbH0HV3+IIO58/e+UpncJYdXfCrd5cIpTkWovRDZJtmzY15JiFirPQ8j5dFEIxVrIEym/T7uoYrjlmtOJPh2DBIFhQQqEXBDNuQEPbWN/KyRIB2qvWTi32eFTohWZYCKYUUQkiCEIICkhhJiJlaUdBrN+xvf6N+dWmBCv/wRbWmMBngxUhxK2rAMqPq9NYrgiZJXBqeoldJryOqVePFQ7iYk3ZHT5OCcaO7tDubXyRl2jShbToKJ4YMTD29GKX906DTsyWXuqGlAT98OsDQai3F+w/LOMGugV/ZtV5p4LIMPSlOhmz0ILrXe+vBk7M8m2aJZ1l4owcHU9FZqn7yLLTqyvaWMk2QXduxZ6OZn9surla7Gpqy1B+fkt4yUtSCOO3mRkXOzpMhZCHQbabVUVEqQGjTIfvos0lUzu7fAH/ve9e+/fvZ65n+3/+ro7/+Rf/vb7YjYfYn2cVxsLsjPcUZxxXGotwDeVUc7SfDvzj4l/+b25mcORV1flL88r3PzudGwWHVK6/s4nrXOHs5VKwKJHoexgZ3bVW7mJeXYZEzqkm63bCDgr1YpCkiK0Cva1mlYTgYc2pKUiqaVZSDK1dQs4Inz2iRlhgxLLU8gVpLMDwvUtut8iIG00FSbcuji9HhPlrd3mx01ghgNE/iVqsRzqY8BshQFVXP8hwKGfsLIGSzWk+jVFMUgiSGOAqiPCsAwSrCM39Gi0xIB6pEs2Y5AxdHh60l6lgGYqJMM4AMzgVCCAAJJABEUpQoVGvp6B//7vpX7lXy2eXZ4/HRBf/4VGxdYXsG71nV0TQs5/jKjrriwtY15fSCv+hnugrv399ZXQGf/uTlxC/febd1djwnijbxZ1gzJFB//vngw0fyVk+7vmnp0DQk3VpVdu8yyUrODa/V0U8v/CkbMcUw6VJT8yIruwyQB11WzUxc3zWsdBa8/8s8iCiuMaBLsagoErpE1eAHnxQlTPxM++J5wbJziEJClJFf1LyFozjXX6nWlxYnJ/NaaykMraPnF0ve3NXqWNEAAUTl+8/yx59xHRk1t7jSdW+/sebu9T5+7+Jv/3jfJujql92rdxvHR+nhUdJcsY+OtE8Pj/gYKBUyLfM9W3/njeXv/3Kw/8S/8cpWMTg1FHLr5morig8OAsIbk/NieSlrGdrhSY4ajihJ4CdciP58GHKAkZQiE4JTyixTkUggoTYrpqFxT3UoVBnyMz5r9ZYMLT98eHH2xJr46krbYgIjRYNaYldVWpgAAawXS5tS1+39Z+V0US5n8+ycERthTqBedynmnFLXtGjBp6MpsJU8jDu9pVF/qGCiEASgkJD0hxPTcFlBCZeGIpfbdaTi8Sw7Przwo5lBNF3RIC9oKSeTua9CACSEEEIopZQScq45WHz7G2s7O+Jvf/7w0edsexPf2l3NzsBPn0m2dnGvXYwm1BBqTys7KkNV7eCC12r4zS9t1x17fH7h2GQRKQpq9rr05dlMM6hrVqutylnOnxwt6mp5ZUO9vIgnk8WNm1oWxgTpUVhenJ8gQISmPp/Q+orYWaKTY//WrtfYJqTQZiVLMpBn6dOnT49CXXGo61pJlq9UTFJCYmvX73ernjGfSgqzRZFUNQFQyiBehKk/LzST3rhXG13kpweLTx6d9tqVrVcbC9+3Ncpjb3Ig6g3Z6iaTy+Kd181XvrPnNr2PfnL8yz87WqnzN99aETkz4nEaZ5u7zh9/f/rBx8rKjnmtWs7ncWddr1a0u5ulyStgPgZsxVBchIFryvGsBDkzKn69RTQzra+pcUZ++XR89Wrn5XlwMSuhRhoGcQjXXTJlOTItjyKVoIWfZwLoQFFVM0uSDPr33t5SVP3wxVTj7uFF9vHD+Le+U2NapspyuWZrnj06HNmr6zQtnbZGcPXli0Q1hxLNpyOfiDSjrDQqlqnXZZoDJlheaEQdXQ5NlUyGU4C1ApTVZk0hShRGlMHzy6mr6aAsPIvoWhmlBRZGGBZRlNRbnoo1TUF+MIRYW15egs9CICWE8L+cmYlEVUu4pvmf/vzlw3O1MPamw8G3vsb/cdf9f/6pMwgTuC6Rpm5sGkqR6jANMuvBIV9fMo6e9D+4iG5smK5Xlhw9/mzaaECCTawg1QL1TmX0/oHJRdMBZbbAst3caGdyEhxqlqeZni7JoijJKMCHCwEdvONYr7yFK8twUcB4cnF5DI/6QG07SU3pbLWTaXxw1O9VsaOopQ6wozc3Ur0sx4cRzVNdFzYkkqOMyls3OrYd+qPok59ok0vqbInf/m5XFHkRJwB7Zq3WfykX/kV9Bf7O3zcOPy8rrStC0wdPHy6D8f/hv1rWDIUq4Ce/os9/NO3V4TRIZcw7K8Waqd1dhi+AdzwmH75s/uLB4beu2Uj3xy9DFKD+s/wkLGex6dh6pSMv+7pkFbMVrmySqwJyxI9HeczMrBQaZEtrSpwXpapGi3zZskxanJY0Z4jOWBmMhaBf/73tlR0rzmStcgvL+d6ryknSLzS0ctN2q4nVNSktOsuIs4mUNmN4Og8A4ju77jjOLmYKmQfzOM5qXrPm1cfRecoZ0uTySmNEk3gyA4U0HZgLRTBMy7goiiDPFUOdxwFmeVsz0xBpulOKBc5SDch6r8mJGqTR2aC/u7tea1UAZ4BgjjACSBGCITZJ1X/1Z0ccAuIahsX6qf3zz+J/8jvjdzfH2OnEZIGVwqpgBGStRV4+RCWHlKPFOCNAxlnSaFo1s1xEQaEo7ZaKeOkPFhs3arevqUeP4ijjz0/A9ZtOe639/vvhVkdTrQwb0ZV79uicUCpv3nU//sQ/zBeaa0u/meOL00uKAfaaxkhUWjuF8CeWoQDM4sLBFaMCcBr61680NKQE5+nAVylUtVrZtGhd4u46rtZbL/fHkzj5yp1OrzF3tPl0QltrXszicVD3Adu7qRjba8nnlx1FCZvd819+fP+NAnRN4lSPH2R1N4wWcVqA/ZPCMCudhiBGZps5K9y//83ap+PwL382tqz6K3fw1aXm5dFFOY4ttaabgWfnr92wx6X2f/8PBfCn//DrYHebbzbgi4scERxEdJFLE5sX88LWwHhYzgJ97IBVR9Rr2rVbW+1Wlg6S85NQ0PDJeyGoWaubLhvmDQv99nd33epxd0UqmMloTBChBZW+LP1MlsrsvAhzutauT3P4wYuYePVqHCfxYsHSBALpVT1BhKlZ65b7+a8+JKYFHG9yMTJmqsITpOtvvPGqP50NLvrRNC+zrNHszaPE8ayVXrM/npkaiiXszxaNtc3a0lIYLCCQCEKA4H8JKkAAGAAJ5aqpQkSIEC0CP3uU/vbXl753nx6dZucTsbfZVGW41vQEms3noYWFQpmnOppjKojNFry+bDkzKmly79ZSHthPv/DrqtqoAnhr++rV1tnT/Z/8+bNWvY8N0H7VNNUSklKAfFWvGnbx9OXoeIoqDcuKqdvjjGumZeQyqFec2SRSmElIPZXh9lolHNMkDhXhVDRVgzNGC9sBjOZ5yS5ivnS90rTDWkX1rJaK+pbOUZkF09yzQaNHchk8far+4oPJeRB/5+veN7a7w+Jw7UoXL43aMqZThoweANBpXYQB6Q9SWopWq4KwqmhJBWpQKy6iqJnm995ZUWrK3hJbagYFTziFumZwHOrcnkTUrpkvHo4rhrKx5jieDBcC5MV6W1vbbX/w5Lw/gYcv03wBmnV+e009niVnFzEW1p4OPvz8YG3PWavLazcVuIj6JT5+Ov/hD49e23Q2eiZV55f7fHZYqkq+sWm32rrGotP9bHSWX92zt7aMxrItpG06BmCcGJZh2mac+KNRcuXarmYYk8BnRcpSLs3K8XRqFJICOVvMahbuVtpp5COery91XgYLggRAIC1zzbJyygxFPTo4tHvblZq32uwZmgyTKcEISIEgBEACCSEgEFNAuEQagpqQSq6DS58PfP6V1SG/nDfdapgRjLFpN04usyAlJiGsjCo94Vrq/de2sBZhVcb9tGRmdXMjZfmNFZdU9a/+9h1FxVWF3d1r9p+Lwdniyo2uYRRpnnsVPQ9ZUcZK1YKN6slihhZ2kBQ377aefFQ0Ld7oVSm3brbK44tgrXuD5bmmAlJyw4EKs4LpRTBhllXbWHa++/XAcLyHHx4363pV92sepkG2VC26Ji7CYE5zr1ObjsXZWD455BeTjLjOT58mrwS5u70i6u3s4vjyc200AHuvTau6L5j57/8Dfv9BWPEU4lYW01EwTwkBJVKz0vrhn4Tm+9PknL+7nf/B79XSxMdYrS/Dy1E8HIp739gw23NDZf/yt3rdntbuqP2T6NlHc0yxzIq3th22xV60iiCCV2rNTkN7MpyOrzRfvFy0NuKLU/7Dn2XrVfjuDd4i9uFFctIXFV1PasWQJAeDEiO7LEtesv4AbPbM6YVf9VykwtE826prmlmGRaSL8ksbksRJpmr6crvTv7iAAIZzf3I5gALXKm3HrMZa0W60ExrbqnQUkMYZVgHLc6hCy7ZpEkCiYM1ULGc+i04v/YQnm02qQ7ZSVQTPLjlHAGCEEEaAAyAgkEBCDhCAEiMpoEgYKrZbvGFxX9HOqNbVgFohlTowWuy9h4nW9UgSY6+Wu8r6GqHwSKUsH4v+cTYpQVyd33pnxWhJgrEaAzo9KYoIFByQbONmpb5iTSen2FBErL38LKGY7L1185ZT/ORHT09ehr37jm1rEKglzJiiSVg2qnkUqKPZsLrcTsbD7rqLjQwzxxR6zfXG47LaJtc2ebUR7a530ilTQ1EEA5mY17b1nJDRcVlC+7Pn6q8+mg98CGzabkskcsVWZ2cnV+72ILb4ODs4Dw5eYtBEr67KTz4iB7MF1awCa08OA4Wj1XaHSAGL7JwWBVcOnqRdrTry2bNHEaJ4bVsgJ4GTyvI6r7V8RqqZn+sRTUTk7V2TGE4nxvBM0JgpnC+tWcuvNOeLbL0BDTJfXlF/9IT96CBTc2/5Cr+y6nigtCtBhiUbkU4d9yoEobg/RkcvrZ1VIQuRFeTBQfYXPzup1NG331Cx0M+ec4XgrSuOtKhoqorE5OR04Jr6lM0UohwdHI0nMyzl8vLa6eExLVnF1m0iKBPNWhUWRUHheLwALF9dq0tVD2ezbDgtkILj0q027ERYSqXVbgmxEEUSLsZFWhIIEQQYIwGEBFACLCVAAkOGMItNkL7Vce43vd2688sD+7/969myx7vN4J37pGIVtNBO51GQFpcBeX7kLyZ2uFS0NKzmGvI1B2X9z56K2WJ9uQ6VC5oFphS2o0ouLRPYrRpQgaEBrVKJBplIYW9vV/Xaj3/8I5nFV6+xt9+pIjLc3AufP6MPD9nr95uyBKKQT/aP9pwtizBDlVzjAohWy6vVYEzn1Q5UuQahWt1qTcARFESBSOKikIAJJUqLw1E58jNvSVW6vFZdj6ZDDVJcyvgkwXdKSvu0YH1fvyyJfE52b66oPP/G1wzNrEgmMSt5kFhAGFDxfG9YxHssO1/IlS55+7V6y5g+/TyrdepRKT5+XxwOcrNJ628vr24mweeLMuMlyoBarG42ux1yedzXFSlyCXO50UqIFUOoVUpvyyn+/tfqJzM2OI5WGgKZjfkCFvqi1WnEl8OaBYliTH1tXsAXXJgEbNi2EWbXlgzXIP2X00GJEFfUR3mZ89qNjtZeAUQl1WozWkxrLYfKnDOwvbErIQ3CBGskKzPdNBW1bBqWLCnPyzBkOZUIID8tiOOAudFaWhsH6WQ2RUVpw+jq7dsRI/2Jb1PEc2hblud5k5ATjIr/sigCBCSQHEOBVJHe3tXud3OR85SEl0/SVddEHn58lL121akRqBeKq+ERpxphhu0cPktxgIuu0NAcYjUTSjRV82SWT4KTi2x9s7G7AfNRoABRcz0Jy2y2MDQ1LwtVx7tX6mQJhexofLkoctFaR5a59pd//IzYPErhyxPUavnZGEjsUQn2H7/80pbtagpX0Mn5VOYBbRvtdUO1E9aHZVQWMKi0AI/swEeQBYNzcZlKjcsrG60241SfJbE1OR1XDVlK0NX0bKZNzkqzir94gsrSwq76+Yvp1y5ht3mpx+uazBGkl2djkolerR0OFo8mc2uDuCrfVbRru/bVG9XorCyS8P1fRts7+pXb3pTFZw8FE2dbu8qSLAPkEaNS1ahRBrPTTJes7mgrm2YWRKZeR6uopAYfOOve6fUdvgDuv/6T/HgifDMp5uHWjr5+xTIso6npz07Qo5cLVtUd5LpB2UniXV3TMJASHy3QCBimiiZhAF5E8SXox1MNUNLqdtI05Yg4rmm5q8SpFqGfxCEoAk/DpqFFuRjPZmvdBuAUElFzvTSMoEQqhtevraimUkAliNSji8H13VXd8IBQNF07Ph/UbB0XgcECKusQEUVIBjUhmUJNqJSc+AhaMK89vrj8zjcqQTZtKvRrPfXhPBpz+eARS8/pdMDaW1VtAyZMdJV0QfDROGs3latXGrptfvzRWauhrK5VgnmGJaAzvfDw8Wiye2X55WEg5sO1LbvsNoGkSOeI2LA8VOboW9/aeuUV/8Vp8ud/3f/1r4a/+7vXoiLNyv7lVFbWdKWgFatxspgcjnXckmsNe9k2jw4HI0u0NiEhNC6oVXe0KhUETHTz+3+x0ExZlqLEOYb2kl2s1fMgdUupEiXsmBoXilDQUTgXT8n9N7ZPxodzPx0kJgagHA1Xe/jlYPj6l5tEcbu1erx/aRZFIosUEdcxbuyq4ThxtIjlxGobb3wNP/94Pj0md77cen45fP4cOsuy1rQTWqgMKDQhKAA6vRwAlqsOyg2YI0VbnMwJsVS9VNl0pYvOF7FrNXY2dHkWd7R4ZdXZulGpG2p/1jjoF0mcfnXD1F1oLzK3ZEsVU/e8cVlggkQIL+dJo1pdtZ2JRuPCengcz8uMeLWqOa0OJyML5usbqyUSvr8wNK1AoMyzNE65ZuQlp5Qjzqv1imJWaJ4FiwXNgtpapUz9LMmqFc/RcFzSyWQeZiVBwjQ0hLGgeatiipBjRZMASAAJ5AToEtISgYiTX39y+KWt+nZ373L4wLLmS7saD9kUyhIwSlBjhShYdismMOCNljBM/SCo6Omo0xUQhTs9s7WmAcUvfePmtqOp4WTB7ErtwTP25LPF/WvqhtfBrtCtugBCcJ/nSOGJU3+pIIjQ7q8/Pt+761Yas0cvopYleImkrtfqSjZPHj+C+w9y00pW1ws1G++11IJZk5PppoFMLIqcKUWVQOa65iwKHE27c6vTcBJJ3Nl8rBEoVX4ZF+czyEuxbmELlFTo7Izqr1PN1udj/k//7pZTDhtY0tzeu8ozP7Truu4B+6qeRfPOVaMJOUdxp+dmlZJy9c//4mBpdXe7S1fXw/55/OTRUTASy6u1zW2IgKFAzzRDdvk8B+lo7AzOuadloIDJBAZFSDQZTNKap+XTZODDSKubJPrSG02vkruy9p1vtgG5uPiiDBb8ybNo3dZbWFFiqBrYqzqFJn09ZwA6nDcCedU2uWRBlHlLq3Of5yyjVCfThS8QWlpZzUYn08FQc6pJGGsA7l65enpyGsSR5zitetWfjnutCkQ4jONSsjAITQIiPxVYLVPaajvI00/O9pPDWDUrCIBaza3X6sODWCOJikFBCICAQE6AQIgLpEqkJkn05hu1f/QbBsyPVzudGtFxQp98FsgSSrWsNZx2Q4NClkF6fBGBtrm2yptUO3kONUdCHlkGVqEpoaBp5tShbpRMQs9AQeRfX9Pcuj6OsyaQQkKiWZSFKqrSMoayVIxau4d+4+uGbukVW//2OxCW+cms8eTp0LvXnC7A0pIbJ3SQGS+PWJ2QjCoaFFeXDBZRA+EkYydxJmgM0WR713j11fpSPYLUjwsJhDqewOM4P5qitHQTgwUq12MAQP484PO/Pn3t3Y0Xg+fj5weaTT+cMKmZyz11a0nXaQwJRBVXW17PVE0pTml+QYshwerLPvjhZ5T9av/Ld+DX7hlIgdNhurfRqPdEQ5sHT6iJVC6i0blIpTJnpefh8NLOO263CwhXRmdQ0NxE+jgjR2f4o7PE9bL7N9HWsvnRx7PTabjTilWhvra7GVwc1HQNRrmh2mZDk45s315lGlVyefqrp5sddbUHE0nf/3V2+nj6fJbkOYESkNl4BIBimnZ9dePoyQOEdVYKglCaZG6lUsZRrVmfjaZu1eOMqohggohCavVKNBkHoWSASY7no0Gr5XW7HV6KJOeM0rSUzXaHIyWLFlBWIMYAIgVKDiECAENOaNZS2O+9ubbZnvEkxsTsdhychg3HrilKMhlggO/eXytTf7CfZAv7/Dytu7Tb0tp1UzXsfJ7rmnRt58GDuNOpGubs5NKdhGrbLraWoULkIkoefxC0J/Wtu8ztQFmslGJqOEriWw8fcceGe9srUEmxptZazTRZ/PXni/5RgaOT9drW7/3+Gx/8+r3jo8UkziXKJlQ8uQCOqlQNurxCbBsCHR2dt08vfMK04eOL5fv2/kL7n/9sVqno7eXKBw/mima/+6V1ng5V4CfQG5TD41x7/88mS5742pr74af+tLcaZrNZkPz4w/wbt4svv6HVqyo2MAaIKADx61TVqDwMFvjgqIyBpRnc9HBnY8lSYUFfdtu0t2zSGJRRhOtkEpMPn+CEmtAa37xeHZyRRIewSZXEQyDo2I4tMKiatslqLqq3u5cHoyLleeSOz/JWgDWpo4LWMHOMpNZRFZ6G1K8trXprGjYQG6YS4yJlG24mHeVkxdt/GiCsWZ5y4+oy0XhZcjEfT+s67KysSUUV/XmWF4MkSbN05/bNAkmJeKNZSxaLKIqcWidkfHm5N0FgdHYOsKXaHqNJkkDTqyR5RABWkFxMfLMSAkXrNCqaLxnUIEYECC4UAQWCpSjk9rK36mKU1EwEooROR2cbVfHtb119412LJXUEFlgZejXN3Foh6eVFiA8vilZ10VonjEwRMe0mPrq4HI7gyjbWbXz0ufNvvn95cx18651G1coGfsaxd/aESkyvm03DuMI5mA+1oxP1px8ddRuXu2tewSKfiqKoHhzHP/rQ3+xUVS1u1RLXIjUdxLSsqk6hJFkONnY8p8GGfuZWgbtqqhU1RZ3vfzCpKaKODD8gv3pRfv+hen0HvZhNNFm7veGQ8gj6RJUsUvyx76SDaM+pHP8sISQxq+TR+YVkaphJo2Xd++YKyi/CcWJWmoZKkSyEXhDiANnVPF9zEsmqy03zyloB+cKtoav3G8GoePzRpF2Dra4iNXo8ku89KZya3FQdxzBe/Y1JY1U/OZOeyihPaKjM55Ri0KiJ39hoDeaLcZJZtrnaKDumxQucxiCcna82lPaWZ9UwzEs/hsgqEI9BEF4cDKlVf3YyqAW04RhvvHOHeeefHcxTqH/zm7eIJdn56bmiWbmjdzp1Py2q1fr5wWG0mGzvbiOCFmHAEZNYEpVMzydBwlQgwsDXTKOzvHY5jiiA9YpVlknpozxIKEWKYmOkDMfzbsXbWlfw4SnEBBMMKQccMkxLJAAxn/XL//yjs3/0lbrq5VDVWs1lmGW//vF+q4ualuPWHMilVBRFNysWe7kwL07B9W1iVDKFqETjpu6stTC2KDQzbMNrV8mXLnDDMS9PQthTWq3OZJRwyT/7VIzT8O1vjX/98+DoKTVq1vf+yW9WLDB4OPn1r6ZPzwMNzp1mG9rsZFa2gVUqRX3wrN5UPysBZWBvXWur/ParZqNqZX3vYnyh5FHvmr7Wjv75P7P/9X+K+rhjBoFqWhBHQz/r1ozXr9dckM+mZexTKfExLfOR+va2u/Dzn5zjnOKvbKqvWPQo4SMq1mpWtQuthSwzcLg/ZoPsxv0WkUnJNaDUiK5BeW6hpOcAFPLZESEG0hp44vvjuZGWuVHVao0ayJLN1fK1d205o8HRYuMuVhQODFytAEDV6X5OY2TWre6KNpuNN2rYc1tpXvacmQdEypSkFCwTuoE1y+IEAISbW5bqudl8Wo5HRar8zRdDpNfmqY8X8EJctGrJblt5clEePn9OVEVr1hqCch4HNFOardaJP/WTjDNm6oqKIOF8kfC5BSFX3XpLM52S0Xq3midxmXFMyzINC1KNKF6MgzJLbbuSl1maFBUb5WW8vLZat/tRiAWyiZwTKIBAnGlC2H4S6VWdAFgwhUkFEi9M2YqjAh988nR6+ytLKxqZH/f9k5EmSxtY44IW2JUJkgmueOrZ/iwvyfK6YRsIFObWlvht6AxfRAJzXdVcnltmOFLB5bD6wftxBJ9lC/7Gm69s39t69vjFL/7woX9eEE03MJqlpZXFK5Z6QbRf9JPKOE7y49e+fKUw4v3nw699o/7dV4lWRVQVVmMl+iTK5vzFZ1MN+bUV494Vw7JRvbtao2inmzQMcmWpGsQXJ2MmEj3i5UXILifit+8bVSMaT/m4yBehvn+YfP1GByq+Qgw2jD7528jj5cZSzV1xtRUXtIU/lZbUCAOjaU1C0mwNNTJ9+qJsVXuymCAlc5ublR5ejE8//Dx+t9FdXS6X2lVJwkQLiETJBfJIXu9iQUK3RzLffjmH4yjb6Qot0CdjkutMUXm9Y0qsUM7sus1zVBQ0D2ODQ5HJAmSz02S+SNrr2pgqgZCLkTxZlQqlwdlwY89yrtcfHk8//3xA+klqVCo8inhORRD4eeFHRWe5m80h42wxmUkuLM1gJQtn816nLaEM0zyIIl7QrKTthmOo9acXw0jo01nSrDt21Uunc9dAHVcvaYwgdxWBJeTYgBjGKsFCECA9J/i7X+l96WoljvtStTxd1wzGqwL2w0VodK8tVTY6F0eXT/7mwlNliKQwwY3XnOoSC14myURU1hsbTfXoOLp4Ul65URcgS2fzq2uWwZUoqmPVjGigNzw0l4JGHducvQy/+/tvLq+v/OxvP/r0hw/MHKyouluBTUP9+UjNkhznssQQtoyWotik/Pi9DwnWWlVt/1Hw+la9g4FicVpGlXbzx++PiCl1Ezrz9MoKePBy/Oy56QfzrTZtq6LC+uczcjlCLZMRDQphtZx0tZfUFOnOUc9Guo5gXekrU83IvrSqLG9VYiaDoSjc6uYbbY6KIjFcy4uPXk5Ozy4SdzKjGz281V7Zf9ZfbSwVw1jn+uAsenYQBWOAEVK08Wuvo8HJZTCUGkGKzUzTiHxpretBnri61ds121eaP3v/7E//dLTdqY+KxMFsp6tXFFevVlJ1WkRJosswhSQEZX+y3DIsoLw8SZFVPTgrHz5LFF7cuob2vnrri8/G+5chr2Q7nfhLe63vf3FO1EaFlrBqtgCRk4tLzVVME60ub8z72vhiAJTMqDR1pWg7WC4YzCO3UhNcO3h67NWaXEpFgW63nV+Gnz899hxbUWKC2Nba8tnZZemPFILHRy9sIgiiUMGsVAi3MAqAFJt7VWTDP/yTQQHz3V39yhbbWZU64GMID0bJ/b2GS+gHH1wWsWos62Wee11n95UKRWPDXVJ56U99vZ5Vm62//Is8QIu9V5cf/zy8tcGgLdQYqll8keXPjqEt8cpKFZXTSletWt5Pf/Dw8v0Xd5dadBGKvMAJq0psAxVAaNfsJdXwLLZnlNeW6KJQq1wxUD4Zi/feD1+7lVucISJBq3tcivtXjdVNNTiF07Pw6AX46f7zvV29qtZsd/r2q61H/2lGI+l2SN+PXQuuXLGFEkSQTBJEpfqVr2+/81Zn/9MPFy+LRlvb2SqOk2WzxWAt748OLNVzUUX64egwenGWhFi6Or53q6sY8HJqHZ48WvVArU7WGkZ3s/Lzn5zDQiQhnU+rfshLSbI4jlLen2SwotVvQLdmqhy83Pe9TlBro/m0rVzNb9R4xawjRqKsrGtYlxZNQ6NFLhJ2/Lxom9ruTSWDnBvk4KU/jzUOKrdvgjff7X32IP7xj8IS8fgF/eTpZKUe3+4gUtWc/nR8GvTrGgaOrTZbNRwTzDe3txbjhWK6UiKM1CTLBUDTeUChVkjkVNpJWl5eHFctDFXNa7aNaj4JgozH29e2iWEhzSBSKcPFLJh2Ki04yLBKykg6WSKQLAn6/AF99PnUgcKX6q9P+2+cWG9dNRwUrXaX7fqUoCgePtfwpLKshguuQ+SCWEU1gTdJW0/IxRefh65wZ0H62Tl8/1j8N2u9mRE/j9oGODLNSVwaxy9EmaBql1u65EAxcWX0cHj+y2dtqag5L6UosJ4UZB4LIgrDVlFNdUyjZRdf3e2Vk1EcEVgmllJUeiuz6fyvfu4bsbJ3xbk4m5/P4NtKvVMbDo6Uk4Hsbcj/5X3r4Iz+6PuLb72D3GYBcFFvuiWTmm68ca92+Hxx+EwudJiUqFGB6ckX8M7dert1cZjo9U29jq51AdBiJjkXmwpz0/Hh4iA4OGfPJualz/auNbJY//zp5OnTqGvaheYORvHlYN5as7/yVW12llkquzgeaHozw+pZFPaqtgGz1boOQqYosIwDhbfTebK1nnzz27W1Hdp1lkpdhRVVAq6m+uXHcbEAwGVuw3v8+KJTsa1aeTkozs4UP9S5gYM0w0Xjj/563n88+Xv3XKJEP/iM/HSk7q2XX79SJShmZZCysuC66vUa3NRB4E8v+typuY4bJBkg3A9S1G1h3QVEZAKFJbMcQ9Wwglf94TlBqOIYmgoBgZu7W1jXMo6AVo3CHDLQabdK2dAPL1VGUgxmWkkEgpgSihyCvvk1PvWz1UbjN9/YkbNzlJR1IuYa6rYcBODG7V7iT+Yf0+eX1ta6pYXJyhIqFpPIp6fHwB2vfP750yubhmdraHRok9GzR6PXlrqRxf/jh+H5SHl9xzTlHAB9GvAkSd2Ls1XbiWP+YjCdFSJiCtLNVCJTW9SqgKkZBbBpW1yCl+eMcsur2qYeVTUDM+siMn/1oX88i0oLyBQPDtjr16rVtvzBh8Hr7ZVlXfvRxaGyqvbWvHGftl0LMil4+PV3rwf9RdEv2y3HtvWe4be6pZdZRpJfW3d16G3dVks4kv4YUImNBofZYDihfkyF8nwmvhgqwykbLob7++OIJSYEmucGSZaXIRF0PKGaohOKiSWwpQZZ+d7jkSBsc7e23apYSiIXweiYS6kv35L+AitpY9ofrlypg7WWkdLwZF8iilvbM9MKnoxRUNZWOzXPpKKQhEwT+3SMckqqXQpw8cmji+6O+1/9X17bsU/C01kwMpWMDhfFw9MFuZzN4yLTkQQ89/QGts2jg4CmyeRsyjhf2ViLizyOyyLJVQQ0ggUSGPE8n1qG6Zqthqqls4VaIVs9a3e12m5ZBBYYkiTK/aDo1lu1pgZJw1DHOoNIYkYY5AILFZKYgpLGjf/6t7cdt3beX3z8dOjYXnrir1R1ZODLkfbLh1qtKX/zn27923/z8NPDw+71KxtLesinP3x/FixUjQd71+rrV2X/qDh4MVeN0tHBr56eCgjNHG+3tEmQacJsAaoJpmExK5NhkGXMMdqrGCCtoGXBynnYtGwiC0RzE3vhRH4eJtio2LamINOWqk1mXadqu/nLBnU6Ncd2SKtfZsHj52T7de/3f2/HJbX3PzgKw0alFsIiy/pkb0WrG1Gn5S115CeHwfUNWzdZITOvYqw0xfgoG59P1jb1+nWc+0cnx/zoUt1axlsbkOiEJu6TB7FVy6RtzcrCz5ljgEEKuFAtHRZpNikYh9gGpq7jVOQ6KRXV6M/QJ4eLtEAbTWAb1KuWRCaKSUyhJAsoYKk4OBvZtY7lrbgUsP7nk/KAOXXBmb+9u/7spBJEc4KQaTKkmgen6scX6t88utxe9fzzFGL0zhvN732zjoqLk6NFzV67dhM4ZvCnT5WfPsmJHwWSQKde7zYckGaTZ0+LMJFQSgwZg7O573p6GafA5oLwUgBFQY6lpwWVUFimOh5ncZZ22krLwoQXVaI51WqQSkNFJ4uJStzO6ipi3DNJUABCTDtlEEoJTA6KBCs/+QK8sg0uwpNfP7mYRVLXgaqi/+Ot5nSW/+CHJ4+ewa9+s0Kq6e//fuXkPNzs1iXwTqfh33509Pd/c6WB6cWQeO2aWWMf/Dq4fFBubSk3f6MHAwbDaRDy95/Djxb0bltsO4qhIFQxRMuMIz0XwHM8NSun/UGjoVOONGQSBHnBhNSgWlfUjPLMUkyXqJ6qEJkvi6TtWZehdMfFckXTLJwVRZ6O7u6tZTQoHkWTKXYEkbuVwWyIFbbkaJ2mNzufdj2m1ilU1OdHfDjmtucuXzfKeRqfTBApT87isxP9s1PR61ZmaY6C7PiT4OTFGK3oT88yFWvtKqk4otEEjqpqQixYXNEUWPIEFKNIKznb6ELboetLq798sd9puLtdZXweI8HrTWupZmAR65pakC4CcyrCnVdIpRGdf+H/xQ8Wema+dRv1CinK5NcP/HpLqH4SUi0KtKc/j3/6YsBsK6F8s6q/9WZ3Y9eBo+mD90eV1mrn3lb7Zrl8p3Y4/VmdCrLR7R2cn2DL8QUhJT998ZSYbnttaRFFIc1nfioAhRKMRiPbU1VTBUK3DNtPCsaZImYpS7Zu3chK0HRdGoUs53M/0ayK42pL3QqUMolCRccNm5zNcqGaLIshBACkgEoElIAHH11ms1RNtIZtljpQ/v9JoZSSnH/vvnp7JYsPLvzF4u7NqtTi8Ty4vIhev7ZUN+cbHffZk+zhr4bbe/ryUv3lftbvRxXr4u7ecmGJVMauoxQj3FrbTGb9eE4rSK2oRcOGIZOLYqxgs9Fuzcd+UiQqqgIhCpYjCNOQUiRsXReII0QBIwwkmOcB4CkoXt8mQLDmJn7tO1eZEOlwHk2nb19pPN+e7y/Uv3gW/vZrrVUUFCNxfn4W52pJMQOZqqlJRnrbbn2jpvJC17NFf0ChfnbOkjLbW+Gzo/7FCN29teS4oLTgkwORAw2XPEvgrOBLbbuu8EmoFIZmMFlTldRSHj2JJIXX9pYHg8tNzf97X18XMsN0NLhQXpyz9jL/Oz3FVO1c0UvC1VCEi+LpvrhVNH71g+nTCPE5Y1/Ab62vvwzR2Yw3tq0PHk8//iRPcJhygpdW6zV8Y4P83m+aupHsH8S//uHsG6+vbl+xS23mVde/+MFBMVjULIUMRzOENduuhPOxxrjiVeyq0+jVarI5/+hpFOW6oakaajVcr+KUnGq2FUXhbDLzXIcTpd5sNaruIohPJqMi4wrlhiRRNkvCsFGtYEWtNdyDy6kBuQKZqioMQCCFkBIAwRgVkr9/eLJzrdJ20HTC+r4PkAyS9MaWemevZQiuipnGZYac/kVa6wJVw4oMV1tEB1RXy0qdF5n7+FOUk+j2a5U7V9uqCOajc12VjYqlodxDyLHVJNWSJAIJy6ep4JnX7VoIIyERYDVXWwhW5LmEuJBQMJQyNhHQK7lXVVVTIbxQAYm1ztg/FRit7eDmstu9dQfQ0OLzVGcv+urzmfmMTmdalkTYam00veTZ6CEpwTgU+4uiVzOudzt4cFpVwnIyW/gQZAVnSpCBOCWega/tyCwSy1e23JXO6OHgiIO8lIahIAuleara6vEgjjxp6p2Go1psrjng8QUbRnxn1R3OAAgFLdK9XcdP0snUIDYBOWBleXCU725WZZmhnIpcPRkW//PfpP/2b0+KQK1USp3qj+YoeX/0xSfx8jpeRODjh7Faqyk28ZSGL804fnjr7rpngedPip/8dDIKpOlinD83WtuffD79s39/2EE2VCNydHzSWVsNgqi7tCKihY6QVTXmwcRzq/fu3f3gvS8OXp7urtUURXY6TaRq8zBdxCkAoMjotMiqthYGgSgKouBZUOql4ElOi9I1DM7kaDZTbSzLUilClXNVNVMIhJBSSgAk5xxj1NbbVriYD2JLNrMYu659Y2PplVtWOB1NzyfNhum2W/l4bnDr5fNLr2N9+fVrw3ZIypk/UcfD8e1Xmp3lysrVjSyRi7NH66uCdIwkpEFg3LnWkXhwcXJkGCrXtRKapSBJmqX9EOkEaRoXUgqgKvps4WdUlFjLoGBYE8goGE0pl1wQBCQHKmRbTTDILH2pu3ZNvnz6sm4GYZz/9Kn2/jN3koZe1VSG6dWutdUpCz+eF3peGAHPDShvXqlWNH97Tfz/SPbPJ12zwzDwO+c858n5zaFz9+2b871zJ2GAGQAkSFAMIkWKUq1WWluyXVtbWyv7s70f7A8OVVt2qbZqtSurJJVWIkVKFAmQAEEMgJnBxDs3p76du99+c3hyPMEf/Ps/fk1XlGStZPkkShcZ7c0K2xRW2tLGFSkYS7hVjRIvS4Ii44JMsZxbFmrU2FJTFpj66PUi8qabVWW1hQvMwtfU94S8LQwXo3sX9NUNC1JvPEx++QhOFylNxXvN2p/+wO+0khsXlIt3qlEy3z2TE00qWUVfiR0xLrzy6STfe+DdWnZbS8qnX86JYDEMRQlqJqiS4b1bdgvPXn1Z7h4b8xgkSLz/+Fg/V5weTv6//+mVMEG6Vl64tIlzSgQsZGk2HY1xmdQsU5AVhMM8L4qYrK12ZRnarqob+tnZWJDkIMuTolhfWw38iGaR50eygFUJ26aeEdGw7cFwqEhSo1qdTOYlKc/6YwHwVUfdGUczJCAklKSEEAIAGOcVS/v2baiUEXWdE5+3yqwiG8FosJhqlmGLq44gLzI1d7uOwMnpcDbdGfjjROJau55MJtHmuea9bzYKNvj0o8nTL4uLW7xqzFu2gG3ppOelcXlz2zrpe3GceRHJMub7QBSFYhHpGlJVWZBlCoQw4VkJKZKBqHthlkEoSbIpMMRLARAEaFHSF5PxzRvGGwwL0xe9++XffEbf/Y1tUYpOHw8uWfzd7xuwbP+P/2wH1Ms0DvafHdiKKyRFxeVeLlRh3K2mWx3l8IS+flnMh0V7w7BWjdOHY8HQM8B6EWq0apIjjl6PkJ/dXXN6sZAkaREky23NAjANypoqm468USeuzjymXDlXffVyyBJ2/RtdVZ0yqYx8GIaG03JRLebJvLkCv37FD58kjSreLN2HT18HEMhWpSrxJI4UwRQUjoBoSLyzUpz044IorZX20ehEiXjNLdYrTBakzx/nz1/QV/3FWZm6IrhQ0e8T48vHUxPWlKrPhdhaQvjC5YvnLpxfLGaJNzs73uONWn39/GwSmQoyZDvwxt2OOxlOBv15XpRpWaxsrde7bUIYIVm306F5Gs5mTBRAyUwNa7JoyIokiiKCioRlVemNh64iLlUrhhQLpSBLUlnk//8mJiDke/EXnxd/7/fdjz4Kf/K1atalbTdVLtehHFM6UoQKS4PBcWjJTSiLR4eeZMoV03r1smfdFtsreO320pPHw2f3h2mqQsjqXUsQ5cgTs1A+t7U0m52U0dyVxCwuo5gce2QaYoBQ01QQR4iKKBdTQgXF0kSdIiGiQDXlLCW8yJyqbGAqkBhiSkpyfx91hsmv3ZUKH0u05S3GH/756L/6LfB/+gdi7CnuhnkSY3cVlCT5j398vNm2r10Wdl8WScqsqrpYFCIjra4kYa4YfPkcr9XV3lQcncD5NA3Dcnegff+7YquL+pMMMLMsY0wZylDqo8hRX+wv4gS3m3KrKjpuDri88yIXLP72zSojYd11VpbrsTeUTPnGbf2iIKfQwEUvGpxe3BbvPyNMtcPSOR7jRQ5AlurllAXJeCKmgbRcIe++U2NJmebh0npFr0Es1aVSXrIWKi/3XgfjBTwelzni2+vWzSVdEdHnp6GfgRUHAFEoCcyyCMuWqtl6UcRNdxUkXuB5R18/xIiKpcgTHzCiYMQBjpLI0GXDMpqNhmZZYeALGJWMqZIcMZ5lRbXZEpN8ESwmo2G93uyfDYuyVLCkykanVQUcGiqGKRU1XUhCwBlHAkSCAOnalbVFLv/kwX6itfzyND6S2cTTjNqVNTJ51c89SeBVWlmEILtyYzXK6Hxe9vq0WtMu366cnUQf/fisU60vLZs7B4MypYZUHZ6Bl4/P7nxDuP6mvNinhztEB7Iu8rwsqahzWIZcLDLKvEASRMusl0WRFuk8SRY5MSpV27SVPGnqoGNBA/EkIfv9lAMRqtIRLe4/Im9dDLqNJAjEUVjFded0bjpzf7Vj/KPfaU1Oi08+mmPDvt+f9TxGc7jWKHQq3n+FbglGtcWaHXVvZ364P8t5pek6g3lxfCJEcbG1EYlVc74A0xKNCXEVtlozD4dkFHgRguMC5eOsW2WyKRNqpiSZHs0BzVwHHO32q/Y1UdbSZHx8drJzEEhq91s3ajhTf+u3rtfOhWf7h+SrnYKWLJTrkm+XvFkxL1ySgxGQYGlLfiLKnW4zLNHh6XBwGDdFdctBpkRsuwEYgGB0ecNUFHPqFV+/HDFE6zWpyGaCICc5fvZ0gRUJFEng+wugqttXru7vvLAg3Wgt9V8enJwcm5aJMoaRWq1x12BZmoM8DReMizjnwovds4vLHSyIgqZUV1aS4+Ny7kEIgyBYcKZIEmWFqVhuoxPnvmMJ4igVDFeY9RFnGZKwgDXMzy3L016Uc6Vjxu7qqhiFiEyHYfmN5ZrhdI9egWoNienr0QtF0ei127XD197Er37+3M8Ubz71m27Ncook7QlctcUYUzYr5aVV6ekvR5mhrpoSzcvSp2IptDWt9CMugKxUZxBTRAyoBAvOSBzlPtUVops5ZzWQLhmkJhV5WE4pP52R3Sk5POMvDnC/5LCovBiWIpfON7RgHH36YPHjn09Wu+BX3pqdb0j+WV5ts0cnZwcn6L27+vlu0yzHOgi9wtIsWVLOFFp3Nfh8Ck6GEUDAlIsYis2KwpLs8V88i+csZ2A+lhSszE/IIAEBkBikFRGUSDib0MlQl2vy/mi2VNPbdc4F/vzV4Omr+MKVNUWlu8f5iyMkikMuiqv1drbgr89GfBoX86fLNdGq5jE3+p4oFKUZq+eaURArD3fkU7bwp9E8JBSpiJRvvrOybHEGvZrb2n1S7J4NLnbKz3enrz1ZKYV3L1VarurPQ4lApcpnaY7tQui/2A/ThLsGFlh3fdVwbe9sZGiYWZo3G6awdNxOWsKKqxy8Phr1plq1Os6y/jw6OezXnKqJZVnRBSzKiqKoSqfbDMMwTVJCaFpKAaUFZaTgy62WvH9YSqIgKSRPEWcYMlUSmgZWi/Jb77Dz5xqas5qP72u0Q9L5YlivNcDltzxOIMqqQgU92Q/3jgfX3zG751fu/3ISB77nK16WjEfJbEGXl2W7be28zBfD8v13tYkiPT0Un5x4NUc9d8mBvTRaZKKBwlLa6y2AYgFBTikEImBlKqlItOQiLcuyyFJC02hIoR/JJCcyZpc3LbNWPHvOLBliXChI31o1JTg7PqPzsYhALiElmIiDWDseLXB7dfJ88P51fHFLS0nhKrCjCXI9W1ougSa9+MI/7csDD1y4LSkC+Ozj0lWVzRqJe2eNmiFVyypSYKA/3o0YlnKoBbBobemGEZQeUCh8eRzPD+nhlAEVugZwdbm5VHs2KP/9Ry8B5CASHJlz2/yrJ57jcO1ns+++2dEuA39EG47jxUUa0+k0yRc88vxaFRVcfnSQRph1XXRhydBAXrecJTuHsMSyIsvJSgd99ZA/2it6OeSoWFsz1tbqhlC6CqeBH5Q8YgVeLAJBFpeXlk5Pj5LpqFOvsLSYjkdF4rddoybDmb/IVSct8zRDimwuFgmBilVzYiJUnISSksJcRnoc+BxCAHm73bhz58ZkPDg5PRvPmcTQYDyRAZRo2XGE3biUNLMsSxEyCRLGICX8e/c23nkrOj2M/uKzXgToW5eMqGd/8Wl85cqsYuT5iBOOxHb57vur+6+iYJxXqsWvfr8GePVkP/jhD4Zffy34Of/N319dvsY+fLgfDtLZALS6ilLTTubV+Uks6dmb72LlBXq5x9eXZZTHZ55fApRR7uWeJQJDEWVZzAhAAEkAUUH34siLvKqjUYi8gr79jvb++82oOOkfIky97auGyPj8i1IR8PltWLWiRs2CRXm2QFQIz62Dy3UaTfw/+zx/Y1P53/2hzQVxPnYePpvs7ATTvShKjXXONtes3ovSrmNXp4JcO50Qs162uvGden2UclmOZbPYnzND1euaxaQoWbBxWPS9HJZStEj7UAhs5ec70yGRsFaHBHIQ1rSi69JjL/RS+P43r2+1aX8vyOM8Eul4lo6S8satJc8v9vcWp8NMEscAsBUbuaa4YqAWBnWzmE6HVJerZrek8VpTv7TuHk3wguSyxDOC+x4p86LIWTJliPOsVPCTk4P3P/jAMnXOyWT/dTmeT0cLKgNBwmWeA8KCNDNV1aq645MD26gOZmN/MlxzpLYlix23YmELSWkwhgKDSNI1bb6YK6psuU4tyRfBpO46o/4EpxRzfmXZ3H0cGJYdhoEMS4xAnLO98fj2cuRqZZTTeV+dy5sFGD972q/frbRXuJrX5vnIW/D7H7H1G/O3PzD9vrx3fGDZqWPY8Ti9cd6x5dRP4pZGZEO7+77BTyVBTpmmOE5ubtmLTpIsgsEpNDC+uqZi0V++LWKzPgvFRy97YcYBARVXTQjx44hyBFVpQIGDi7sbuFuXpzl60p8xir/37bZltn/6H/dv3bQsvbP/8KUKcdVU6yvdwO/pjtPvecPIvXvHudCYkxMwDFRvrvKVLAk1c8X4m//8+vFLTrkOSKZiLZgsarcr66uhX0ynJcoz/PBJqVpyZ8z8meeN6Hffti5ckT7di17sRzAQE0ZSAteWXVWNLQlpNsuw9fHLIBMNp14rM5JGC4LoKNMuInlTiLBevfOG452eHRx7WcRm/oRJuqRZ+yejJCq9iAHMaipekZWWDQvEWRhyUwCCcevera939w/6oawQFQYay/xUyTjhHA992P/6NEipH5eICleXlYbJsaxpSJYyTokI68vtbDKOprGz1krC3I/S3E/nOWw4buzPJVWFEm4sN4iKGE9lKIgyghJSTUvlZhiltMz9uadoVppRP5kTwmURGhV9PpoYkrJa08vRGSaJoNlYUmBZAs5LoPzo53E5jKp14Y2rym/93nQy3usK3L2trK+VolUgoUmOEhbMfv1v1yJU9Ptn9aqrFrU8oYWUVlxThOTeHxihx6K4xwvNcmVvN1LqdXFZA+Upp1GtU8KKWnXss+M4y4kiwnpbZCgK42o0ZLpj5UmKeOIlnNoUYKOI0iDOVy6olTpvrZj+fpLPoNaAu08PNm91DBNChH2fTSeYYe5n8Wc/LeOC9Sdhb5CMM2QCoeso01AZ9SIBgoahjw7j9bXq3RuWQuJ4UdK2OInmnRbTtbKzLKKFkwkKFMgtUN3bLe5/Mk9zuV2Dbo2W5UIx0Nq2tSKXEEujeQHoFHFE3JVf7no73thuVGzTKZMsCQPKUiTLOdafD6IuQm2Bgdjpz5OzBZIlDCHMcrSz6wky/+4blV2Q647smMJ4L1CV2vlG6sVib5oe97PGvXohTX/0k1dLTfm8wV3MNANgYIz8YsTzreV6QxFDP5YIrxuZhhO87NZInC3KNEnDui63KxtMHNW63cBXRpMIa3alUtdUDdIUq0KWlZ1WW3Q1mmXjoa/oesJ4RKGuabiE0WIEOYAAASSIksQokDEq0lgShLLIDdmxBFKRucepalrlxGMQACwcnOa946zE2u0vojsX5XUkMyRUzXR6GmRhXaqQXkL2X4k+nl/7wI5jJ0xlvWacHc/rVV5rJNKxzbLS1gWQURISBCXN4VINFFgTuA1Yhki1zDLNStxaGS0kpylbWkpJRkpmKVAgxcVzUq8Xci5c2rD741DVUHXZ0Cp8ksZ8OskLfnvdvrqtvtyZLb44MF3QOw0NhQEFSA6XS+7lYBxh/1XEudZs5OPjUa80cw2Ljtgu0N5AqDSitqJ9foDchrV1MU1z4YZrVqpyEY6mXmAa19qGSsDjhh41Tc14yU8GBa6gWanG46KArR/+6Oz2Fry6iTSoGA6tdGr/6qfTY4SVbpUWRZnHWRRjAUq2LgmQgOkLP8MV8Ga3/NGffHR/d64j0Gpr03lmuMaiiJdta6MRG0h2OtXxwn/yJOXz8WpFaLVbX/WSnUFovTy6caVT+eKwP4LXq/bSUn4sgtNBKks4BTkCWUUq15q5WpD5JKh0DCzwKJgNKdYnJwu9Yet6WekYioKyxPCxxkje1JTcm5MixZirMq87ChGkTASalrA4AxTGcaFLSpFlVq1eTL04CURNcp0650XJqJbCuls/SHon87mYgOsO+7HvSfU2GQ+EvOQg5yjNRVVA4tNT/nrKZVOyKPn2deNmU89PGROe1trV2q9YZoWKUK7VOeecJlH3XIENwDKkVRYI6rnHJAsKNE/GEdVtQWUCPwHcIWWO2BRLKoWNPO5X9VxyJO91qSlGdT2/+aZ48KgwjWqply+PxLTMLm8UW67uasLOcShiwVFKJNnTPN0bgnlSupJ4vqvO+rlQBFdu6sE8bTn2xnL1n/37kzgRL2yxbkurKXLJ8p3TWNXUb10u0zzYagET6F+MRZv4b3xTLld0CzXineHshFNmqQ4Q2UQV5bTEyw3XMtTX+wHTSm8qCXKxecn/xtXaIg8+PcoO+8Wv3q2u6wYUst/8ZnUyXLw84ITFQKGIFi7CDlJ6C8JKiSaCmkcXm4k3k3QpNl0oS/KD5/6c6u/aABQi4pk/8oenUd1RGnX89X5ujueBT0VN/vyz3dkL2NXptI9+8nL+u+32da0sxMCWOVCExA9ERm9ewzlRw0CkhGEuIISRZmpFES8WJU+R6WqMzlgBNRnHWQQhGU7GpuWO+5Nmo8aRgkTI0kSgqamIimoOewOeF6qiUIYgByoWJc57+/t5mWPEZYzigniBzwqlqmhvXm9+/NFBKkip7uThFDLCAYCsRCKWJEuSDVm0Z3ry4c7g8oqblj2SyWuXlwELQBFz3aQQJf5ABJFZl7goYVGBisRDYbzoO01LAfpkMqo2KaVAABJLpySMIRHLIlosxHhMm8vg4Ek5m+orm7I8oOdWxGKa+gNWTKVszAqYbW9a2x046UNJUR1TZlkYzSNJJt6YVbSaIQXnV7HQETEsDOzXl8U4mGp28U///rJeXXKtqSNmWan96z95rprSmhOd6wDbVqv1vMz2tive1Y0axtn9P08vrScKX5weJQBsCpaPYIdzTZZU36NEoktb9Wh65lQXWlUyNPGD96RHX6EnB9SsNSYIRmV+zixh7ouucCZzWhBeFgKnSw2ZpERI+bat25x4YX79qvyBJZBMRxCKKi0mfPFauLhSqpxudsyMla4qNuorx0eDXS9JikzgAGZckmEcptiGTsfww/TV8bxrWC2NqmquGpyLpgJYvSYeDSMg0DSFuNFdyYqyyCLX1mxLgyTL4oyVgHPBUsWq2aQ0kxgFpEz81BMizRhnPMAQKILIOEi8RZkVkzB1XbcsMljSmmNLkpKLOStLAJg3HTNZV1W5pEBQ5bVl98py/fNhYja7szQSaM6ByBmhOE+5CEiKE9rA3BWVDz/sO7yWhHnx9W6jQVUbSU0Na0hiREacBgwrWhkk47OJ61ar623ZUPdf+b1T0N6SGUewgLwYCVxj1CVgOh+X87HQaZQyp5e/V01L/uyH4PyqYZmFVJlzHWoVc+Kh7dWWrZL9w7N6u64KkiEKmRZbHf14EhVFGoU08iKJsXYNMiykSMlZ4Ujzd9cVKCdcJxhIvdN4OKJ/683GO5s5Q3PHTHFNK8ji995R/RmfjZEjsmg0SmgpQjWcJNPPC7NjQBCSOAxDH4mZKLQNxKNFLGqSUhc0GH7rNt6oyj89UB++Si5ue9Wl8M9+QQjGNT1t1RvBxAMsf+famuoIfjTerLk6ooYYmDBbbokHR6UMJATy3/ygPk5nLQPlSYrEuN1VRVmELCkDAXMzzWWEERqXp2e+um43oLDatqbOlFpeIiRra5ohooor5oXR640FgN+42QHFdDyMcUZAmpeApaoqibLYXGqRLB+fDfqnPUPXqp3GeLKQKYmG3nq7PZ7NU1/WXQkigRGY5zmgwNR1z4+xKE3GQx0LArBkEVPCZUUneZGl0WQ673aX84J2Wo2ceOcb7uc7h8bSubmq86hgXMaQcVYWNNKVuKLyf3TRWF5XfvYpf/ysUEGi+enRgeF0hRXqidUyGPpQl0khYlzmaa5jRTFUQaIM0v5JeOnS5TyfIcBUmoMczOZCTnlrdWk4O1l45RrFmxeU3PFMedvbLvdejlYvE7dhR2Ve6+IoU0hCXh8EnRUrTfD0aNxdVio2ba4ouWr7C9BuwPomnx0XJeiKJBI0ObGUfuKdHIWxoBCbLTnpVlP77/6w0UGeqsShKDAmpIlepinO2PHLvrtlX3yzNh+MeNi5/HZ+juU//sv85x8/0zQuMXj7xhKW4M6zI65Kdl1HrP3THx3ce4uvtvlRIPUfhycL/Wdfhn/vG5euD0dMkt+8dHH3xTQfLRxblViSe6WEBUVOt9YJjQIUIBEKkiIfvJ7QAtY2R2vngKvVpnkuq5qsy4bNaMElHSnTnCNYt/SFF59C8KKfNwziCNRL9P0zfszSbhUbVsEUkHm+KCmTiV+x8PWN2jHmOMqBKCiT0VGr7sqK5se5oRuSYUNh2G41yyytudV44QWFJ6uCYmoHvXGlaNuuladRHuekzD0/cN2q61qM1PzR0PPnSUFOBmNR06uGQSch5KzVrAZR6lQrk0VRU+ImJlERW5VKlEaMUsQZIkIBhVpb+se/dfk2ewW1sz/820tl6WK6J1vS/n6enKWuLqg5EmJKINaXuhwIfFBiWQDzKKWRbFo3r9TSsPjkZ+N773U0yc89MD+L1RWZy1ajIW6vNs1qmHMqRo0iLS6+rzY3S0OURkPzs8+PL17WkcgEBWs2a3fl+YhGOFclsH3e1tfpxl17/1l5sjcHsOG0i+lsXDOyArQexOqHO/OdHhmSrIBpRwC/e9P4wEUgDHwiRJgQHZeDBAMUzsjlm0tyjWK1RiA9Hum7JwcXrtsTLmcicGyVRSkVWKutHexHgwiGYoJ9X5ZrTEknhfDZXB+jRNfok/vFm4L/e3cLZuunx+GL54dpCeMy1456ly5e+vp58fVXw9/7nnSnq2ANzVOaBFF9ye5sLB33pxLyayqCXBQAZjmQJCQZijeFL6I4ozQOBksVePnaxp9/ORrPNCtLQTH/xjtdVSX5NCuBFidBxZRVs6K50mLmxTPqzxDOcnbSP3Z00XFreZFTyuO5n0Tx+tZmFC7m49FypwuAgkRNNFQRinuvR95eIiHaqWsXNpdFzgWIOKcnJ4fb5zbaVftgZ/e4P2aKU3I08+IwztyqoyvSaDQaTSRs2SL3NhvGp5OR21xKxiMIQ8QY4rrIjXSR7D85pQ5u180LLqnWAwqaJdCMcwELAskvQKzREiimmaJ5VpZmXUcJK2bptJ84bYQN8dmjo/lYEYBMyoSkgqtgvVbmwahR5ZaWxCQOE9ko5qVeqktXrQ0RB6Wr5DffWZn0Jo26JWCwegGbFcpzvFCwKBDVAVTy8yB1pPoEEERDQSptl0fV2n96nfzxg7MJ5ZAoBSyxDF4V8h+9nlS3pJsmqNiyqSBpdS0/9cPxdPVyt8hjCc/z+URR7VLCr3ryn34yXSTQsmDCc7Es2ethbX2tudH9/ItDnXNFGNdq2nCyyn3j8/sv6rJel32+khVoVsZKmoaPvzyRVJHqapEkUQRWlrWPnx9/uR83v0CX3rMBiicZsVWydqej1PIHD8XTJ4wtD0BeRiFpt9qwiMtyQUvh89e55gj3LjkbdpkViw07259CoFIZodnh5FvfNLmUckmV5NyW5IBxqgpItEeDTHI5zuPIqTbORgPZo0VKJ6PJxY1G0zBp7iEbY+4OTxeASIaCHSX1U9EPoKQZ/mi43a1n3plAuFDI02lqVk0/5pwjxdaXNZFi69OHrwATARU3WkuqSECZzqehK4CaA+5d6zz56UvAgFqtglHABURhiXjQn5H/9w+CjTa+viG4H9J3r/utZtJqO7aUcpkoFoqmsbRSw5jP9yZSqWaAeyBdHIkFbz4Ye3mY6qp07uLyyXEgltwQbeu8qTp+HifmaqPMkapaBYCQTFUoljETFKmAeywSHL3WuuGkSQZArGspEYlqFo5JsNwseKrkLEoLTP3lOpfKMk0jYMlfzcV/99VsQTUoQo4zyFlOkaKn04K/xJ2bVsajgV807URh/EQV5PnJQZgYqq236jEg4Zt3zEuXln/0y/Bf/elZTmpH4wghMszL+CdzEhaUSAEvzZjbBs71zkeP9zOiDkipM77sqIuIHvZKt2OOJ9L58/LSOvWHLU0pZ8NDU2a6ru95LO4u1/jZNgWljEIB+U+Hdzpa/S1ZKGgWYGRR2y15QfMiX1mv/MHv3/jTH7zqL6Krq9wm6npDzWnYrJjJNF9dotEUmoatVjJBBGWmKAJxXOPLV5OHT4ls5ZgRpih2HMAf/uCjzfWVyfisUUVMAKLngyJzNJm1jb2dkwoCeUZds9lpVDgCMjfSMqaCgLHEmUQpPznpW4puOYYoSCvLS2GObGc4GYcNW1MElkWRbLhcrDWWG0LDbZXSp4feF0fjRmelN+8zSgBgnFLOAAHINO3LlyvRzqjbdl0TK4JYcpwl5Ki3QAvuRFlUATMmXdzSXj/3PrwPt9dMxZE+/LwsKDcVIX14ePGSee9Kt9tqHLx+qQlwpauJakAhFqSK03HzmbH3cC/bfXL53cuCc8WIDl4dRIoJV84LYTTPcwUYkmoqbpfv7E6gJt5oVU0u4DjBlYI6yBRrH8XoXzzsz1JGNaEoqKYAxEXOBEngnJMff7m/uiK+YfBxMhGOPV2uEBoDrH/yS75+Xlg6V6XTs2QxrdRH33ufw3Tzr570js/8NAWqZI5HQjxLXNONacLLMjDo/Hi2PwqKUiq5X7FA75iehqz9u5Vb59zzq0Tl5flloJ2XSqJlkbBdsR/zA39cfPFF7w+/v0KjGaeN3t54sRNXVJ4WhMu6iJL2siAIE8pyRRFkI7729vQnnyivn9M760jiXrNZO+oTSEGjK7TXjJ/9eJbl4vY5fOdO5fGX89YyrrY7x6c9qGuZAHAQBV5QmJorwmmzUe12TRXzcRAko7CWEKcK7LXWtZqZjIa9/oxhrEsU47LpmK12dXOlMegNgEDCWciyYtgblHkF0XQ2m4t6pdvpZtkwS+ck0SjXvLA8808lV2pqQpl4d7eXvn79AAmSUW3NxwPEGecMIUGS8ODY1xTjxnuSLYsitkaTxdkkX2s2KBam4YyehXFHvvZ3LoHs5Cykr/p2Y6uiiPlxIogukKv2i5PBeXelsV1LwqhIxfHxpC1asRBNAVpfWYViGtFQlCRvdzGpJN33r9IF2b4VFSUkuYhIzopSFGwOBLOpS8PMqVt5ikDiMVSGpUCn7sEB+A/F/BVFwFZygUEJUCBwJjNCkqhAWOBAPfDBeSywBCGsO2udP/3Bs4s3at/+fdE0aM4FRVmRBZPnYjidXLsCrnzr23tH2V/+5fOjvalV0xUaQUiKnEiqQBE7PAsPBhko8roq80RoudE3v9e4dFHEbP7ePbt/NMIJZkT+xUc9SzcJz69sOL0pefyCNRtxwyyi8YuN7fZmpTGZRHKV63Z26QJMOd7fozI07Ko5joqPn/bGZxhS7cHDcntdMdz5+jJhtOguuf0jnqVWY021HVHVNN1Sl7ehn3Knulrkc5oDDBGDvAz8mWtLV69txulk9xePtOVuWOEEhoRAM8XVjmNh/HKyOx6edBo1UrKL5zqKLGXenGVhw7FkYPSyPC/KKM0EXownM4sJeRLVK9b51dU8XozmQbgoZpNgMat2nRVZomt1tNUwXp0dNZfWZ/MFLWIMIIIQQMgFOSNipWVEIzacJlGJvMw+PYktEzTaDoaps9mSlZz7FoO5VGNKrdFZl+xGOZguokUgSPrq2mVaLCAR3La20pZFARydyO27F8SKkS2euvVMDxk6lr3jk1poSt0mZ4HBTJwZXOQonKGcc5ALMtzc1BEG3niiIRDUlcQHr34+/eMj8nJdgbpZqFS1cBEkeUCKIhNEhBFljIcF6PmMNBS37jwegI5dS6HxJ380+m/+m/P1JXpwuL/RXeUoGpUAVrf//b/5yrHCpc2VpimfkXiprt/9rtsbpIPQFXz/3Lrzy1/MCybnBbVFaOns9oZwbzvpNOdRoYrNotssWcmPT4JGraK4wsIHBmUmqPUT/G/+ctK2/Q8uIe9sf3mrrVdamKa8jA6Ps6MeCRaqN0izcmx1UJqLq22RK2FlGZZIsbB6ebtE0DJNKfNDFSWwSOyKk9CoAJpTr796MbWtjsizcJ7iwC+rFaPqyAhLiowkrdZZXnFbjYzFGcROuzufhlDkKpZkUTm3VVNsY/flzBuPTMMcjkIGiaYQVYCIA7NW1WxL5ApPFnEYypCrCmIsYQgtZpHM4M3Nxvjw+P4iwoCNx6OmUu4EY9JdrTTa87NDCCgEnHKQY3A84n816S+pLkfp7knxqpd1VfC3rqqGRjfvnHuxe4LYuFhoddW59xZutmRTkxbDsSHT3/+731gs8s4Sx9h3LCDCUoGkKHHnwpq7vEyFRJQqMOtJhozbGFI6P37duNBxV5byKZb1FGjZ/iOKeLC5bvcPBrphGo7YVJTpmZBC3O7IB40sFY2AqiJHKU6TNOM5Sn0iKhBLAkkhzBkoYMIAg0y0p5vL9VmQUejbjvDiRaJotY9/IWz83fHpgfL/+TfDy2/QioXjwbRHBu/c2bq2td628u2VpGXDfqDXJVkUCkuGrbqThtgQTu/cVa0kjj1Z3nAfvSCUCPeur4XTzJ+HRankeZ4AHUAWZFGEbZE1+p56OggvVoydJ/PhBDbkMsvJyz1JctSlZUcT5/N5WK02lts8yNmLY/boawlExR/8Ljoas/2d6aUraG3LEZB6ehLbNh7PYiRWBWxN+oeoHDkt1Vju4iSSMMxVBdVqNik5ANqoDMjR5I12RbrShZoxOhgPB7OqbnDGOU9b3RVv0vB9//XuCImV1lItzIvIy4CoTENfMHUsYt00XadiRvRod4/XaoZTs2ympKGjsrNjvxcyTVMAYUuudr7Lvz4bnF9fD8dnqEwhAICDcZT85OPj//LXV2SrukiO5wX6tC9Xkf9GDUEQmNUyfRnNdstEQPI24BIzxESkZUUy2ytw7/UTRa9oVh0REROig4Tkill1UhwS1segQkRNzlZPByPpcuVSp5VOJkXPF+2RYiyzQgdKrX6rLciM8ALrhWg5hGeAZ1oL6QT6B/E+FWNXZ6VXci6LMEkJSxWSIcMWSsaFEospQaXIOYMICThvmbV/9y9ezmfo4h37zd9c/ef/4wvuCwuvaNTJm9er8aL44JoVb7iF1r/3LUkodf+oV8HEbS+VOSKLI7vOVtuNuV9qINisqlcuXkh6u3uzdPqstXPQ314jjDmL6XGaewBcHI8jP84hUGUxHiS7JJBhJPSsXJNc4gmLsb/UUiquK14BXz8bD1liYqQLHBYLFojzAffHOYHQcnGektOI3H+NJ1F2fmNybq1KCVcVZ7YwI0/++tNTnukIzDFxNcVA9a2V5nozThcigmkUzWeD5brNGA2jPB2HOE5rNdkwUTCd8BxS4AxmpNpZwpZprbRyXvpnfnAUFUEIbWVGceqnjsBaVaWk5cHpOEXyPOBREC23jIYt8Sh1EFSE1FaJVgRVmtxer+jRaZHErbVtxrkACOEMMmwoitPEzwfjT16QR0dpwZIuourYz2fF408OBYI1ImfUPxzEkwNomBAh0GqLu33yyc/JvdtbulQ8fwHnRZbPqZiXdOyfPTl7/SQQ4HI5F0up6nZbFstASaTulmC0SFlBaVBCjZSGahANIA6gu9kiCsoSlk1RHjMxI5AzvFzzSqIQzAnLSiIJEIJSVgQZQp7mackBUa04cyBnuJb6dnLqDYah05S+/7daDx9Ofvz5SJbp6MRkzPyD/639B/8FWK7DC+crt283IVgIUvXRS+EwkJk8r+niYsJJpEiLAfPHBk+26xoqgpLhvEDzk/0PbuLzy9jLFgdnMWHLgQxPEZqB5O5t8dfvNeySapReWREvn7c/fT6Lo/Qb31LP3+3qdnHjOvy199SuSxehvd83UqEotUADxWkqRGr55ho1cW6J9IM32Deuak1TsDSwtQGqSjkflBEXhmGmOVBClsCVMi1xBuDF61c7DZUkaZzESEGWaWtLKPKmuZ8XnDIRQ8BNU5AsZUHjNEYyEM1adWWpM+3PvvzxxzqSK+0G1qx8PN2bDGRWmfvUD4qilCzbGQ374lLTj6PA8/OUFHlsO66K0vWuS6G068eXmvKTg5ebN9+djkf5YoAhK0R4NCr/p3+zB6n0G7/5dr05ujg++9WVyvm8GB9x6FMsAUJRvSlAg0CBNlrKX/+i9+n90Tguf+9vLd28Iv7ih71//b+8+N6vo7tNgLmIeeX1CU+HZxfeHEGt+snPH2y3qzIBvb2XsluVZBfimgbpJy9Pl1x09VKDgxJCGM0XyTw1uOiPCoARFCgwpVk4C2FZiKiIiCSICpKyJGMxCEuuWjKgXM3LCxZuS2X/sBdiduENcPNNuP8C/sW/PPzsaWAxcGXTfPzKf7VXWRuIl99sPZkGO89e/t4/qgoUItzrH+WGDNfPeYyLoBRILn/wbv3pX/THfvn0dTQ48N68qX3w7VUhCv1hyJCJZdm0ZZjrp5E0HU4vroiX15QkTT+44i48cn6dnNssUCFtbqQCE9LZYjouCCqWV2S9kglVMvw0mfagw4zlZSHZyQ5GwLnrlGZcC0m3LTo6IFCstW2WU78YHw+pYq8KgoaxpzphXARpKuPhPPNS5tabCmeHR0eO4+iy5pOsuVzNk2g4mqp2x9UrnE8sVYBFERYxh1bOUUH45oVVmgavnx70grhqNVxVXaTls5OFrjBNxLoE8zTkrMyyjCHRL9hs4SFRtDVVl0CzYoZhWEnJ5YZwOJoNhsOlS2+8/OynWulTDBe5FvfKpQ44d87R2yU+O1t1o4ZsVCz37LknIIAcS6kzyQpuXGhn8/Fs4nEKGxK6t+VkZ0/KWW9jRQ7m2pN5nhTB9vny3I2u42AyPJU6laqgv/pkMZgzQFTkT6fkNIGs27B+9iK+uoL5JHdWBFMtccn0zBxPooUvKYJUivm0TAc+xYpJONeZXBJOcqAxXBZUklVUIBxmdkoaCry8ZDYMLopgOithKkmZkEymF7vq9Sv6+rLw0zPw3jdxNO0NDy+Beo1rJwqmYuIG3vH1LaO9QThkphVxWvZ70bXvbPzaXP7X//lVHCZ3b1o3rncZz0VcjCcLM9OSKMyKQHO1lmLWh4KaBsm0X6nAv/8bbSwJihZ70+yjv85ePCg7Ll2uaZ31ksnlZCy6K8qKBI4OMUmS4Zgbpi4j/O577tVf10/3l2rBSGRTTRbUim7V5cRjR0dsERFO+lhDSllwgYZZEWQFjgvp4GR8aVnBAm81GxBzJMtRlkmI205lEVDTqVq6etA7y+JQgoBkguw2DncPOOBikax322IuPNkZLMaTIo+xzDpLy3nkiSxRVFZESZ7Gqtiud5acZvvw9Gzmx0gyZV0cJ5GAFYAyk83fPFf/y53XbqO7vHWx//wLTDiApSDxzqrcrbPFUd9Kkd6xMyPWIVFGRRAI3SudxJjHftB7theV9JzV+v476ObN7t3zc8mfNyHumlnmx6Jj3nljaWldJnFgMBjtZ+HJpAGknh89eVWcu9jtdGE60yfj0FsooZeTpvHkwYl7Uly7ZAWzNAiVCNjUWI1ngYzK7u21Nzfbn//0Maeg5JSJCHGAk6whCkQogpC4BLsQ8bSgVI2ZNOnns1l+5Ubz7u1scCDNJ3jzTthc1v/+5RUxS826vIh3g2P69oaRvh7pVayjSmt54i6Vsa9ZRrF+Tuz11Nls+sE7TulVXZnduioL+VhUHCBpWMdlkachpIWimeDeJba6YjSrtdJ7xaiw6NNasxKFgcCDN79z4fT01IFpfy8/PMq76/X5fJZporOsv/mN+qvP06cz7+wZgAj8wz+8IsLTnfuHOk+bHV5p6kzhBQ00U2x3Om5lstc/U2Rq1iqGYyGMGIsxEOxef1ETZaAhmqeKLqYFsd1aMDgpg1xTtHrdgkwUNLcsfJikGAgMUlUWn91/7C/VLSwCIuiIDSYjtWItVbVWVeZGzXVw3dGjeX50sC8L0J+PBd24dedanNGDVyeW4UQxH05nFGiygFdU9vaycv/5FxfuvD0b99h4KIsR4PzShS1aqoxL8wwkR6ms0rrM29eWoqezhztHpYu21paamjzp9ylf/OPfWwYAhmdHdcu8dqXRPReHsZAtRnWLgix1rHbYPyjTnEV0kvCMIVM1ZhNgLDvPhqeUi3bBJQHmOZlyblfl4YTFKRx4ZW+xEKyyyHNdKi9VaqtGRZnmCQFKFXMKLEHoVow/fPuC0rH/w59/ps6IBaSGgoaLZLfnA4w0Q989OLv1riLpOXnktpui25GefbgohvP1ju12ze+/WwYvlXkvkMCYiUaJYiS0Mp9jKXOr1GpeOpnHNdv/3e+5z395LGc4wG6fRQAAXgFJREFULUftFTA6MkxrQ2ApTWEeqr3jYbOZt/Xc1jf0ytrg4HBwOoqCcKnjxr5iXUdVDduJ6lqL188ECJlRL//yh9xZlq9e8xVTB7nlxYt/8r+/uFqNB8/S1e6iUV1BLCpxgVWloCxPS0ZTfzYPZ2RYYIeXnA6gQFVJxxCqeeZNJzO7ZqShp8ouExDicDGJMwEhRYjCSVmAUgBJVtShSMs8Y9PasjOfz+KYYIwQLRBMbdsqkWlIoKGIp4OpWV+mlALABcR1VZwGvq5JWTSDZdlUBZillmEcn/bTIFXUismTX7vaOv7Z3mnvePuNd1/89EeALTB3//IvDnc+Hf7WO01TS/MQh0/zE8Ru3hSsiv7ioX/8nKVeoNyqOk0cllHqk09/Nty+ykoGnj46WzovQqoqCtPUUrd5HBXPdhnLlKYRhyqENXU5MI6OJ0M9H3PFG4dNGZR5RrkkGMqhJw2K/NL1C40Gyw6Hy50GFxVengj5XIayg5EncsSgkpd1Xflvf+vGVSkUW8X2H1x69dH+sJ8DKFJOdVMQFG0SgpVKazzJGptys3VJEEfecDx/5K11cCokTtWlaP5kPxA1ZedrM8q9u/cqaY8IMM4ChZQkw35vyE8OvLtvdqwlQzC4rSokExYDT9PW58FouQ1yQfEG1nQ3q1fTWfBYWaq2HKuC+SRAJFaK1Gdi5aOfkxvd8fUr9G7bSBczwmqVlvpXPzmr1dYFbRJNS1GTTMRgFGmmsqzVKtVuGE4KNlFrLktJEmeD40CBcG3F0E0WhkFRIsNgtkFQwcogUQpiksKXoAcIs0RRkzU/LQvERQ2G89FkcFpzTNUw5iQPylROMiMjqigSgOZ+Nl2UCTCgYQqIpTHvj5NRkPeHgT+NoEBNS8vjyMGKSNhkPJ9M0yjPZv4kDLxmrVqp6ncun98+d05C9I1N299/AghYunO3BEhhWeTRT15O/9kPXryIWHdZaehiHImvngxmfa9m62s1SeNSlE+AxYYeLChor0vOMj4Y8K+fh19+5X/+9RCopqTKr79KH//yeZynr/eF3kB/9VR48jBOCm5rUnoyRnmiimhRQoRhIRivT+Hhvj8aslcvZpgrb9y51Zv5P/7ps9NjmgTTipC/c/GCjEmuMFHTkn7CI1qkIe+frinyt37lVn1bCwR4/wkZnHCB47KA3ni2/2Dmn5jB5JilE3mSXruDaquk0ymRtIi5een99osx/tEn4XyoxgPNmxWKKVCVHvatg31t5VzzeCr9m//1tdZGn770zyatQS8rp+zlw+FoXjY3VtfvNLhbfvp1uJjVMl+bnQTpIs2TDNIozjx7BeKo99Z2wrIw9ByOmFwRVdF69+3gv/uvV7qqe6mjfP/9ak0SbTLPtD6SdG8ASpiLILMwRgyptiup2twLrl1U3r+l3FxpNBoC0NhozmRDwEjCJZVThoyKzZO4ICnMxTgsuYCbq9121wm8IAoGs+m4223Fhpx4Xh5FEImGbnpZhjmvmVrGcwEmWrUazmcns4VuWdPpiGQyVFVKYDr1G1al0a4dTg8452WRhv7MBa6qG57nnw1PGcSh71dR+d6F7s++/ujad76XTS56+68QQooM+zPyn3+hLTp8SdGYRI0iKkt5XvhGVzBMU8DMMDXIWbWRd1aMJ4/I8X68sVqr1OD2ZWdpxdx7/jQcm4apXDhfLVLx4ctIrThqlR3PF0sdF0yAGFKACWGsaSuTk6HrqNW1TY70V0+n092jX/ue+saFVhYmk758fJSuV46//82tCFV+cTDjtFQLsPBHsEb88YgNZ1ar8mvvtA9XQV0dIJC99U3DrYl5T5z1T09e9pc6mLIQplit1RBnKFnQ06C61AlQqHC21GRXL4DFpBdFDoZQssrj0/izJ3vGlvBkv7h9oTGL7OODKJ34llMmMR75oyWTvHg+P3dj/dJl+ejRzoOX0WSW1h3h0hXh4IDsHmW33rau17AQxo4UTWblGSQrW+yzT2DdnV+7E9a07NXjXiLRW+9ud5tcCs9AbCxOJo8/PQsy//KWBSBJFxO1qWqOW2ux/CyeTGfeLMMWW16xdj0vXng4ShKSp6eLGJlr7a6TpPl0Gj19/ipLspKBJCVWpSXL+mTYt6sO44WmyVmg7u2cBSkMc6IgEYrM5gVP4jiMEGNty6g3tDDxsSKdjiMMKSz4bLZQbdtR5UWUuKamQJ5leYFzw9DDtABlUfpxR1FvvHmn92c/33vw5YWbb30RpWB4KDOecWV3Sg8nE8cQlwD87TrSDQF1K6SWnXlh1hfXtuX1lSyZjbVWbX6GOk0ZlAxzIFMy7i/yGDkVo9oSDD1b6qSoKA9OIt9XdMWZns3qVXADszgqRBXNOS+ZMsnY4pEna5Gszd0Wi9kuJujKNfWnPf/FAcp1ctPh/+Sdy3fa48PR4vw3zdubqsV9AhrRme/vHJeWbkvsd39dpppegBwXkmKXABZbte3RLusPBivrCKpNwFSeT7PZEYlP7G71jQvao3Rcb3Lbcn/5i6KhilUDV61SFMWvH3upUTscpz/7MGnZehDMfeI8OIxsG+EZ1DlD4OD8zc63vr322ZevI6DmsdSU7OOCHJM8ej4HnL9xr7OYxjDHVUOW4MLVNKDRIhfZmJmKqF9sSp2KtH9CJhQCNjntZSVis4StSFLdSAsSz+csKqaz9PlOsn3FBipqN/RgPl5vCKYqYIiEHPLTRdyPkGubkoHAJMiz9MrVy5IiUoD6ZxNIUtMyZ/MpQEjRNADR+gYE+30k6mfzaHq2WGpWXcOoczrxYkgKkcSOpVHZqJayJBBBRlKW+WeHetWmGqraht5p985Ghyen7ZVlyRJm/Ympa7Ymuyj9ldtr//JHz/onrYu37734cMCjlDIBc0Ax6uUsLQV+3dGul8dzMDqmGkQQyX6YuXU8OWWA+psXOIWyLGcCA8PTNCMwj0rZzSwHQh5dWLebPKmLZDLPx1OWEiylIpGxQGJGqa0IssCxLDtaJBki0owo9ndP5udubqxsuM3X8PXh+PuXf7PjSAJ/8muXUnrFFSUZkjAahblnMbTxuncCUlJrFk5N152lEmjMZAIxrEZl5oHPd55VhbS7pPvjkeZsQrElVgGNBoOTaHlFyFJjNldaa+da26dQnAFGLp9T/EiLHiajIuwy5Zt31P6Aj0PRm81RplNJfjkLVht6u5uR8pVWbRiViqCRnJevDmfjhBpNiTJumo08R3lG4qCMFqTRQTfu5fNSYQQO9skCifXOOcJchEQ/lHkBOluVysqyE/d4EXFMJRFDptBCLMmo3bLOnzdpmVcUOTXxLsuICHCe5hmlRQ4e70xXq+uIzEUE79y6urKyOvcGWBAcpzbtHS7iUFTlSqXie56h6ghHtoZlhhNm/Pzx/hRYNUSbGiSSS7L5EkIF5TmFioRC31+t2ibTe6dHAlVc24mDeRFnkiBossIIWVnvWoYpEQaKJE49qfC/fXXpxw9/WX37u9vX33rx5WeMFiJ1FFICucwF2ofKaVb/4cdPdUW8dVmrr9ahzJG8UDQNQB2I4uDM5mC6toaX1nVFgJ6XCjARxFzkOAySvTEquFaqiLpoMMhowq2SFznTVJVwFFFSxmUvAH6SVhy+0RRXbWVb48e95NWOf/dea2X1KC32WZkZkoGCKWV6kWYi0CY+S3hpXqq8vH8sIHXiC6cvX00TaQLtZnPj6ps31I4ut/nk6KE/L3UTIp5AtQJBK4uz/dP55UpsO5VPPs2ANb5ww6DjWZqXlszvXZBNufJgx1ut5cvN/PlTqd8Tag24uqVELDoaUQ9ORbcWhMqDR9P9XanuFDFNR3PiR8RxBcsUrYo8nZQFwdWWkOTh8ARYrVajjTJvUjpld3vLqCwnowNN5eWKSkhW3ZYUkc4/Q4u4rKQpljSsyKCiXbqHj3eSmg3LaG6LqmJJq8vO0QDgOAiIggA2nu+Mz1W0lXoJs4gTmEQLSQCD3qkq1w1ZH/QnBsBJVMxnYaEBEWsIi3ZZfnDnPHbMX3y2nyBlj+QEKeeroD7zoeUCRc3KwC/JJE5zzrFZ0dxKpem8erFHUgpFTZREU9csSaC2Lms6KNN8OFMFYd2m31y3P/n84/X3fqd+kU2f/CIXfb0oHCZGovhi5lUm5eZ5VcIVQQ/NpUyrdLAoyEaYF2jr2gquSX/8b8c//Mno299wvn3H0SyzKOaiXJK5BHK0fr0SR+Lzl/7xgecxPchhL8ktTRSyXJaljHAGIRQk1RIHC3+tq5i2OegFv3w9aLn2hl1MHh3UV88pqx2anJXj/XxUsDQBcilI+uvn/sFpkWa4Pys/fzrLkszpdHY8eTJ/4X72iuSwRRQ3VfYwvbCaoWyfxDMRYhyT6dSMFlE8S7odNQxPWVjT1Wo8jyREbCu9crV5MkkTLjx8kBowevuCXSJhHgYFK0VReno4F38Mv/+te+evLp6+eDgeEyopbhVqkmqI6MImrNTR+BRxJK6eN6eD2GisIjUDJGQMtO6sGRtLJFqI8zOQI6lpVvUqklg5HvSHM+eCLWla4cWQpMTQYlndHy/On3OiRdabTHrT9MoVfvuWgM+trSY8KxksvWj3cKqzxJVQ7AcS57Ik0aSUTGq7ddFS4jQez2d2xcUATkeTgtK8CJVFvymy68v1pGRM0E+OBvMp7ym2DkoFhwgRTTVHcz9BIubAJLhMIk0zhqPIgLIAUZaRpCCMktCbChAKkri01B0cHd9Z0YfTxfMHX2zd/QbzB8PefilKDMiKWN65Xf/uW9qTU3b/UfGrN9ZvXWwCP4A8jbIYQxwsdryi9Tv/xd2HP3+42pEzEgrMV7AQzsHOkzTwBaOdd1YbzSUkHfFgwhaJbOiiR0sORDLLtrpGOFkwUajVbV2QO91681wNSJN/8M5SHofj/isgtFVjfX5yFhwfmATqgoYUKUwDkYdv3lw+dxlgSfn3/3bXj0qnagzGZJaPImBFY6mMJ0CcdJfNl6czA+O2FmtmwrBYMn16ipItsVpRUhKuX5dJLC08v93sFGkK4UwEccdO5qq1ff29YrAbjc8IrAoSFqMAcb2x1aUg+vAnuxn2Ny/J2GvHSSZWyVAQaBnUW6qIcTQ9ExKmX3YSGmhWJuhjWkDRteW6SyF78tlO+fKsomBfKW+910rp7PXztLeQ3lBclucSTtNoihX5L/7zXhYkP/mbNFwUskgtyyAkFYGMS0JExADARNQTVqqGPT47i/0ZKxOMlJxxxsk0mGm6WXdtRVV1RcnSWPWF+noXCe0kzXAQXlp3KQAAlt++1p2O52eDIWK5UPiVVmM2JUgzszglcex4KiVEVGuqhWeTSVYStVKXVA2hvHc6ZRy41YYAM1CkRZzcPd89e3Jy9vzLzWv3ynAWBEEpUJ3lvcPkX/e8r/cXozkkOeydjDpKeLXrTHq82raffeW/6p1+9zebf+fvvRmPXwpM1pS8iMRXO/MXR8R0xdlZoVhAlNTIZ4AmzSo3VE6w3JunUV4enUW3LtQ8348mnqHLsccl2aqtUmEy/erRaWy3zr39rYOXu/PnT6omzRTUn+DAA42WCIjR21lcfEudjPsOYK1lPWJJHtsih6KocEk3ZQKTcjBN9Zw934+EFmiUBFtCisqb13kWCoVPSCopTMPNecLo3t6RZZi2yiQwe/eayjctAKPXx7Gk8iTwrp7vEAzN2gWtpvB0+NP/cHo8ZhvXVcVeSGKxSHl/zGFJFHGFMQQJVBgdzQdRZvW+WrTaDjQwt7kgjiRTWnKtp3hVr/vXblyAlqEQsH7Jur9z+Od/MbqwTm+9A3J57oi37l53ppP7xcicBAvLkLJeer6VZ4Rgu1LL0gAyyDn147IQWtUuqLdtGTNaCkWQUlHnrAg9H+lUBDAL46IsNEPDiqzaloUx1vuDvb2V7urUp9UKWu62t88500kQpMRfBIqiSZglnGuKsEjCRUKQJnIu2K7NoyhOg1nvhAlyVAgnvTNn7EXz8fikjwwHaPA7l5o/efhkoilX3rz38ItfsqyUqPjzLwcp0hGSWYY/fFh+8Sx475Ji/KopirB3Epi89Xe+3/zscc+qbJqaFBwcymY+mwjjVLKauL0kDw7F8SA0rGK9Zl1Yh1EKFmWwiGVOiW4ok4mwM5i9uyEba63BojzYH+zs0OaKNjk9a9qV5t17oT/w4v3tW0sqNo9OBrujaRbaz08SP8hrhrA953QWX1ipBoRGHkE8tRR5vggKQiSV23YzGA2qjlIq8OkoXgZyV5ERzttNGi5QkrIL51xDKXnOytJcDMe5RqFTOhXmNCCSildPX01HQa2pOzV90OtdfKOxdkHZfbHb3z9tt8TTCbv/Rd6uQkvgYVmA3LCxmk3LQONpqYNS/pt/7U8W6QeX6ekJy8Wgfb6w23bnMtbN6c3vboriVNbJyd7BfDQzmdjvRZEPmvXak+fF8nVTVZeBeCJJYPUSTDPEMlnFyDSUyI/w2dlZGHgciQBBkAVfPWfv3WiRksTxokwZg5JquiQNBsNjnpaQUgh5URaqZkz91FZEiUuqarUqZpkEeclSVohYkC25Dirx8WQxW9QbLcMySJnVKjXI6O6rPX82sAz99rWLw/nMy8p4MUuYFBNRNxxaxK6uyd12gvUoZ02D4eutP3n2lCt3t26+9/rBZyRecAwJEqu28M7NyuVLUjwSP/7R0f/18GS5pWy14q26vAzs7XNrOzuHb165+/T+GXYkL3K++GTUaUhb55uEHUkSXl0SZw3AcWiLXCiFySBtGHAe5rrhCFosqEwyQleMbtxrrtbx5Nnk9YggKW8Vw4pVODdWmbDKZ+q8F4lC0Nxo/um/O1q/aF25q49GAc1Rs6YuTiYIiUEUZIJOSqkANBZgL8+bWg2r4axIigzFY2hWdQOUWUgELAwGORQKykpUGNG8oAWgGCIkCxIVTBL4dNjnaabt78d1B3VtfbmmLHqPi5OFXYiKRu7dVr96nsex2GiBWl2+dHepqYOu248KqRC4VvW+/bv6/ftmBKbc9q6+5Zh1ESsuASk3You+FInBZilLBomfG8p5W8mXuuO1zfSrL/NPvkT/h/8+yzJPV5SlVTQeolm/uH3NoWrYm2LcaFQNWaGc56DgRW0ekcNh4ZoyoFKahqHvVRt13cDVRiNbBLHviyLmiLvNZR3b06FfdS2x5KSAcy+Q692zsUcEtWJaJfEQJY4iQZKzQpwvFgiBVqO2ur7x8vUBRkxXBAFSWRGb1W5vtAjHo9W1LVVwY2/SajeiHA7ORrNhf3116/uq+0dfPN28+db2jTd27v8MZYnK56vdxj/4/V9ta3v5dHy+uvSTr4+/fBhHEdrecB4/O3nrW9dW1arKo7VN+WBGH7w+Xblc/+YdzdQHAmaVCjZ07lYyBpHcEJREK0KmV+FoFk3Gi2tXlWqT6CJpAhORaHpC2h2p1nRWr54XKjoXJEwkFtMi+lICQ+qx+mayuSGcHYZ/EwaOzb51d4lGBSc5RpqmsDBJBQoELKdpiSDXgXQ6jSAuFEGaxvCwn2wv49FA2Ly0dPkbsxcP/clnxnIni/1IwjIF6GRU4pppyCAn1MsLxRYNBDWpRAKbnp2mCVWonhVg6KfX37CXNpLBCLRsORX42aKYhLmt0HpNb36wopDCWl7fvGGevf5POoF1tVRFDnAEikyENBoJi/mBrMnPHmWv9vCFC/F3v7cMQNR01LfvmA9fwqdfPPn0Z3uXNoF9s3Fu27W0TFZDESXn1jWsK2LD6MZxkqI0iSGNihd7861VteO6tapuyCFNkkySsYQpoxAJs8XCqVdH3iJJc0NAi96eDGlR0Nl84WDdC+OTw8mdqxelPEZ5pBtOWeaK6GqSmsRFlpaGLi916nnox/5cACwJM2pVDEM1RarCtFHvvJpP06ioyNhExDeqslm96+QCB3/6+Yebb39349a3Dr/+yKTp7DT8f/w//+wf/O2Nty+td937/+d/rJ7163/6v/azSSKLlZ/+8P7lq9Xt9UAQylcvk6LUOE4ubtfT8UTCkqaJ/iLXba0gMkfk1s3q229pSRqMhohSudk1Rl5atw0WjqIglpzup3v5s9ezf7zOO42cRsLieM68PRmNtrZwtVIHMvuV35Z/+lfp0ZmG9JgBpElpTecsBdASRAgkUZiQtESFLgiQ0UxQVIkJSChTMJpGrabiE/7x1/03vqNf+Wbrxc/4woftWhEVnGDt5Wt/Cstv395MvNPt9Yo/J3tHPqnZx2G6rmsWUCpNY6GFDx7nXC2/9S282bZfPBjv9MEvHoVpzH/jG8rNi8PphDQ1K9Wfm0vXrrz9HvCPiR+mM0/S8PFh0D8DHz4K6q68eV79bKf44n7ycn74f/zfXPBOIUgTIPClVfXTD19wAga94mh/3mpWzg73s0DnchUpHE8nkwAGWZ4yTEURcyjMci0/HJMUdA0ti0osRHbDxKIcYq/R1LqdKoXg9emos9puuErv9Wx2NnNU3K5IiEVUElTTXpwNHFQYAk+zrCTpnEEOmWoZ48iv6oph6f58HMWZwKElisPRSBKAa8oki4s8lXV55+CkkEUMgGNbioIlnlys8TdWlU+/+vjK27+6ee0bh48+Z4V0PJr5gk0Ms1lfT08fXVwa/cYH6MFnhyubb6Ws9fi+Z0IKOCkKR8bycmOhijOIpTJNd/eywVm81OG2ZhYJYgUNshc1xw0hsRtm6BcPvpi9fS+Ti6jTtWlF+/iHw7MB2NsN2m7KQ5otgKYrkNdULVaNEgi1EMTf+nXn1TOlPwhEIeestHUZYKjkFBUlhCXiKsUYikWeFVi2kQDyMsOAEcami2x9WxKN+kc/nay0YXc9T0YlKZXGmh6V9O3VZdKCpSCdPQ9xmapafX298WxncRyy/WPeRtEHvy3hrg2EeO9V0qwXF7eAWecXTPcvfzlxDaOi0krNzon4p39ykpNCtI5+92+ttzunmuwAaPqJ9Gin/OiXs2PGg8dFeyc+f2P1MkjrJiUcpqVj69iyMBHzzfXmygovffryxdQybUqlyRhqFQ0JAg4LkqQByTNVU2lZMka9DOkwO7/sZhmJgogyooxF3a4BSZ3Ohyt1S8ZKt9IwVbkAcWN1jSUKDE87jpQWrDcYOs1VVpZxlmqKYJgqT8uM5xIGhikzIM8XAWKUcD6YziUAHcueTj3LViASo4giL42i0DAN3wuX3IqIGGReQbgooKurtQRETz790e1vfIffvLv3/Eudlz/4470NzfjGrUoZrZJ8urZVDAdwt/eys7GCkdLvBZ2OBEWEQXx+EyOlRI7a6oZf3s/Onauc2wSGvBieiYPBdOucQUsyG6YvnhLFVhmWJb0hoJSj0HEMV8fVi9KVC3U/PXDalVrFhCkt58fZgqqcE2F2cpqqqvz+O9U4EGUYH40LwrBrCRqBpizavBB7cB7RBOZUEAGLCSNYFEqRJhANZ0w+Kjdu0W98p/3ZX++LbqXetmb+NC3g5StGiefC0sX+14XF0fo9+4snc8tStlec6GW4eRWv2IIfZZ2V7bfOe0Hf80eInms3Nvwmjt7/juIP4vNbkEPh3Ipt/Fer//E/fF031Ecfn/DttLuEAUIAdzvd5fULHE7JURjdure5ddX26+G6KQM2bLQ0TEAUJ0GoHh3NBVFM4kyzwOOj4OhEMmQ2Xkw/fx7ioEgJZ0ASp2HAGYMQUFYwhhl3ay261KCgJAwI09kCiaJqOK8OjrGsyNiQhFyxMCA0jdKq6uYgzjgXFKPW6syms5PxuOKqS0tYwgAVQGGCkRHbdQcE5GmycuXKZHCWhv5Jb6aYbQGJGCE/LYpx4EW5a2u4ignLKWSFH7my4QWBP56/f+OmYc2++OSvr7/97bWtzbP9rw/P0D//n1/D/7Kz1k7TuTE47m2sIUL9s5MDUa8QLsxiIqJypZN1V6sezZS6e/5m1mhxVxI0NA2Twm6pnY5Ssdu9l69qLg5GvKrlzw7jP/1X2TtvlnffkT/9MDvey977VVW3CEMm4LooqgylfC6mviTo2iJL2iud2SANvQUW4igIVQkwkcmigBASBMYQDMIccMQpR4JYMp8zwIAIoexlNIrIZA5fzIZ3vtlS6/bXL7LkWbSyjpep2HNIrhfnKkAX/NwpFF14870rX/9yb+fVoq1rty61fv7FbO95/E87fPtCfTcJRBF99WB8+7pbv6b8ynf0RV/NzZGF8ePPj9/4oPz1X9MOX8MspIBbRW4wRAwDdzriduLwIjY3s195f2MQlo/HQRDE36jVBTzFEs1KYRAmXzzJjRqikEZ9LuzmO8+DK9eUpQvLuFnibns5S5M4Cl3TZoQwRtNihjJ999BfbZr1mmZwxUvY8XHfdKrNVpMW2dwPfH+MBTdl0nDYN22HSTDJIYCg2dU0XTXdzZTSNFnwLK3b1Tgm4+kc6WoS+5ACkuX+fH71ymVGy8PDw5ggRcFyxZEUsghzyor5ONhcWhJldRrMbFO1uTDDWAHE5MEHN1bzPH/82c8v3/22IKoHLz57cDb/7/+H2W9+t33n1iXmqkH5rLqsLFD3Lz8+FUXS0aDO4c0LbkWo/fKnu82lYPtaQ6IDNJ9qIodGNdMqqlEpcuBPWd2q2zeon03u3gPpHDNePnmcDc/0jQ23mMdHz2fbV+RksE8LQbGriltlESgoBKpaWas1NizqhX5vASRJrykeKII4LUtebxtXznXy9Axzjgt5ksk+a2BAMGUKZK2aIRRBGqmchh/9YJTPkCQR1bEPXmQXbiUHz1JfrgiL3eUrmWTUJ5OksUUu31wTWbHVlE4Gsw+/9G/ftPzygbV16+iLeP/rSZAmk37yBxfXW8q8u9wizWWhzNSZ/+CzV2/cazZ1EAcV04g9byIpooKmoqJUKrTbJZeuNrxJ9j//ywdP97ybt9z33/8eSw6Lcm5YqjY//Vu/s/r4aPDZF8Xua1YKUyDA+atoxTtDuYCLKGWE0pxKAGMoMA5EQSoF1POjB3ulJlsEERHjimUCUcKKtrJ5Tl/MDVUSED0bTYAqVZZquiqPT2nuh3kRx8HEqjSW1tYefTXuH4ycOpQ1E4riLAmiWcq5LCC0WMw1XdN0FUoKz/1GvcO4kOTUabScjkKjnKU5gqjIS0hRKkgconrNMRVBt8X3bm5l8dNnX/384t3vr11U93Z/cpLAf/+TsF/6v/arF1cqnf7p/KuPd18MYk2Dt37lXIt7q904Hs+dUvRfHy6aFxyn7k9mZVzJBNiPwsvL7f7Bc3/BSi+ttXCR2bDAuhbSgvmhAGW/XnfHe2y/Hmta2rUpyxIgmTHLfOLBEnWubmU8hZKMRckI9SDOsrxM8jQvGKHItGGeeSSOQQ5kiFkhRKVTFJ4Gi/WKYcmsVsGiQmce8GPiNqxWW25cyBQuO6WXidJ//DB4+Qvwe/+1u3XVhjigec8wtoJMSqnw7FmaTvWdB+UXRnz3++Trnv9yL7pxXZea8vBgbCcZTYqyrOmt8uZ7Wy++0H0vaq0jMoNMtRW7raouNrUkBuVBf+4FhpOl4dxUWKsuDXvlx08effvtLZwJIgXDk9xoBEKhqgL5/b+/eTTyPvl4HHjSo2ABBYBHC48xWuR5yRnkHABeEMggpRL++nWoYvX2pqTkU0hBlmVZXmiGkGVpxVEVSVlbMfX5xK3quqrRvO4BpggFTeaj0A+p1OyuTM+Oz45Hph7rulqr2ZqiZkwIgtB03LPRolJDflCEE9/QNAbQaBQZVbZxaYNzYbR3nMzmjlFPGRilRHfqEUAUYUKJwpI7qzYAw+ef/8WNN74tXvzWy6dfeAT+4BfPX52d/f537l678sY/+m/vXr6/d//zLxU52lpSRcP/8tnh/BhcOi9HYehWpVyQ8ySEcntpQ+JkCPLyxp2t/tHi5cF8NAHeVF7dEjvL1YILWlXYP83ffO96a8P88sGXl2touSKpjqiYiIdaPPWKwwGqqaVVFgXlDPXOfFTAghDKIQUISTzLCshEBaJFluVpbqDYbap5DPOc7B77nkXX2rhpqy0pkbNYg8W5rjo6Kfb7YGMVv7FFvtojRw+iJObNqhOPh18+ePLsVfHqOetuiX/3dyCdCRqE6uTsVpsZsY5jImrV9FSgOVFqQM3j3Z+eLF+Prr67FUdBgROiLwRc33kapnl+7mpHwuKDh4evXwWIYFHw37tmvGcoQtnRpGLnfu/eHYWw5PBYqgrO1naj3obX3137oz/7FFBBwBgDjLmA/cgvCYGAl7ykhCCESFYCTDgAAtEevJzLknG5JuVZGGZxamshkAAUdl/uWrqh6DaGPByNYkEQJRXLoiq7mJD5Ijw7nSyfu1Dt3nzw+eOs5FKcF1Ks6Gq9UkUAaKYRJVmcpJpqQL2y9+pYkKWSi5pNvZmXFCQIwyxKZU13Hbs3HE+8oCCAhLGomSTydR7f7NY46z+//8MLN3/n4kV95+lPJMBf7Uz/789+dOlC+7f/zp3vfffyB2+sPv7ZL+NkVqBGL1x4ifjmql6pSIwkqgkKUrPaolTBB4+jcCybG3mJg8Zqbf2mqaB5HHh5SbHQNE07QicBOePJslK5NAn8xfC0BfrL55skpaoil6EvVSqiUJ2Oj3AO4pI3rJqjwOP+nOQc4ywKGSNUkuVzS+icrG8saUvn1l7uez/7yU7BYJqLQV+Tl1kWwjoSDC0fHaHeERUrsqQZrj25dA2nPeWTF9HaZfnKVnt62qNAmmVhsAe+eUVebUc5R/zE++5F+c6GkpE4Fk6jsTJblC6Wz8msK1revu9nD1YubiG5Jdsyy2VrTSWLLM5PXNf9jd9a/creXa+7o2FpWMIb36x+/bT/xUPjeKcfBsmNu42VzVVlqXP5Cp+M7P/pf/r8l/d3kChAIUeAc1bi61vrjHKIoCwrZVEKAk6LOAiiJMkVEUOaPDxIOcGrjkGnh/HCIKUNIfYXZRLHXPJlSC1ZxoosGwBhMSKCIApaw26VXIdB1XLBpXNHOz3MCBKEjHEw81UJShIRitwU5WDqYwXVGvXFYlFmXre+XeahUEDLssIgIkXaQvqV9frLw7mt2K2WXRSsVJQE0VWjVEFF5PnDL/7iwp13tm68/+z+L3XEMww/fnT8ZGdw69Jqw5U3OvDCueWh5zt18ubtO+7SA1WYwyLgkT6fZhO22K6tv36SYJRsX2hsXVgmkJUM8MianBR7+7HuRu6yXLWrP/zxyeW7585fbWqknLwuEM15BERN0pzG871i50dnv/Fby0f7PEvh0rW1mt6Zj3pQErJpIYGipqNLlyxk1pori3IRDY/S109ntXblD7+/MthdkLRQWTIWpIen7P2r6srNikeBvFh0l1Spmzo1BS2Mz0/91abixbP7e2HVReM8DSNBoCCKQSxKL16GHsk0k6pKyUpoCEquO1Am/mE4LbK8KFxDFxNp/myi1mNBBYTB+vpm+5yTnTwli1G3prjfaktlLNfK7QvdoB/8h5/M/+rhTARg9gkbzgJVRFura/ki/YsffvnDTw4wlg0xE6CUUKQ5Gi7jjAOgKZqO5YIhCBHWDF01ZVnNk0jGLI99isa6bRWhnhepKtiIg3a7yQUg6sjVVR2LGSnDPNUsk3OUxakhy6xamw1Oizj2UkwEikRBxjiIEialrMRemmPN4CLWauLgaKSKomm6ruvUXKugxcEwQIKMZXk+mbm2LQmCqgLNxm5Vo0SAAHGQloWPyeKirbMYvfjy49qNWxfv3Du6/yUCzDKNOIn/5qvdjdXqO9/8xiToHz8Z/u3fudowI0wxFMX+BO8d0SJz1prVWR8s2eI84E8ejQkHtIhEJCCz5NDurlSwFriOX5ZuVUHXLtbqHQFlmUQcpyYWQr7/vGdSPZqh02fpyUa/YZm4vl5fLf2FR2DsCnKSci8xUBFjUOztnc1TDJj29W6cISTteHwWr9VwowZ1Ax9/ncu6tnzVUFe0yEvcy5Je45JGG0jUTUupLDigZ0Mm4PjeOb1TyqqYXt8qrlxA9x+Tp3MY5EktQCsdfeanIqcbW/Dc9aYuYJmm87lcqVlIF4KCFZmiAm2+83w+f/XoqZoy8jt/4C51iL52OQ2OdX3ONfr6dIFKpdMsTo5Ab2JZev7GDWdpqfnF09Fff9njQBARFwRUlsRqrGxcuopFTaWUlYCXgHtJjJAgSUhAmOQFyUualVlaIlLqtfW15UYcemlW5HGm6xKShFk4dQyVQUgY51CAohSHiSyrfhSKkswomw4nuWx3Vtuz06M0lh3ThgaPU1gUAoA6E+AimvTHXtWyTBWTMp0Oh07FtB1rMJwDCLGAJ+NZritRGDS61dPTE04VxBRIAMsxhIqqC7Uq2zKUV0/vdzevXr73/rMHn3OaSZIKIOFY/PmXB8Mnu7/y5grl8unp7lpTzHMnKtq4Vvnhn312LVKvnpOdaqC2sFdCLKh1o4KLAojE8/lg6DuKOPez6WTa7iqOGaEiU2mGQDx4PO5NaRwlrrinaOrlG3h3b6wwo2FPdMBFAbsNt6zWP9p9akzSrZYCsxAA6f6DJMqE/UEuiLIj4yVVMFWmqkxzLEOWL1xCS+tzRiYIwophSAUmmTybFTHDcWFVm4a3N2g2Fd0EDVe7sK6d2xbGC/PoLFdEbtcYJ0yU4d3zWAAoSP35CHFTU0xsVvt+KNPUlF1ZVbAsq+uXz5t7z+OFshMI2DKLaATElwQE68urX345+vSF57acDcxFWo/T2GxoWxc7JKLPXkyCsNBFURBxjgS3vbSxstHbe47HUUAIEQTsk4KUtCxLzJgoCIaqK5IYhhGhoEzFg2FWv9i0VVXN82QxW4yHpmw1O93B2ZmG5IxwUZPyIkIIY1nO0zQry+bKCiizeQGiKNre3ugdnGHdlgU1L1NKQBJnRUoAlpc314soZgJTFCPNiZSXsig5uhJOZrWKwyhJ0iRLc5ID22ocHQwRLcs4Dxd5kotTVMxYsLmyfr5q/uLJ02jj2s177zx7+FUeTHWB+5PxD/5qdLW+/vZ3bu/sHTMPNSpQxOJXD2duR/0n//Q9mfQ1MONRNwMa82h/mB3uz4QibekGR6UfpIM5fr4bKob8h//w+mx2gEbxpqVI84U0CoRM49D0y2QYxMdTaTYDg0H/zTvG2ig716pabdE95/72P34rPNkpSOIuOXKgTJ6eISxWTJGW2EBsY8lUlZByQbayd99sB94AxhQC0ZUU4NNokQzH+dGAv+p7erNSdbUiKVy7QkkZBGHVFaXOxsAPFad4ex1brnwcyEc703tdTRYi3BQKI5rEM1utCGVjdzd88dJf+ML3fmN5/XIiNKu21HjrvHFPbQIakYkPJ0d23UTFZDz0TgKFA3p5pdqw7KBk3/nuhiKrf/RHX3328EzlHCKQQ1zpLjUay+PXD9/oqHgxnxNCRVFizJclOctzRktLN9I0Y5QUpAQCCoIkTXYtVdhcsREWVduOQi/Lc6wraUrSnHAkCYRXXF1VdY4Eu1obnB0LslxpVpSCT3tnhiorjvny7EwcSKQksqJAUWRY1B0niMe6LNUbrdHgjEZZzICtE6EomhU7ilJNUwxD9tNM15Rqq8Eo7u33qrbSrKg5x/OcNuYe52WlY0hy+68efT1IV6/evrvz4lk2OZUYJwWrt5Fi5198ffSNO+2YMebjR1+N3Mbx1tLV+QI+O5xiFIqykhZoPkow5iIWAhQKIt64dj6MOdA5goWjZ5N55hiVNJoFiznSpNUaDgh6uW/9p59NUwnUa7AUhGHIhsPy4ChaXSHt8QTJzb2TlAZpswv3z6iIZFPJDY59mrRbWn1Jms7w069S9SF/65a/sQyKLFN1mk6EwUky9cqIiFQRz28zWQrllF6/oFoaePU8EixFNN3hgceisNERbdWanIVRJh9O0J8/ln7jbrtTyanBu3cuBH6+88ve1w8KxahuX2S8nDPfDrIjWWxahs/nr6OFJRmugDIkO/5gdP363X/x48ctnW1sdE8+P71xcyON5L/5wc5//vErv6SyiJCoLK9vQYFnR0/uLuurLsI3zl/JsowyBjgsigJCRBDAAoyDAAFZR4gAoGhVmo2/fnpYlq1u07IxwlhGIlI1o1Zr9vZ7btU2bBXxMgoCQZZ1XbVrtfl0wCNmKTYGaDQc29WqGBASgVq9YuiiF4Y5A3lUaJauiKJu27Lvl4TkYcZibz6ZL61shrQMwhyKWNPVOA2URJZlZJoiz1PLAhIC1QCbkTpMUyDTmlt8Z9v47Ojk1Qu6feXm6b4yPTnBMIKq/+EnD/Sa47b1NA9PTo6zLANFuff82VqnmaYYiwmjdKmjXz3XzAh4edg7Sdjpq7T4dPedd+t3bthCBoOT42qlQgoJqpa9UXKm8qTks6Dd6TRWy6NpRnl2Y1XcqOAnmfj5CdkNwDvA5ml6OPZJKr08jefzuO0q1ZqYFch01Bt3Vjj1dp6U/Uhb63C7AbGESNkYDcr+YbzXk8Y+LnhZqws1DXZdqPL09hXjZETO/KxR11S7Eh+fqkVRW1+NfHY69dpLtFTIj08W3/vtO8wYTWdTodCh0oDa9Nu/hZc3uyIoFsMDtcKKs/KrL+ZLa7gmCYMB17eMxrY+TaRHX7Gnr08hl771gcklcvHmdqOz8cO/+OKHf3VANLXQqayamxvnF6HvgOxX3tgI+ntphrAiiLKGGaUcALVaRQiFcQQhhGnhui4pSk3TIEd+KPrF9Ke/PHnjXHvVIrPFWHFUzpkAkW6IMp7X7DrlEuM4LWieZaZtCxiODw6AgQogno6iOlFWLHuEIkWF3eVmtai8eH1y0jtOJb1iGqqWcMYRIbamcUJLKM39hBZFCaDZXB8eH6OxhzjkVGRMDoiSz2lZFn4RMc4ETGqyqDJFrEBVNh4cTPc+/3D51puC4nhH9z/8Kr3/JPl//d9uLkZoNB8PQr4oUjVwJeDoGlpe7wyG86AExVk2PUPVpSyO8fN9IgOwvtTd2hZlMSGBOBqlSTBPyOzS3XVFYb0H3lc/y488oixNqvVMVbnGkQDRwTRPCoQwj2LwdCd4+27zdlv58U97EZGRTDKZMrc1HQ51Bvde7KVRjkvlG2+p165aTh4hnpzNqz/6bGG4QNWlmsJdQ5il6dBDYZ9fOy+b1bzmKDNXachUyoahAhTXRSTBPNe0fLle/Y3zRlSWm0teNBrReRa+fGisN66+0Y0nR7oboiTtbrVLW5HDs5tvCo3VpTCUdp7vKI9o/6Sw3BnM7PFB70pNn09wJkn15c7OSfjRkz63RAkTp7Oy1F3xTvbaMv/OnUssmcdpZDIR7/aPKGWyLEuSqBA1yzJCmYBxCWkZ+1mcWMympMzLJC94EpMXpwPnmiuoWOAsTxNaAs2q5izcPR4ooqZplqabeRznKFREodlopkmm64plKdNJHwrC0tZ2madhElZrre4S5YL2YOegZmpYQLVms0iTOIllxYEyXQQJTfwkSztrW7qIREBifyYKep5ksohc05AkSU2TYO6n80URhrQsaVmCkty7tmH0g0df/Xz54h399ruDp08tlGBo/PkvD/O8NHXxLJagSHd7w2qzSgGFUG53rcRPMVeqrZo8LtLFaaPNN5Zh0E8/fzLxDnmvyO69Z15dRv3Hu0vblr5sXvg166bd4nLrr3/y9Hiyd25bL4tsHkMNkYoEDc2ltHz2Yvrtb6y9+Wb9+au5ADSWJcP9wXQuQisz2kKZkeV1fudd6fXTuVQNZYxOjwaNSiGJlRSLdkNoVHQxjKb9uSVLaY7qmtytQAxkzAoJod0XEQH0/DVxY8sy1UpFc4cHiwsdxtPXMsCzU/HwOOgE4fZm3ZDl9OSwSJXdHt64vpKNeehpqjk5HRV+BmZkmpWN+SzaXBf+7u81nz1fPPpwctwE7zX0P/3jf0uTwjCa9Y0tFbPJzqOttnFne1mFmZckWJKdVhOPJmPOOBYxJRSLGAIgiDIAQMQixgKnLJmM8jyFCDDK4ogvNJphqVGvFf6CUZbmPC3p+auXvGnPH44kBWZprkgyZDSNElIUeRoDRra3V4q0mHu+JMP19c39/YPRZGzbrheky3XXECEtUyphpIqGXun35gVSdUMr8tDRpEX/qOkaqsRVVUwT7vFiPg8qeocQbtvm8d5BXdPrFTfM86JYjMZTRTe+c2fbkcknz74Uty5dvX2nt/Pi//I//GLcZwBxmpMigQTjrULe6c1a7Ya60n56+JJH9IPbWyUbaJp485bdceK6GQ+OeeFJ125XlNkAwJQWtZNHRf+1f/l9RxILRIOK2b59aY3MRjIGhiFvXaqnvr8YF4Nx3p+X4xn49POje99cCtJwcBAv1W1ZzUSNXb4g2zKJfWFzbTWPwv2duHpLzYvIboCKXPnq8/zDJzMsgVvX3CuXHAKIWqdpDuKccwHKsrTerQVhsbahqaazCD1GKwJkR4dnMiirkppPOEklEeBOtQajcOdZiVp4WRP6B+jL+0HuP6tX7ZfPFpMFUpztT784jjB48+3w4uryFwelrMorb62JF/KP/u3pP/+XYy8Ctfb28vL6dN6Peic3OnbTBRqbpx6J5lG7UXerBr516QrnvCzLsiwppVEUabpFKeWUUUpNxyBlSQ2jJKVp2KHm8Gx8cOR1rq9KgpSnoSBBRkvZqFicsDTHokwZFwWMMGBlMZ5M2q0qI8XMn6mi6jiOF4ckdxr1+oNHT0SsyrKuoaJqOCIoEeAUCZqpY1manA6XL51f3Wpl0fxs5gGaOaYjiSgOAtPUkISiIKQQ5VF06crlaDRJkzSOY02WOo1qyrKNponLro75hy+evJ5NOts3J1OnFPskmmZMAhI+XCRnsbsiN/qF9Cd//er5A/+3P6jMmT/4glKcVpry2rLlgLGhuKtbplPLumdIsoqSZmFQzA6ipuYeDVMive5snw0mSauuCaI5m/e3tuPNlu5XkQA9hkCQCs9eZ1pzVGmYEuKyUEAhr4hg/Vx1cDCFArRsNQwjq6p+9CWVMLywLZNIv3DPeBoo+8fp02O4iKY1jcmSvVxRuAg0o/7okx0VlfWuee6SlNHi8EEYZzzJpIdfzper0jz0FkdqpwW65/y4YJMAvRhLH//Z6B9+XzNkVnGRjhS9mr71PWfvOPrl8xfmpoi5PT5KNlfg4SD78KN+qSKusMAvuM5Xrr4nYvN479GqsbhwqRXOJzBh0EBZnKoyblTM1W4D50mq67ooC1g3yrJs1euSrCVJihBihJCSCDpiAIaxZ+iSIlbCWdkbTp/os+vbTU3WSF5wIU+TtMgz27aynAABT/yg1qiqbqWLeb1RYUXKOJ+OPMTFyPMgg1bFvbR97vXOjmlpxlpDEgVNEwingqo0mlVNNFQRz+fDtlmXNUWnVhonpq5WaxXK5fBo4lQqi8HIC8JcldqtJaxqJ4f7jWYDUUghglnOikTiRQ0Xby7pe4v57sOPl7euVS7Zx3sviBcSQP5/LbxJrGfpYd33zd+dh//4pnpV71V3V0/sVndTpGmZtGU5SBxbHmBASOxkl0RAFll443WQZYAAAeIECGJ45QSKEwg2hFgkJYuTRDYlkT1UV3XX/Ob3n+987zdnQW8Pzv7gh4NzOgf+6OPrh8/LqhdnG4d0/OlzdnQwPPmk9DNuEXvxSfkffRNC2fXGpJNDblrfNRr3d6fGi6OLJ12HoqO30tDvPvpwYtF4sSJSLn2oCXZBot9/b/oRSz57vHrE/WrT3D+aZAd9XVbc56dvv+Z5bLsraKSW5ZOmNsu2f3RDiw278/a9Fy8XyivnD/a+WFeXPZigUEDwk0/lO8f4t14bp9P8w2/eZXClQIdYAoSfz3qBqtFBKDSGXnLbFqtzsGvtyR2KEfBj/4P704dP5eMF+Ssf6HunWIJ4Mg8XFV4qeKPKDrvxlB87YXQbJkndV0ULYejfOz2dH+9fL5dd+fybr03fPZx5jLw0A4OubVwUZdxnySgahCCbsrheLhBCDjgpJQTQ80PrHMEYASikIJhoA5Vp9G2LIQmob7X3s0+fY2ru76c+QM7qerdxpgHQ9FIGUTaZ74dJpGUXJrEyyhrD/GD/KHvx5BU0qNyUZV2PxqO33nh9tbzN89F4lGutqrbFyBWrhRAujSh3QVkXaRIRz8NS7XY7B2yaZABubpbLEFMIkJRqV9W+78+PjsqirOseedw69+TJVxQTo3UA4N94c/70ZvuXD3+K9o8PHrwrrl9dbW6NJL1GT66kgtSjgyMDjscnX387PXJPzi+nods9LFYbeDSNpa14tvMR39zW/cUQVjqI+2dhewviWT5xKUQcM+w4X3/jw5MACWsHAC1wMvPlvT15teg4gtvL65OTpN1KqIJ05M5eXjE+pmxXtdXtRbreeIfvsmBHl7pwCf/RDyOcr2AAtIXxQXx6nPFls1no60WHwmfx1CAlLYgADBZL9ec/7/eOqq+9Kd7/FpnkdCB783eZBwYMOuCc7LdvzOjf+a12/v43R8gvr38W3beA9ety4pKDg/sf/uRfPd6Vr6IAhaPOUFONdb4fH935oBnYF4//8t0pef9r8zxiURJqN3ih35ci8BLme4hJ6YDoHTnY26+qKgrDwAusNVrpMA66ocOYaG2ElEobjzitfW2nUkkjBbK4x9NPn2ycMAcpdKLeqS7LAkBxWVZVsbyzN4dWQCXrfuBQWCm1RPEkmp3smcH4XBohF6vWS6do3N9um15jz/OWmzYbcwdt1Usf2ZDDy6sKedPQI5LIq5tVVwycF0DXBwdjQuH4IFpv2ptnT5ADJ3fu2DRtCVdS7832rNEY23yWvzxfxNoE+wnm+LNXZ6vFevzgo6Px7Ob8MSwrn0AKrIMGcvqLr27/x/9V/vZvvfH3/uYHOWmL16Grd7OD9g4/erUG1XozZWOeAsD6naXtpd6tirMXTrSM0eHOgYhA7yS8KIfRxEZR6PssmrAx4sEXZnVbTzK2XqlsGrZlePbFJXDA4yzI09tt9+xm+OIS7nP/3mv7P/rpV2UhUBbe1qofKILk5ab1M++tN08O3lNicb19uTj6iN28ok/+YhslumYm23dS4t2iun8v9oMM5BmI8GJdNno029Nkt8QMv/OdO2ken3/+VCgxioJVS/jIgQE9fTLsXLPBuKyhkzrZo6+/9xvA2vMnz7z25hsns6NJKvuKxKxbr9qmygg8uBNJwrLZPPPJJA0xQfB3/4t/IgeR53kSRUopZ12chkpJzw+NdXXTDEKkoYcRshC3bedRlCVhWezqchXA7r3708McMddCN/CAW0fbVviMEqC0GNqmSUMIjE2yuZcl2EO7q1ufyYT7Z6828Wgyvzv99PMzpUySRErL0TinlC52tQeM7obltru4WY1inyAnu5Y5i4AzFL/xwa+NpuOublercnm7Fb0cul5AkB/eQZA6B4MgkKq3GH/x+Jndlr1WCw0KQTdb8eVyHe3dm0xPt9e3q9vnBra+gw4QRJhSAgF95zD+r/7R5D/+xuuJXRD74pOfjn78SfW3/+50FLAsjBEarpabh0+qPMgYMr2oRqNYCtW3cpBD1YgoSv/ab56G2a5tC4iyl6/IqyflfBJuNw0L7MHB+6W+QZCs170XTH/+ixePnyxrhIoe3L0zHtZN6Kls3/3lI7ZrjcMySylSlij49gk9Tv1pYN9+VzFkkaLblbxY48lxOkoFFXjoumtpvv8ZyiZ3Hz3eId38t//N6ddea7hZJ+NfL4Y7P/jpHz7Yz/azreWH2nvn93/w/H/65x8LZCAM4snx7CCFTm6vVzFQRxOa+3g+mVgtunI3SkOgpRfE82nmMWgZn8zmolhN48BoTZIsQwgGfsAZh33vAKjadjweV3XTdp2xViqFOoAxsQBpbeu6LstKDC3GBNB0rYP37xyx5oXqDaC8rPvRaFQ3zWJTYueYtoN0GCHtHMJ4EINy7vZsMUuzoeuUvIoCnGej1XY7CDkepbLtO1EWmzL2aFO3iKezwyPZF4SgaZ4zZ7XoachGISPQck6tFnt7k92u2TV1WZdxFo8nB0Xdn52fR0lsIOLM70jd1y1xyNf6zcPk9JD87Nni2Xo4Onrjbhq+un40tB12kBrDCBeWPF/Yf/eD7vwXn/yDb5G3H/DRtP+1X+8SOzSX9cJenr51nKfp3Vxd3pbLsj0+SrXFw9DXlUizrKn6x5+2Sbo4OmnU0B+/tn/yoJqPs3bXcyJWu16bxezoXlt1Y1p/77vPlmt6/53ZwT7kSeSM0jugWvzkZTn1h7fe8qHPLy4tdlESEhDWLzb28887ZeFHH4BkFFkP87mLAuPjnvr7r0T2ky9u/58fNto+BphDLR7/D5/+479/9Hc+pMdmfauO/49/2/3Dvz7/7W+QP/7hxZ9/tfn0ZgBZvpeheXxSaXxz/izC8oPjo9NJ2G9f+VEySeKqVAIYgmGa5paGnbTA6VEcIt3nAZb9rukECYKAMRZHEQQw8P1hGKIkwgjFcQIRdg4Y5yhCSZJJrY2xbV1yDIGLeODVbXe5Lm6r9jSNwphUjVmvr/0gPbp7IqwzSp6Mx35g+67Z7Vq7KyADKJ3iDl6XJWf+ttjWj19YwqM0Levi6uJVwPhQt9o4nKXL5RomJhpPTu7f295cG+Aw477vtUOzWa7Sqe26AWiptSMEzvb3ozTeLZdK2CAZGaU3m62xDmqrgU3i8PXZfFU0m6IZBel33ks+u1i+Ov8zHh28dvLRor5dX51rNXhOM4KN1X/28fDW38fxflkpQHL/yY/olbd676+OYJyBwztnj69/9ni52kCD6enbxzjQYldCKJ2VxIf79/iuaO/qQwrL4rIMxvHi6ULWtR+64xFr60tRTadxMPDdt7+59/hZX5qz1+N9FpNltZ6+wZvOBvPR21Yl0/zxi74tPEL9ybw9nE2pyc8fP9o/FqfH7Bd/0bPx8fyeUGWt6vm6r+fvv5bvMvUnD6HfAthBytcl+9//5Wr9lPytv1n++Msf/vyr4tnjTzL+1p8/r/74L8vo7un+aWy688vzM26be6m7tz+dZ7yriqJuGA+sbJFTe7Mxo5hQvG1rDAwLcOx7WglCHYi8+d6MFLsdQWhxfQOs5YwjBC1wSioHgDIWYSylckZtvE0vlXOOE8Qx7PqSB1wqY0Xz459/GX3nndzzCRdJNnYQUUbv3T99+PnnrbFaSkpZHGMtB865l408b9oVO5/2d9GdoVVGttuyODyajcfp+bPzLM2TKNgsbz1GLYKqbzkMkzw2yj19eZEGobN6kBoTWuw2HvGsM5DxXSMY90bjUd0MTXsDMaUE50m4W63HkzQP/ZT4Tsq2hXXd+yn88Ijd8cIvXt5cfFGkJ0dvvv3O7eV5u11zqyh0ygeTw7tedv+nf74u5ZUXRrM8m2apgANs3PblbhbENxdVdhDzIHx++eL8rA48P4SmMwJzXyqHorhbr599vitqlWI3S6NkOkgVXb0qy7NffuOje5zVdw8oYq7oj7fdzeYZu7wZ5nMwO/RHRxPl0j/87pM/+fGyV4FDIknte2/OfuPb49e/ftKVj1cr/eV59Qf/8uFrb5EPPlJv3R8fvnPvq3X0/T/9mPEGIWgVhdaDxFhkfvKlFSH/7k8e8QBANPu9H+F8fm923G6aYnm+GIf1gzszX8gksPspIci8LAocxH7kjWfpSXJklJRDTymOczcKvXp105algi6ZpUEakTglR3v7nueJYfA9n2ICIcSUYIyGQRrrpFJN24UBN8Yo6xDGBDrdtw5OIKbE4bYumm79xz+//vW3pwehY360WK4QJdTncZI+Ozub74XUWdNqYgxySoLl9Xl5tDdTqkkSb5xOsAmDECkEx+MDhnixKCgCR/uzF5eLom2ZMwFBKI0g9q8ul82gA8bbRl2+uuAEAKykdJUEzWD3Dg9JHNfNFca4HwbE0Gg+mQSHzxbnF+dnAwvzLLcBe3lbiK5OCeOYqDGecfzy+tUCepM7J0l+sLk5G/oSIPFH379NDf83/9/63hveN0/NotzSV2I2I+V2KYYiHrlff59BNFy9fHRdyB3If/nSJiO2uR2KJeW0YNnthKDlLutsA7lMMEoPTdN4WY8WZ/XZxdnxfm5oQXjw7FPv46f+5bLOc/abdwLgRUly5/e+9/L3f3Dbq8ARBYGqtmz9491t+/lf+yt7R8Po0fP15LWDD50eZeM3PzrlvP/Xf3D9f/27h2c7QTFzRkOAANQAD5CDpQLff3iWzU7T0APB9Km40R8vGJUebgObH3h4wqumF2mUMWiGerc/Sf1RmOchi7h2quubLIkZIWzoGZCRRzyfkzj1Ut860O468vL62hoDHaCUUkKssVEUAeCEkISQfhiEEJhA7nsIYaM1wRg6CwEIPM9ACBnBLrnZdt//6fMPXs/uZJHuFqvzSy+Mpwfz8SxV28IWFTLWEK15oHrXqa5oypz7TQVuFteMIKi1qErrmyhM3AF6/MWTANE4yKCu1tcXmzwkSdyhIdubDLdbphWOuXPSqr4b8K6Ui0r4+Ww8yjwflk3T1EMUJkD1xfJsvH8Q+fG12Eqjmd1ZoEcMRslcCrU1bUDcLA8PRsmy6B+//ByEyfzobj2ofrX+7GJd/cGj//RvfbQ34/Ww1Z45ky2ECePzT68e7zb6vQPy1j2zseblznt8Tn/8yRXxCNTw6J5Ns+jffryJLZQ7+a2v4708i1hPMHO4PL3Pc5pFUS20/LPH6t/87PzhF5MWtg/ukf/yd147PSDcy796cfPHP/pSAEQ8rZ0GDgOCBuL+4ov1i/N+wjxm6+/8ZvzBB4ceTj/+tPnDH3z26NlGYeZ7FCktLTDEAoyonwdx6idTP0C6bcvtyq5vktA+OAjzfFaUuz6ys/ksjDiSlwhh5Ug0CsIwiuIon4/CIGircnDtUHcKQWQHMg0PTt4IojGyeHX9EiMne0XeffCWkrJtWmdMFEV910WjvG4bgDsIwF6eDcMgh8Hn/6HfMFprpRCGEDshBMKoG4TWdtepZ5fV4STzE7/eLhwAfRP6mU+Yt+gX4yyCCGdZKjVkwUw0fcBZwMnt5qoA0dE4a4v+y0dP872D0dF0ujdfnF+1223K+enhQbPbkaFneeoBa4HaG+cDVL3GBwevGYuTSoiXV8oaZGS7qxOPEgeMVr7nbbb1drtmyE/jJMtHauiskWVdlVXBPD9MwzGEQulRSGfHMx+jp5fb7fPGj0eTowMxRK/Wl//6B18QLZw2nIWzefhr78G3X9NvffDey+ePXnvbvfWAf3mmTllks2B2P7+4aZ+9WPE48KKoGer5YfbeRxlsv+pNN49c23Z2SK3V4xMxVFYjGh282bIvKq/Azv7d337v3XcYNvoXn2/+xf/5uOkQZ9Bogx0yxlmoIdII2KquGjtwx//f37/97p8sHLGDsM6gOMTEit7CmniEe6Efp1nGODVKtdvrzXWdRWQeQy90d2bj1HddX+Qxv3MYxWlW7IoQg9T38nyknXVOAadd37V9W+w2CABjHPO80XQS5R6PAgus7gczdJjB2Gfkq0ePGWUIQoJQW1a+7zdNvdlujdZRFAEAjDEIIgQxAMBqSzEN/dBBBxAgpEcIWgeGodeMrapqwN79r72NxKGRdret1zd1EMcnH7wvuwbL3ikXeSaM+FW5kZ0QtcqT8NVt/6orqBJVuZNadsPm+PU3RpG3Ob+MCcUQ9IOOCACi8wmezBOfuITTZ9dqWQricNv2oyQ6u765efnM48A6QizEEIxHo6bddl07yAaIrl3rURo7TGUUNnVTlDttEURsPM7TKEDURw5hY3tpi6p4cbFEUR7tn5aDbpu161ttzFfrzacvVq8dXL1xJ56kAZ14r0rwhz+6zWbhII1HvPuneTWIzz45xygCdvgqu/no/aP37ubdaus4DO+O25LmqQ/Tqlj5IMk/+7I8O1eOGTPAX3z64j/5zocvLxb/4v/+6uF1hIgCQDoArLMOQOcsEh7FwGHhgFEISUyLVmACAfItYspijxEeJ3GcYAdV19XbpRaNj+zJKJrcm2dJYESDnQo4aWUrtRiN09hnzeYGSzkK2F4Wx0mw3m3iLHVAuXbHKOF2CMMwzbPpbMqDQEOlle7rXbHYINVYBRn3CeS0kcLjnAZc9gNGYLdaAQCUUtvtdrlcGmMMhJRRKSSC0BoDIaIIMkaN0RACY42z1liohPz3H3+W/e0P74wPPADHU7taLS7XK+B5eZKJjW7b1hlLAtY10hiYRGEYxncPZMRds7zd/+hta5y0nVNdloUJPX7x5RMrZJ5lxGkotOxdh6Ag0FfI9+Ozy4WH8DjPCXIBg7dX5++9+3oQpHXT1V07HacE37293SDiJX7btoMRLYAIITwej/qu35U1Ai6J/b2DSS9MObR5xsJBTCJ+1/jPb3dXFyVO98eHd63RVXndtWWp6S+f9g+/2Hzjg0PNvO9998vbKx5mF4NremkBIoOWDkEFBoThpnHf+9Pz2yL5xhsPyiv9UhSzGH3rmG5unTReU21W674rMPMCCcTLl/rf/0B9749ePLnU0jNEKegAhBAABwAAEELHjFYWGkAAxM5yylhEceAHCfUTBaAGQIpyuHlBrPWgO4p4PPJk18xH/jjxnJUYgTCMgLNIEIY9AqjpdR6kJIRpAAOfiLYMKJwkoZAyIcaofp5HfhT5Ib++eOnFWZiG1qjdul5e3xzOk3bomB/Bf/ZP/6mS0vM8grE15lchZa31fd/zPIyxEKLWCiKste67DjgHIaQOMEIgBAA4z+d1XVdVDYDjpJ/E9ttff+N4EvnIYKd++fnDdJQfH+yHDF8+f+Jky+NYDCpjvucRHDJgJIaiWtwMpQy80FjRAOwcnOSjYrV59tVTRmiIzSRJlCMXVUkCLyXcYW/TSwYcchYAO9/bQxQyCpFDYlDL1Sobj5jnXZ/f8CiyiJZ1iyF5/vJVaZDvceSA1GZXtkk+ZiEtO1ENBmOmhg4oMeas6vRFJc9KeVVKy/wsmSKEOynaRqiu8EgNIa5qSlBgrDGggUg7S60GFioHAXCQoAgiDmgx8v3Uy7RevHs/+u//2Tt6+RxYsFHon/+r+ke/bADBSmMCNEfQAaoJbEGHFIQAOQe1dVpbABFGmnDIfeZ7mU/yyPMU5521qKtguyGqiZgJIk8ZfTCdpr6HTd9V6zzPgnzqU7ZbrRmlkCApRUwwpSRNEgzhMAxxFE5S4owqinIymQDnpJB5CIKATaazJMufPnt+fn45vXPn+OSoa5rzV0vsyGQaEoY8PyJIaqytrFrhbBSEyBqHYC8GrTWEkDFWluW6KCGCPvcQwnVVaaUYY5TRMAit1d3QKyWNVQ44K73Hz1aLq5/91Q+OT4/izEORF/SbegNIH3ka0zCKHedpnBBnlRPIR01pfI+E+4eL6uJyUSRJMLSlVqbvhvFofHh6ullvq3IJlEEsUdivFBadQ6DuTDee7zFCBtHvynUvB2Nt7AVJGPmcF+tdEAROCENxNAkQT+u6Tycjue27snZWK6mdAbptZ+MDLV1nBmCB6cUkDiEHMYPHSJzsTdcdeHVbX22ua2NREsXjMZrNtahk1weoNHbnBLXCB7Z3UDmEEWDWAgCcBQNyDhvSdE3dawCs/qL+s5+Jv/7hbLlc/PAH+tEXBDJPA4SAEEBZn1kDbK+wshoAgB2lNPB8zwuCIEQ8BAQ6Z03vZD9s23NMBg+7CINxRvMgTEIund1UTURMHjEjNEfp3nwMiNN9HSDttA54RNMwpTYdZZhxpQ1o9OlbpyGz69sFF0IppfqBQMQ8P4gCpdVqsbBK3T06yucTK3sMHIZoOtuf7WVhlght4X/3u7/LKQu5H4YBAMBYK4FzzmmtEUQQAKMNIgQhrLVWUkkpfN8PAo8SrLWJorDruqapIQad6LWw2Dpie6fKWYa+dpJmHhyKXRwEJMTCtnmeiWFAg8oowxSCiF1elQSqNPS7WhZVw3yEdQ8gMgBn6ahv6r6prDa317dtI6aHR2EajdNYS3W1WBlnjw+mHkJVM1iA690GGeEzGiaZI/66aHa7Wg/9fG9ycPfwdrtSzp2dLa8ubzweWYfqbjDWHu/P79y7//ziumyGqqogAIABazSD2BosAKuElUoti/Jy21SKaugz5nPPox4GDAhNxIDkMGhVOtlYA622wBkHNHSQQoipRQhhjInDeyP0X//nX5OO/c//248bHQmkrYPaGIcRYhRj5lPfwwwGPuWMQGCVslIoOThlnNEQCJ/AaRZkCQ4YZNDVm01A8HicQ8yE6MPQi6OUUb5drXyGo8jrVUsIdYOMiEc91llFOc4RA1olh5N4kmHrbGfX60XXFB6nHLM4SrMcxUkkBrNYrBnDeZYQQgetzi4uKeRJnNIksBhz5hMDQdt3CEBllJCq6VoeBELIpqkxRFEQYowxpoQQIYRzbhiGYRB1BSBwzjnP9+WvdCUgBgQgpY1HcCfwsOz2Z54fsHgUMotlJyCBaZqbxNSLlTPACNN0RXG7KVdneUgpCQ7vPyCJD50kmGEeYohNlj367NPj46PTNx6UZd02bRwHQUitC1EYnp1dWG2D2H/x6sZPphb7XS9a0ffY7529XRXMGTP0u8XtJPH2E448Ok3i471pPzhAfGVsWZWi69br5TRPlFImDDAhzMda6vVqV1UN8cJuEEgPIwx4HpTCVl3te7YZqnJnFMCOcu77CfNJPAN0CiG0xmhlnLHWGG2UtQ4hACGwwN1I+7/83pfZZKazOYU0JCEmhBAAIIQQW2u10kop1e6GUmBrCDA+QYnvjXOSBEHXGqNEFptJnirrhJBpksxHCYGorOqQ0YhTaLVRzmOQIeNhOJkdU04jypbPX2rVM46Luk7CNGAsjQKOXLfeLK/XCONJms335ruyIJxE47xu2rZVxE8QwdtWY13vik0U+Hdmc4ZxqXphIdCKYIgtsEEQckrjCEZRAglSUqVhRDHxg6DvOoQwACj0A8ZY13WEEMaIFIPn+RhjAJyU0lgjVA8BVEo5q7H1lbRPr6psNDu+u096hbUTQ+d6hSNuOC7Lpllt+n6ImeeHKISd0SYL2VopgklVNklCAUBREE337+4WV+HB3v44/XK7LEtJ2cgRQCieRqkt6qJpm6qslMuyPBzPEIK1kEUn/CwbMejDsawK0VY+DWNOEAE0D4tarnYlhHh/nBXcr5umF4JiYLVomtqT5OTeCYYkjqSFmDYNtswYw3sJbHt4kOZ5Wta9gbRsu6YXUgnZbuoKlg4jhCEiEBFCGSaUeB7GCCGAEHLOQuAGYy7XDpIMW6eFFl0HbYugQ84i5xilAWOUNONxxAkhyDk5IGgTT8h+l0ZREM09P0CY7IrCQzYdZwGnSkgELLBadm0QI05QMgrTyKMYNUPnDPTyURKQg6Mj4DMxaGhM2zdNuenXyhZVzHScTDFPLs5u/IQdn+4RRgEigQ8eP/7K80IL4NFsdPf02Dlr267b7bqhjqcT3ydkvdlQiK22vudRxoSSAGGrDcFYSeN5gbNAKMk5hxAJITjnhFBnNcJEaS2VCoLAWIcxjRkFwLV9ayxm0HWW3KyHn/zimlH2YH/kuhJjvb5ehQc5ojjIU113BFKoxenJcYSkUEjLARHKGbfarpYLgohJJICoKqtPrs+PT+53XRVESd00jeireoCtc7stJy70eCkaotlmu/rWb3x7MG4w6Hq52m12jVazdNyJzhZiEM442Q/GAhpxAimVZhCijwLed611cpqHgwowtdDp8SgDrqSc56m/KSpprMFi3w+Qc7otYo4NMj4FdJ46gLQx2uKqlnXbOWiEUn1fdJ0ymFBKnHPOOfSr8wrIiDWhRzgGEErqIeIFBDriHLSGUhuE1KGUEcwJIQhS5Pse7+qtACqKgiTPeZBcXi9E16QBAQZ2dQsdSHzm+zzPUj8MIbBp4gcMEACFwYv1YnVzDkUvhoYRHw7qarOABEIppzyYjUYo1G1v6qKoijLK511focaJtqt2u5HnRuOobuVgQYs9At26WHFI4slcKe3KDv7O7/xnyDqfcYoxItRBoLWWQvqBzwhllBqljTWYEACA1hoAhzGBEGCMAYTWWimENibwPUrwIDplFIBQa9s1lkJuzJWPt9/58I2378S+bZavboNpNB7HuJfEIm1BW22H8ir1CKNJqYA3TnkYhYFfbrZPnzxJ4gxgOol9LXse8F1ZRkkahkmURctV8eLJRYogd7o3Vho5SfxmkNlkirzQADQYIBzZLpfE2u1iQQDIstiZzjikFAjiJB9lAMNXN0Xf1rHPhkEYTLPJPuR4t6u73jbtgIBDwAjMW2F3RRV6fsBoV2yLvuyUQAAGfmgA0MA5qYBQVdMBCBHECBNtXScNoSRJIkoJwtAYW3U9sir1mVE9gsBY1yjCMOTIWimVgxbgaDrzwwA5oKRIowhjpNWACQ6DSGnXD7LtZOaZxAP9oLjneYwRAAKfex4XSgkxjPM4DTgCbhCyk4MRkjvoJSGNgxARHHkQAFPUm5vbbujSaRxF+XbbGecOj/cQsXYQqmuIE5PxOJvsv7pY3Arz+ge/pkXf3K5kXRsKMYT1ZksAwZSQumowQgBCzCglXBgjm8YaiyFilJpfYQHBxhgEIcIYIoQwHoYBOAcRAgBYBKlGXddYZzj1jIYYOWV2gLBdF//Rn15+lds3j4LM9mVbRHYfdn1R99F8fvf1By9fuBfXNx7WXVMfYue0gAOrljcne2NCvbLpMQ/8JPUDMjvYHwax3ZZStEGYnrzz4PnDhweRh6tuHIQUAZ97u12NfScMoBTrvssoZtTz0ezy/Or6ZgUoBgABBwddMkYIQ0nAkELzPAr8SdHJqq+1wW3bFOXAedhWhVOdn4+og9h0sulff+N1G9OrNS26HhlnjTXO+h6vNegxgh6C0HqcG6WxgwAqTLDPCSXEOgut9ZDjlFIIKfWVgUIpTLCz0hnjELaO0CAFRiHdY4Q4J1YNyCIv8Hw/sFJhIzIKJiOfYwmcAJwSQjAEeRJJ0XVNX7d9EidWOdFpjp1sSg0cIywO485Zqe3xvRkJfaztoJGdOs9H49H0+PDg0cNPnVY+JU3dFpVimEwSrqy5uL7sNXrwxr2QOwUxCtnNqneOptNsOklJ1fQYIiEVwQQgiC0k2P5q7KyUIQQqBwBEzllkASbcWgsdBMYBqxzCQgyEEAdAW9UYAs7pIFQrOoK5MQog5ZwzONh1cvtyFeXZyd0Ranee7hF3vUGb1e3hyf6Dj74+PlzuLi7ywMwSD3rIQUcJ3pskVtuQJ6umfvp8OZ6M0ywriwICCNSgNtXk+P5ob1qsl0LrfkAjHvMo0FWh6zVDjCPf2g4CJqUJs/hB+OD26gbGqTPKZ7Su6m3ZYMabtqdgIEBZAUPKrYOa8I4NpWySxCcR4yyknHXdEE1iqfTy5jwOozSJAES79QoByBlnhPuT2CAshyHwPK210EoOQnQtwRAgMBjrlIZaJBQ7B4wBCFHOGWMAUgtR4nFGofEYx16oVYsAQBDFcWSNJggixifjsdFysVy3VW2bLcBQAUsD//hoHnlBWRQKoraqq6o7nE59J6HsNUHcQ7M0pzwJ0gni1AAhnW0boeq236ySJAiyJAjTL7/8arXZhGFcNl0AQZ4GxtrBurqWZdfm0xlwWrRtL1RVbecHeZCPLEZaDOT5qzOEsAMQQGQdAABwCoEDzgHrAHC/AgQLoAMAAYDcr6zYOWcAANba/4AQCAJnCCYAACElAI4zhqCDyECDkAbY6S8vl9++Px+lIbFtPE15FtF1O4gaCjaaZKC85D6PIgZ9aolPGK/Wy3a7RSwazY9uV6umEW2/U0oBo6HugyzerTfWmP07d1bbpq07BVnf9lB2OdGUUQX1gFA/DCQZbepyEmfjcV5ZhzFqyjWl3raVm1XNEHrtOAfOlLuikZCnkRemEWeHs2w0igEeG4irYscCzwDQ9rJq+noYhNJGq739cRIngzCXtyugBs+nkyjglDadVlJNR3E4SzBBlTQK+dQYW22cFgbiXhpCKYEAQesQcDww1o5iL/WQQ66WZOhl1zRx4I/SeBCtVMLJHgILMM6nc9IXzW6HCd8/3CfIEWe1sV7gQxMn6QQowblJs5CEkdCSAbRYrapFcf/+XYZFp13Vatk0IQYOaN/a3e11s9sc7B1KQPuuxWbIx2ndSW3Ypm4dotO9iRDy7Hq9Leu9cThYqfvWD5PVqvj/AeAVjU8D16eyAAAAAElFTkSuQmCC\n"
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"source": [
"(food_item_names(img))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "Im5t5qtVSzxr",
"outputId": "7298157c-8f93-4259-8a56-9a3ae7467ffe"
},
"execution_count": 8,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
" background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": []
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Chicken Biriyani tensor(40) tensor([4.1885e-05, 7.0188e-05, 7.7076e-06, 3.9197e-05, 9.8625e-08, 3.3583e-06,\n",
" 1.5797e-06, 1.6496e-05, 4.5342e-06, 7.1055e-07, 4.3120e-06, 1.6645e-06,\n",
" 1.7846e-06, 2.2229e-04, 9.7932e-06, 4.6404e-05, 1.5970e-05, 2.4046e-06,\n",
" 9.8921e-07, 5.0169e-06, 3.0510e-06, 2.0119e-06, 5.2408e-05, 4.0896e-02,\n",
" 6.7006e-06, 6.0860e-06, 3.7381e-06, 1.3090e-05, 1.4943e-05, 2.9606e-06,\n",
" 5.3581e-05, 5.9757e-07, 1.1655e-05, 5.5662e-07, 4.1828e-06, 1.5792e-05,\n",
" 3.9094e-05, 1.8446e-07, 6.9659e-06, 4.3161e-05, 2.7412e-01, 1.0392e-01,\n",
" 4.0997e-05, 1.7875e-06, 8.0720e-02, 1.3019e-06, 3.9996e-05, 5.1573e-05,\n",
" 8.1181e-07, 1.5523e-05, 6.9722e-05, 2.3505e-07, 5.8503e-05, 1.5983e-05,\n",
" 3.0450e-06, 3.2559e-06, 3.8178e-03, 2.9023e-05, 8.1928e-06, 6.0572e-05,\n",
" 7.2485e-05, 1.5593e-05, 4.3378e-06, 3.3973e-06, 7.0165e-06, 5.7478e-06,\n",
" 1.3689e-05, 6.3174e-07, 6.9213e-06, 1.2450e-05, 2.1368e-07, 2.7332e-05,\n",
" 3.9442e-06, 7.4708e-07, 8.5466e-05, 4.9215e-06, 3.1051e-05, 2.6476e-05,\n",
" 3.6763e-06, 8.0514e-04, 3.3591e-06, 1.5696e-03, 1.4232e-06, 6.6984e-07,\n",
" 2.4074e-06, 1.2988e-05, 7.4286e-07, 4.4507e-06, 4.2827e-07, 1.8679e-06,\n",
" 1.5863e-05, 6.0925e-06, 3.2322e-04, 8.4201e-06, 1.0259e-06, 2.6617e-07,\n",
" 3.6201e-06, 2.7797e-05, 3.0194e-06, 8.5740e-06, 1.0681e-05, 8.1521e-06,\n",
" 3.6441e-05, 3.2017e-06, 6.5015e-05, 5.0744e-06, 3.0619e-06, 1.5424e-07,\n",
" 2.1373e-06, 6.8256e-07, 4.3048e-07, 8.5803e-06, 6.8154e-06, 1.8538e-06,\n",
" 1.0154e-06, 9.4147e-07, 1.1835e-06, 5.7107e-06, 2.3953e-06, 4.8497e-07,\n",
" 7.8759e-06, 5.6531e-06, 3.2804e-06, 7.1470e-07, 4.2331e-06, 3.5828e-06,\n",
" 9.5407e-07, 3.2404e-06, 8.5845e-07, 4.3655e-07, 1.6596e-06, 2.7315e-01,\n",
" 4.6331e-06, 3.5130e-06, 4.7896e-06, 9.0566e-07, 6.6924e-07, 3.3898e-06,\n",
" 3.0542e-06, 8.8811e-05, 1.9998e-06, 9.8647e-06, 1.2020e-06, 4.6380e-06,\n",
" 3.0145e-07, 1.4949e-05, 1.7884e-06, 8.7763e-07, 7.2360e-07, 4.1487e-06,\n",
" 4.4788e-07, 2.2452e-06, 4.3534e-06, 8.3085e-06, 3.9496e-06, 4.9040e-06,\n",
" 3.1434e-04, 3.8076e-06, 1.0497e-05, 7.4962e-06, 4.7196e-05, 3.7631e-05,\n",
" 3.8848e-05, 7.3565e-07, 1.4283e-06, 2.6667e-04, 4.4754e-06, 9.2067e-05,\n",
" 3.4667e-06, 5.7273e-06, 2.7538e-05, 7.5419e-07, 9.6612e-06, 7.6191e-07,\n",
" 2.9704e-06, 1.1311e-04, 7.0196e-07, 4.4461e-06, 2.0663e-06, 5.5833e-07,\n",
" 1.1546e-03, 1.0318e-05, 3.4046e-06, 1.0295e-06, 4.2623e-06, 2.3243e-06,\n",
" 5.0159e-05, 1.5453e-05, 3.7946e-06, 8.3985e-07, 4.7884e-05, 4.9272e-05,\n",
" 6.0175e-03, 4.9735e-06, 2.5407e-06, 2.2658e-06, 4.6090e-03, 4.4774e-06,\n",
" 9.6703e-05, 5.0975e-07, 2.3352e-05, 3.1915e-04, 2.9783e-05, 1.4302e-05,\n",
" 5.6529e-06, 1.1870e-05, 1.8730e-06, 1.9897e-06, 7.9109e-06, 1.3616e-05,\n",
" 4.6980e-05, 5.5654e-06, 4.0660e-07, 1.9918e-01, 2.6288e-05, 2.0881e-05,\n",
" 9.1781e-07, 7.0298e-06, 1.2238e-06, 1.5688e-05, 6.0739e-06, 5.9012e-07,\n",
" 6.7340e-07, 3.2046e-06, 5.2613e-08, 1.0708e-06, 2.9957e-03, 3.7141e-06,\n",
" 1.1482e-06, 5.7471e-06, 3.0294e-04, 2.8388e-06, 1.7664e-06, 6.4145e-07,\n",
" 8.9533e-07, 3.0256e-05, 5.6394e-06, 3.8022e-06, 3.9107e-05, 2.1921e-07,\n",
" 2.0737e-06, 3.4422e-06, 4.3199e-05, 4.0451e-07, 4.3973e-07, 4.4816e-06,\n",
" 1.2771e-05, 6.1618e-07, 1.2822e-05, 4.9549e-07, 3.4140e-07, 2.1856e-07,\n",
" 3.2931e-07, 1.0468e-05, 2.6668e-06, 1.6541e-05, 1.6238e-06, 1.9920e-05,\n",
" 3.7240e-06, 1.4234e-06, 1.0762e-06, 6.2945e-07, 9.3324e-07, 9.5646e-07,\n",
" 1.0605e-06, 1.0681e-07, 1.1029e-05, 6.2469e-07, 2.6232e-07, 4.1444e-06,\n",
" 9.9446e-07, 2.4325e-06, 4.6827e-06, 9.8957e-06, 1.8913e-06, 9.3634e-07,\n",
" 9.0780e-07, 7.0691e-06, 5.5333e-06, 3.0602e-06, 5.8224e-06, 5.1269e-05,\n",
" 1.3078e-06, 2.2007e-03, 7.0734e-06, 1.0311e-05, 1.8793e-07, 9.3279e-06,\n",
" 3.8494e-07])\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"{'Aloo Baingan': 4.188527600490488e-05,\n",
" 'Aloo Gobi': 7.018813630566001e-05,\n",
" 'Aloo Matar': 7.707640179432929e-06,\n",
" 'Aloo Paratha': 3.919660593965091e-05,\n",
" 'Aloo Tikki': 9.862480965239229e-08,\n",
" 'Apple pie': 3.3582839478185633e-06,\n",
" 'Arayes': 1.5797179457877064e-06,\n",
" 'Arayes Kafta': 1.649572186579462e-05,\n",
" 'Baba Ghanoush': 4.5341826080402825e-06,\n",
" 'Baby back ribs': 7.105484201019863e-07,\n",
" 'Baghlava': 4.312014880269999e-06,\n",
" 'Baklava': 1.6645334426357294e-06,\n",
" 'Balah El Sham': 1.784624259926204e-06,\n",
" 'Balaleet': 0.00022228507441468537,\n",
" 'Bamia': 9.79317155724857e-06,\n",
" 'Bamieh': 4.6403736632782966e-05,\n",
" 'Basbousa': 1.5970052118063904e-05,\n",
" 'Batata Harra': 2.4046348698902875e-06,\n",
" 'Beef carpaccio': 9.892054322335753e-07,\n",
" 'Beef tartare': 5.016868271923158e-06,\n",
" 'Beignets': 3.0509681891999207e-06,\n",
" 'Bhindi Masala': 2.011920059885597e-06,\n",
" 'Bibimbap': 5.2407598559511825e-05,\n",
" 'Biryani': 0.04089563712477684,\n",
" 'Bread pudding': 6.700627636746503e-06,\n",
" 'Breakfast burrito food': 6.086044322728412e-06,\n",
" 'Bruschetta': 3.7381100810307544e-06,\n",
" 'Butter Chicken': 1.3090472748444881e-05,\n",
" 'Butter Naan': 1.4942533198336605e-05,\n",
" 'Caesar salad': 2.9605705549329286e-06,\n",
" 'Cannoli': 5.3580668463837355e-05,\n",
" 'Caprese salad': 5.975662134005688e-07,\n",
" 'Carrot cake': 1.1655182788672391e-05,\n",
" 'Ceviche': 5.566186018768349e-07,\n",
" 'Chana Masala food': 4.18282934333547e-06,\n",
" 'Cheeseburger': 1.579150921315886e-05,\n",
" 'Cheesecake': 3.909360384568572e-05,\n",
" 'Chicken 555': 1.8446162641794217e-07,\n",
" 'Chicken 65': 6.965889042476192e-06,\n",
" 'Chicken 65 Biryani': 4.3160904169781134e-05,\n",
" 'Chicken Biriyani': 0.2741245925426483,\n",
" 'Chicken Biryani': 0.10391724109649658,\n",
" 'Chicken Chettinad': 4.0996517782332376e-05,\n",
" 'Chicken Chilli': 1.7874942841444863e-06,\n",
" 'Chicken Dum Biryani food': 0.08072016388177872,\n",
" 'Chicken Frankie': 1.301872998737963e-06,\n",
" 'Chicken Fried Rice': 3.9996073610382155e-05,\n",
" 'Chicken Handi': 5.157285704626702e-05,\n",
" 'Chicken Kebab': 8.118131518131122e-07,\n",
" 'Chicken Korma': 1.552337926113978e-05,\n",
" 'Chicken Liver Fry': 6.972219853196293e-05,\n",
" 'Chicken Lollipop': 2.3504831858645048e-07,\n",
" 'Chicken Manchurian': 5.8503275795374066e-05,\n",
" 'Chicken Masala': 1.598253038537223e-05,\n",
" 'Chicken Noodles': 3.0450382837443613e-06,\n",
" 'Chicken Popcorn': 3.2558916700509144e-06,\n",
" 'Chicken Pulao': 0.003817793680354953,\n",
" 'Chicken Shawarma': 2.9022574381087907e-05,\n",
" 'Chicken Tandoori': 8.192839231924154e-06,\n",
" 'Chicken Tikka Masala': 6.057246355339885e-05,\n",
" 'Chicken curry': 7.248495967360213e-05,\n",
" 'Chicken quesadilla': 1.5592951967846602e-05,\n",
" 'Chicken wings': 4.337780865171226e-06,\n",
" 'Chocolate cake': 3.39733878718107e-06,\n",
" 'Chocolate mousse': 7.016514246060979e-06,\n",
" 'Chole Bhature': 5.747815521317534e-06,\n",
" 'Churros': 1.3689186744159088e-05,\n",
" 'Clam chowder': 6.317440579550748e-07,\n",
" 'Club sandwich': 6.9213365350151435e-06,\n",
" 'Crab cakes': 1.2450293979782145e-05,\n",
" 'Creme brulee': 2.1368475700001e-07,\n",
" 'Croque madame': 2.7331845558364876e-05,\n",
" 'Cupcakes': 3.944185664295219e-06,\n",
" 'Dajaj Mashwi': 7.470782179552771e-07,\n",
" 'Dal Makhani': 8.54660029290244e-05,\n",
" 'Deviled eggs': 4.9215132094104774e-06,\n",
" 'Donuts': 3.105106588918716e-05,\n",
" 'Dosa': 2.6475729100639e-05,\n",
" 'Dumplings': 3.676339701996767e-06,\n",
" 'Egg Biryani food item': 0.0008051434415392578,\n",
" 'Egg Curry': 3.3591038572922116e-06,\n",
" 'Egg Fried Rice': 0.0015696408227086067,\n",
" 'Egg Masala': 1.423150820301089e-06,\n",
" 'Eggs benedict': 6.698419952044787e-07,\n",
" 'Escargots': 2.4073906388366595e-06,\n",
" 'Falafel': 1.2987796253582928e-05,\n",
" 'Fasolia food item': 7.428623121086275e-07,\n",
" 'Fatayer': 4.450742835615529e-06,\n",
" 'Fatteh': 4.2826894741665456e-07,\n",
" 'Fattoush': 1.8678567812457914e-06,\n",
" 'Fesenjan': 1.586272264830768e-05,\n",
" 'Filet mignon': 6.092536750657018e-06,\n",
" 'Fish Biryani': 0.0003232246090192348,\n",
" 'Fish Curry': 8.420121957897209e-06,\n",
" 'Fish Fry': 1.025945152832719e-06,\n",
" 'Fish Masala': 2.661709572748805e-07,\n",
" 'Fish and chips': 3.620074949139962e-06,\n",
" 'Foie gras': 2.7796966605819762e-05,\n",
" 'Foul Medames': 3.0193857583071804e-06,\n",
" 'Foul Mudammas': 8.574025741836522e-06,\n",
" 'French fries': 1.0681442290660925e-05,\n",
" 'French onion soup': 8.15207022242248e-06,\n",
" 'French toast': 3.644056778284721e-05,\n",
" 'Fried calamari': 3.2017383091442753e-06,\n",
" 'Fried rice': 6.501519965240732e-05,\n",
" 'Frozen yogurt': 5.074403361504665e-06,\n",
" 'Ful Medames': 3.0619105473306263e-06,\n",
" 'Gajar Ka Halwa': 1.5423829324845428e-07,\n",
" 'Garlic bread': 2.1372520677687135e-06,\n",
" 'Gazpacho': 6.825605396443279e-07,\n",
" 'Ghorayebah': 4.3048262909906043e-07,\n",
" 'Gnocchi': 8.580275789427105e-06,\n",
" 'Gobi Manchurian': 6.815409051341703e-06,\n",
" 'Greek salad': 1.8538423773861723e-06,\n",
" 'Grilled cheese sandwich': 1.0154160463571316e-06,\n",
" 'Grilled salmon': 9.414682722308498e-07,\n",
" 'Guacamole': 1.1834531505883206e-06,\n",
" 'Gulab Jamun': 5.710677669412689e-06,\n",
" 'Gyoza': 2.395282763245632e-06,\n",
" 'Halva': 4.849703145737294e-07,\n",
" 'Hamburger': 7.875918527133763e-06,\n",
" 'Haneeth': 5.65312075195834e-06,\n",
" 'Harees': 3.2804455258883536e-06,\n",
" 'Hareesah': 7.146994676077156e-07,\n",
" 'Harira': 4.233123945596162e-06,\n",
" 'Harisi': 3.582768840715289e-06,\n",
" 'Hawawshi': 9.540679002384422e-07,\n",
" 'Hot and sour soup': 3.2403816021542298e-06,\n",
" 'Hot dog': 8.584502779740433e-07,\n",
" 'Huevos rancheros': 4.365475945178332e-07,\n",
" 'Hummus': 1.6596482055319939e-06,\n",
" 'Hyderabadi Biryani': 0.27314651012420654,\n",
" 'Ice cream': 4.633096978068352e-06,\n",
" 'Idli': 3.512992861942621e-06,\n",
" 'Jalebi': 4.7896178330120165e-06,\n",
" 'Jallab': 9.056585668076877e-07,\n",
" 'Jallab Drink': 6.692430360999424e-07,\n",
" 'Jareesh': 3.38977224600967e-06,\n",
" 'Jibneh Arabieh': 3.054187800444197e-06,\n",
" 'Kabsa': 8.881060057319701e-05,\n",
" 'Kanafeh': 1.9998055904579815e-06,\n",
" 'Kebab': 9.864711500995327e-06,\n",
" 'Kheer': 1.2020175290672341e-06,\n",
" 'Kibbeh': 4.638035534298979e-06,\n",
" 'Kibbeh Nayyeh food item': 3.014542073742632e-07,\n",
" 'Kofta': 1.4948790521884803e-05,\n",
" 'Koshari': 1.7884151475300314e-06,\n",
" 'Kubbah Hamouth': 8.776319759817852e-07,\n",
" 'Kunafa': 7.235973953356734e-07,\n",
" 'Labneh': 4.1487387534289155e-06,\n",
" 'Lahmacun': 4.478787900552561e-07,\n",
" 'Lasagna': 2.245163386760396e-06,\n",
" 'Layali Lubnan': 4.353384156274842e-06,\n",
" 'Lgeimat food item': 8.308543328894302e-06,\n",
" 'Lobster bisque': 3.949643542000558e-06,\n",
" 'Lobster roll sandwich': 4.903990429738769e-06,\n",
" 'Lubia Polo': 0.00031434069387614727,\n",
" 'Luqaimat': 3.8075941120041534e-06,\n",
" 'Macaroni and cheese': 1.0496703907847404e-05,\n",
" 'Macarons': 7.4961708378396e-06,\n",
" 'Machboos': 4.719592834590003e-05,\n",
" 'Machbous': 3.7630568840540946e-05,\n",
" 'Madrouba': 3.884820398525335e-05,\n",
" 'Mahalabiya': 7.356452442763839e-07,\n",
" 'Mahshi': 1.4283394875747035e-06,\n",
" 'Majboos': 0.00026667152997106314,\n",
" 'Majoon': 4.475391506275628e-06,\n",
" 'Maklouba': 9.206723188981414e-05,\n",
" 'Malabar Paratha': 3.466715043032309e-06,\n",
" 'Malai Kofta': 5.727334155380959e-06,\n",
" 'Malfouf': 2.7537727874005213e-05,\n",
" 'Malpua': 7.54187340135104e-07,\n",
" 'Manakish': 9.661186595621984e-06,\n",
" 'Mansaf': 7.619132134095707e-07,\n",
" 'Manti': 2.9703612653975142e-06,\n",
" 'Maqluba': 0.00011310820991639048,\n",
" 'Margherita pizza': 7.019642680461402e-07,\n",
" 'Markook food item': 4.44610623162589e-06,\n",
" 'Masala Dosa': 2.066267370537389e-06,\n",
" 'Mashwi': 5.583315214607865e-07,\n",
" 'Matar Paneer': 0.0011546122841536999,\n",
" 'Matar Pulao': 1.031820193020394e-05,\n",
" 'Meshwi': 3.404636572668096e-06,\n",
" 'Mhammar': 1.0295226502421428e-06,\n",
" 'Miso soup': 4.262282345735002e-06,\n",
" 'Moghrabieh': 2.3243171654030448e-06,\n",
" 'Molokhia': 5.015918577555567e-05,\n",
" 'Motabbaq': 1.5452820662176237e-05,\n",
" 'Moutabal': 3.7946022075630026e-06,\n",
" 'Muhammara food item': 8.398463933190214e-07,\n",
" 'Mujadara': 4.788354999618605e-05,\n",
" 'Mujaddara': 4.927211921312846e-05,\n",
" 'Mushroom Biryani food item': 0.006017524749040604,\n",
" 'Mushroom Masala': 4.9735222091840114e-06,\n",
" 'Mussels': 2.5406725399079733e-06,\n",
" 'Mutabbaq': 2.2657957288174657e-06,\n",
" 'Mutton Biryani': 0.004609026480466127,\n",
" 'Mutton Chops': 4.477381025935756e-06,\n",
" 'Mutton Curry': 9.670317376730964e-05,\n",
" 'Mutton Korma': 5.097527377984079e-07,\n",
" 'Mutton Masala': 2.335182944079861e-05,\n",
" 'Mutton Pulao': 0.0003191548748873174,\n",
" 'Mutton Rogan Josh': 2.9782882847939618e-05,\n",
" 'Nachos': 1.4301857845566701e-05,\n",
" 'Omelette': 5.652932486555073e-06,\n",
" 'Onion rings': 1.1870391062984709e-05,\n",
" 'Ouzi': 1.8730137298916816e-06,\n",
" 'Oysters': 1.9896679077646695e-06,\n",
" 'Pacha': 7.910863132565282e-06,\n",
" 'Pad thai': 1.3615832358482294e-05,\n",
" 'Paella': 4.697961776400916e-05,\n",
" 'Palak Paneer': 5.565381798078306e-06,\n",
" 'Pancakes': 4.065998950864014e-07,\n",
" 'Paneer Biryani': 0.19918088614940643,\n",
" 'Paneer Butter Masala': 2.6287838409189135e-05,\n",
" 'Paneer Tikka': 2.088072506012395e-05,\n",
" 'Pani Puri': 9.178148161481658e-07,\n",
" 'Panna cotta': 7.029755579424091e-06,\n",
" 'Pav Bhaji': 1.22377127809159e-06,\n",
" 'Payasam': 1.568777224747464e-05,\n",
" 'Peda': 6.073897111491533e-06,\n",
" 'Peking duck': 5.901173949496297e-07,\n",
" 'Pho food': 6.734031785526895e-07,\n",
" 'Pizza': 3.2045700208982453e-06,\n",
" 'Pork chop': 5.2612737277968336e-08,\n",
" 'Poutine': 1.0708424724725774e-06,\n",
" 'Prawn Biryani': 0.002995701739564538,\n",
" 'Prawn Curry': 3.7140955555514665e-06,\n",
" 'Prawn Fried Rice': 1.1481803312562988e-06,\n",
" 'Prawn Masala': 5.747053819504799e-06,\n",
" 'Prawn Pulao food item': 0.0003029413055628538,\n",
" 'Prime rib': 2.8388101327436743e-06,\n",
" 'Pulled pork sandwich': 1.766401510394644e-06,\n",
" 'Quzi': 6.414454105652112e-07,\n",
" 'Rabri': 8.95328469141532e-07,\n",
" 'Rajma Chawal': 3.025578917004168e-05,\n",
" 'Ramen': 5.6394383136648685e-06,\n",
" 'Rasgulla': 3.802212631853763e-06,\n",
" 'Rasmalai': 3.9107289921958e-05,\n",
" 'Ravioli': 2.1921118786849547e-07,\n",
" 'Red velvet cake': 2.0737393242598046e-06,\n",
" 'Risotto': 3.4422046155668795e-06,\n",
" 'Rogan Josh': 4.3199281208217144e-05,\n",
" 'Sahlab': 4.0451172367284016e-07,\n",
" 'Salata Hara': 4.3972690377813706e-07,\n",
" 'Samak Meshwi': 4.481610176299e-06,\n",
" 'Samboosa': 1.2770608009304851e-05,\n",
" 'Sambousek': 6.161835131024418e-07,\n",
" 'Samosa': 1.2821973541576881e-05,\n",
" 'Sashimi food': 4.954871997142618e-07,\n",
" 'Scallops': 3.414002094359603e-07,\n",
" 'Seaweed salad': 2.185621923445069e-07,\n",
" 'Sfiha': 3.29313877500681e-07,\n",
" 'Shakshuka': 1.0468443178979214e-05,\n",
" 'Shanklish': 2.666784894245211e-06,\n",
" 'Shawarma': 1.654080733715091e-05,\n",
" 'Shawarma Rice': 1.6237540876318235e-06,\n",
" 'Shish Barak food item': 1.9920003978768364e-05,\n",
" 'Shish Taouk': 3.7239947232592385e-06,\n",
" 'Shorbat Adas': 1.4233964975574054e-06,\n",
" 'Shrimp and grits food': 1.0762347528725513e-06,\n",
" 'Spaghetti bolognese': 6.294516197158373e-07,\n",
" 'Spaghetti carbonara': 9.332405852546799e-07,\n",
" 'Spring rolls': 9.5646112185932e-07,\n",
" 'Steak': 1.0604601357044885e-06,\n",
" 'Strawberry shortcake': 1.0681044670945994e-07,\n",
" 'Stuffed Grape Leaves (Dolma)': 1.102891837945208e-05,\n",
" 'Sushi': 6.246913812901767e-07,\n",
" 'Tabbouleh': 2.6232390837321873e-07,\n",
" 'Tabouleh': 4.1443850022915285e-06,\n",
" 'Tacos': 9.94459810499393e-07,\n",
" 'Takoyaki': 2.4324508558493108e-06,\n",
" 'Tandoori Chicken': 4.682674443756696e-06,\n",
" 'Tandoori Roti': 9.895691619021818e-06,\n",
" 'Tashreeb': 1.8913276562670944e-06,\n",
" 'Tepsi Baytinijan': 9.363420758745633e-07,\n",
" 'Tharid': 9.078030416276306e-07,\n",
" 'Tiramisu': 7.069111234159209e-06,\n",
" 'Tuna tartare': 5.5333425734716e-06,\n",
" 'Umm Ali': 3.0602086553699337e-06,\n",
" 'Vada Pav': 5.8223890846420545e-06,\n",
" 'Veg Fried Rice': 5.1268918468849733e-05,\n",
" 'Veg Noodles': 1.3077537914796267e-06,\n",
" 'Vegetable Biryani': 0.002200671937316656,\n",
" 'Vegetable Pulao': 7.073413598845946e-06,\n",
" 'Waffles': 1.0310981451766565e-05,\n",
" 'Warak Enab': 1.8792964340264007e-07,\n",
" 'Xiao long bao (soup dumplings)': 9.327863153885119e-06,\n",
" \"Za'atar Bread\": 3.8493715237564174e-07}"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"source": [
"#!export\n",
"image = gr.inputs.Image(shape=(192,192))\n",
"label = gr.outputs.Label()\n",
"examples = [\n",
" '/content/drive/MyDrive/samples/test_1.jpg',\n",
" '/content/drive/MyDrive/samples/test_2.jpg',\n",
" '/content/drive/MyDrive/samples/test_3.jpg',\n",
" '/content/drive/MyDrive/samples/test_4.jpg',\n",
" '/content/drive/MyDrive/samples/test_5.jpg',\n",
" '/content/drive/MyDrive/samples/test_6.jpg',\n",
" '/content/drive/MyDrive/samples/test_7.jpg'\n",
" ]\n",
"\n",
"iface = gr.Interface(fn=food_item_names, inputs=image, outputs=label, examples=examples)\n",
"iface.launch(inline=False, share=True)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XmxzTmYzUL3f",
"outputId": "d3463146-c797-4d81-fbff-18599f3fd4c2"
},
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"<ipython-input-9-55e31a25195c>:2: GradioDeprecationWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
" image = gr.inputs.Image(shape=(192,192))\n",
"<ipython-input-9-55e31a25195c>:2: GradioDeprecationWarning: `optional` parameter is deprecated, and it has no effect\n",
" image = gr.inputs.Image(shape=(192,192))\n",
"<ipython-input-9-55e31a25195c>:3: GradioDeprecationWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
" label = gr.outputs.Label()\n",
"<ipython-input-9-55e31a25195c>:3: GradioUnusedKwargWarning: You have unused kwarg parameters in Label, please remove them: {'type': 'auto'}\n",
" label = gr.outputs.Label()\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
"Running on public URL: https://6e58c41c5340b7599c.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": []
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "code",
"source": [
"from nbdev.export import *"
],
"metadata": {
"id": "aTR9c6m0Uq9V"
},
"execution_count": 10,
"outputs": []
},
{
"cell_type": "code",
"source": [
"pip install notebook2script"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "N2v9rON_Hh4e",
"outputId": "ea002b54-e396-4463-f644-887063d0a9c5"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting notebook2script\n",
" Downloading notebook2script-0.2.1-py3-none-any.whl (62 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m62.6/62.6 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting astroid<=2.5,>=2.4.0 (from notebook2script)\n",
" Downloading astroid-2.5-py3-none-any.whl (220 kB)\n",
"\u001b[2K \u001b[90mβββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m220.3/220.3 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: click>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from notebook2script) (8.1.6)\n",
"Collecting consolekit>=0.6.0 (from notebook2script)\n",
" Downloading consolekit-1.5.1-py3-none-any.whl (42 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m42.1/42.1 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting domdf-python-tools>=2.8.1 (from notebook2script)\n",
" Downloading domdf_python_tools-3.6.1-py3-none-any.whl (127 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m127.0/127.0 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: ipython>=7.14.0 in /usr/local/lib/python3.10/dist-packages (from notebook2script) (7.34.0)\n",
"Collecting isort>=5.5.2 (from notebook2script)\n",
" Downloading isort-5.12.0-py3-none-any.whl (91 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m91.2/91.2 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: nbconvert>=5.6.1 in /usr/local/lib/python3.10/dist-packages (from notebook2script) (6.5.4)\n",
"Collecting pre-commit-hooks>=3.3.0 (from notebook2script)\n",
" Downloading pre_commit_hooks-4.4.0-py2.py3-none-any.whl (40 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m40.9/40.9 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting pylint>=2.5.2 (from notebook2script)\n",
" Downloading pylint-2.17.4-py3-none-any.whl (536 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m536.6/536.6 kB\u001b[0m \u001b[31m13.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting yapf-isort>=0.5.5 (from notebook2script)\n",
" Downloading yapf_isort-0.6.0-py3-none-any.whl (26 kB)\n",
"Collecting lazy-object-proxy>=1.4.0 (from astroid<=2.5,>=2.4.0->notebook2script)\n",
" Downloading lazy_object_proxy-1.9.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (63 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m63.3/63.3 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting wrapt<1.13,>=1.11 (from astroid<=2.5,>=2.4.0->notebook2script)\n",
" Downloading wrapt-1.12.1.tar.gz (27 kB)\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Collecting deprecation-alias>=0.1.1 (from consolekit>=0.6.0->notebook2script)\n",
" Downloading deprecation_alias-0.3.2-py3-none-any.whl (14 kB)\n",
"Collecting mistletoe>=0.7.2 (from consolekit>=0.6.0->notebook2script)\n",
" Downloading mistletoe-1.1.0-py3-none-any.whl (48 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m48.8/48.8 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: typing-extensions!=3.10.0.1,>=3.10.0.0 in /usr/local/lib/python3.10/dist-packages (from consolekit>=0.6.0->notebook2script) (4.7.1)\n",
"Requirement already satisfied: natsort>=7.0.1 in /usr/local/lib/python3.10/dist-packages (from domdf-python-tools>=2.8.1->notebook2script) (8.3.1)\n",
"Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (67.7.2)\n",
"Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (0.18.2)\n",
"Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (4.4.2)\n",
"Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (0.7.5)\n",
"Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (5.7.1)\n",
"Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (3.0.39)\n",
"Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (2.14.0)\n",
"Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (0.2.0)\n",
"Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (0.1.6)\n",
"Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (4.8.0)\n",
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (4.9.3)\n",
"Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (4.11.2)\n",
"Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (6.0.0)\n",
"Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.7.1)\n",
"Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.4)\n",
"Requirement already satisfied: jinja2>=3.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (3.1.2)\n",
"Requirement already satisfied: jupyter-core>=4.7 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (5.3.1)\n",
"Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.2.2)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (2.1.3)\n",
"Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.8.4)\n",
"Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.8.0)\n",
"Requirement already satisfied: nbformat>=5.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (5.9.1)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (23.1)\n",
"Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (1.5.0)\n",
"Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (1.2.1)\n",
"Collecting ruamel.yaml>=0.15 (from pre-commit-hooks>=3.3.0->notebook2script)\n",
" Downloading ruamel.yaml-0.17.32-py3-none-any.whl (112 kB)\n",
"\u001b[2K \u001b[90mβββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m112.2/112.2 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from pre-commit-hooks>=3.3.0->notebook2script) (2.0.1)\n",
"Requirement already satisfied: platformdirs>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from pylint>=2.5.2->notebook2script) (3.9.1)\n",
"INFO: pip is looking at multiple versions of pylint to determine which version is compatible with other requirements. This could take a while.\n",
"Collecting pylint>=2.5.2 (from notebook2script)\n",
" Downloading pylint-2.17.3-py3-none-any.whl (536 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m536.4/536.4 kB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.17.2-py3-none-any.whl (536 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m536.0/536.0 kB\u001b[0m \u001b[31m12.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.17.1-py3-none-any.whl (535 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m535.8/535.8 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.17.0-py3-none-any.whl (535 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m535.4/535.4 kB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.16.4-py3-none-any.whl (530 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m530.7/530.7 kB\u001b[0m \u001b[31m17.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.16.3-py3-none-any.whl (530 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m530.6/530.6 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.16.2-py3-none-any.whl (530 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m530.7/530.7 kB\u001b[0m \u001b[31m18.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hINFO: pip is looking at multiple versions of pylint to determine which version is compatible with other requirements. This could take a while.\n",
" Downloading pylint-2.16.1-py3-none-any.whl (530 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m530.1/530.1 kB\u001b[0m \u001b[31m19.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.16.0-py3-none-any.whl (530 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m530.1/530.1 kB\u001b[0m \u001b[31m20.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.10-py3-none-any.whl (509 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m509.9/509.9 kB\u001b[0m \u001b[31m19.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.9-py3-none-any.whl (509 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m509.3/509.3 kB\u001b[0m \u001b[31m13.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.8-py3-none-any.whl (509 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m509.1/509.1 kB\u001b[0m \u001b[31m18.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting dill>=0.2 (from pylint>=2.5.2->notebook2script)\n",
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hINFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
"Collecting pylint>=2.5.2 (from notebook2script)\n",
" Downloading pylint-2.15.7-py3-none-any.whl (509 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m509.2/509.2 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.6-py3-none-any.whl (508 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m508.9/508.9 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.5-py3-none-any.whl (508 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m508.2/508.2 kB\u001b[0m \u001b[31m21.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.4-py3-none-any.whl (507 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m507.9/507.9 kB\u001b[0m \u001b[31m18.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.3-py3-none-any.whl (507 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m507.6/507.6 kB\u001b[0m \u001b[31m22.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.2-py3-none-any.whl (507 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m507.0/507.0 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.15.0-py3-none-any.whl (505 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m505.4/505.4 kB\u001b[0m \u001b[31m28.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.14.5-py3-none-any.whl (488 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m488.2/488.2 kB\u001b[0m \u001b[31m25.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.14.4-py3-none-any.whl (488 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m488.4/488.4 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.14.3-py3-none-any.whl (488 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m488.1/488.1 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.14.2-py3-none-any.whl (487 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m488.0/488.0 kB\u001b[0m \u001b[31m18.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.14.1-py3-none-any.whl (486 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m487.0/487.0 kB\u001b[0m \u001b[31m31.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.14.0-py3-none-any.whl (485 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m485.0/485.0 kB\u001b[0m \u001b[31m19.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.9-py3-none-any.whl (438 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m438.5/438.5 kB\u001b[0m \u001b[31m22.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.8-py3-none-any.whl (438 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m438.2/438.2 kB\u001b[0m \u001b[31m31.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.7-py3-none-any.whl (437 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m438.0/438.0 kB\u001b[0m \u001b[31m30.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.6-py3-none-any.whl (437 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m438.0/438.0 kB\u001b[0m \u001b[31m25.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.5-py3-none-any.whl (437 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m437.6/437.6 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.4-py3-none-any.whl (437 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m437.6/437.6 kB\u001b[0m \u001b[31m20.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.3-py3-none-any.whl (437 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m437.1/437.1 kB\u001b[0m \u001b[31m20.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.2-py3-none-any.whl (437 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m437.0/437.0 kB\u001b[0m \u001b[31m20.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.1-py3-none-any.whl (436 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m436.9/436.9 kB\u001b[0m \u001b[31m27.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.13.0-py3-none-any.whl (436 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m436.7/436.7 kB\u001b[0m \u001b[31m18.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.12.2-py3-none-any.whl (414 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m414.8/414.8 kB\u001b[0m \u001b[31m24.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.12.1-py3-none-any.whl (413 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m413.7/413.7 kB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.12.0-py3-none-any.whl (413 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m413.8/413.8 kB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.11.1-py3-none-any.whl (392 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m392.1/392.1 kB\u001b[0m \u001b[31m16.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.11.0-py3-none-any.whl (391 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m391.7/391.7 kB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.10.2-py3-none-any.whl (392 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m392.6/392.6 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.10.1-py3-none-any.whl (392 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m392.5/392.5 kB\u001b[0m \u001b[31m22.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: appdirs>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from pylint>=2.5.2->notebook2script) (1.4.4)\n",
" Downloading pylint-2.10.0-py3-none-any.whl (392 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m392.4/392.4 kB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.9.6-py3-none-any.whl (375 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m375.2/375.2 kB\u001b[0m \u001b[31m21.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.9.5-py3-none-any.whl (375 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m375.2/375.2 kB\u001b[0m \u001b[31m25.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.9.4-py3-none-any.whl (375 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m375.1/375.1 kB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.9.3-py3-none-any.whl (372 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m372.4/372.4 kB\u001b[0m \u001b[31m18.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.9.2-py3-none-any.whl (371 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m371.3/371.3 kB\u001b[0m \u001b[31m21.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.9.1-py3-none-any.whl (371 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m371.2/371.2 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.9.0-py3-none-any.whl (371 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m371.2/371.2 kB\u001b[0m \u001b[31m26.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.8.3-py3-none-any.whl (357 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m357.8/357.8 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.8.2-py3-none-any.whl (357 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m357.8/357.8 kB\u001b[0m \u001b[31m19.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.8.1-py3-none-any.whl (357 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m357.6/357.6 kB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.8.0-py3-none-any.whl (357 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m357.5/357.5 kB\u001b[0m \u001b[31m25.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.7.4-py3-none-any.whl (346 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m346.2/346.2 kB\u001b[0m \u001b[31m19.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.7.3-py3-none-any.whl (346 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m346.2/346.2 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.7.2-py3-none-any.whl (342 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m342.9/342.9 kB\u001b[0m \u001b[31m18.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Downloading pylint-2.7.1-py3-none-any.whl (343 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m343.0/343.0 kB\u001b[0m \u001b[31m16.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting mccabe<0.7,>=0.6 (from pylint>=2.5.2->notebook2script)\n",
" Downloading mccabe-0.6.1-py2.py3-none-any.whl (8.6 kB)\n",
"Requirement already satisfied: toml>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from pylint>=2.5.2->notebook2script) (0.10.2)\n",
"Requirement already satisfied: asttokens>=2.0.4 in /usr/local/lib/python3.10/dist-packages (from yapf-isort>=0.5.5->notebook2script) (2.2.1)\n",
"Collecting formate>=0.4.5 (from yapf-isort>=0.5.5->notebook2script)\n",
" Downloading formate-0.5.0-py3-none-any.whl (70 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m70.7/70.7 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting isort>=5.5.2 (from notebook2script)\n",
" Downloading isort-5.6.4-py3-none-any.whl (98 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m98.9/98.9 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting yapf<0.32.0,>=0.30.0 (from yapf-isort>=0.5.5->notebook2script)\n",
" Downloading yapf-0.31.0-py2.py3-none-any.whl (185 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m185.7/185.7 kB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from asttokens>=2.0.4->yapf-isort>=0.5.5->notebook2script) (1.16.0)\n",
"Collecting deprecation>=2.1.0 (from deprecation-alias>=0.1.1->consolekit>=0.6.0->notebook2script)\n",
" Downloading deprecation-2.1.0-py2.py3-none-any.whl (11 kB)\n",
"Collecting astatine>=0.3.1 (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n",
" Downloading astatine-0.3.2-py3-none-any.whl (16 kB)\n",
"Collecting attr-utils>=0.5.5 (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n",
" Downloading attr_utils-0.8.1-py3-none-any.whl (60 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m60.7/60.7 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: attrs>=20.3.0 in /usr/local/lib/python3.10/dist-packages (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script) (23.1.0)\n",
"Collecting dom-toml>=0.4.0 (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n",
" Downloading dom_toml-0.6.1-py3-none-any.whl (12 kB)\n",
"Collecting prettyprinter>=0.18.0 (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n",
" Downloading prettyprinter-0.18.0-py2.py3-none-any.whl (48 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m48.0/48.0 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=7.14.0->notebook2script) (0.8.3)\n",
"Requirement already satisfied: jupyter-client>=6.1.12 in /usr/local/lib/python3.10/dist-packages (from nbclient>=0.5.0->nbconvert>=5.6.1->notebook2script) (6.1.12)\n",
"Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.10/dist-packages (from nbformat>=5.1->nbconvert>=5.6.1->notebook2script) (2.17.1)\n",
"Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat>=5.1->nbconvert>=5.6.1->notebook2script) (4.3.3)\n",
"Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=7.14.0->notebook2script) (0.7.0)\n",
"Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=7.14.0->notebook2script) (0.2.6)\n",
"Collecting ruamel.yaml.clib>=0.2.7 (from ruamel.yaml>=0.15->pre-commit-hooks>=3.3.0->notebook2script)\n",
" Downloading ruamel.yaml.clib-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (485 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m485.6/485.6 kB\u001b[0m \u001b[31m30.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert>=5.6.1->notebook2script) (2.4.1)\n",
"Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert>=5.6.1->notebook2script) (0.5.1)\n",
"Requirement already satisfied: toolz>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from attr-utils>=0.5.5->formate>=0.4.5->yapf-isort>=0.5.5->notebook2script) (0.12.0)\n",
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=5.1->nbconvert>=5.6.1->notebook2script) (0.19.3)\n",
"Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.10/dist-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=5.6.1->notebook2script) (23.2.1)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.10/dist-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=5.6.1->notebook2script) (2.8.2)\n",
"Requirement already satisfied: tornado>=4.1 in /usr/local/lib/python3.10/dist-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=5.6.1->notebook2script) (6.3.1)\n",
"Collecting colorful>=0.4.0 (from prettyprinter>=0.18.0->formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n",
" Downloading colorful-0.5.5-py2.py3-none-any.whl (201 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m201.4/201.4 kB\u001b[0m \u001b[31m20.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hBuilding wheels for collected packages: wrapt\n",
" Building wheel for wrapt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for wrapt: filename=wrapt-1.12.1-cp310-cp310-linux_x86_64.whl size=71468 sha256=52451a728e183405e579d6bcf9836f2f576a5cd4ee814218a6853425ad549fa1\n",
" Stored in directory: /root/.cache/pip/wheels/8e/61/d3/d9e7053100177668fa43216a8082868c55015f8706abd974f2\n",
"Successfully built wrapt\n",
"Installing collected packages: yapf, wrapt, mccabe, colorful, ruamel.yaml.clib, prettyprinter, mistletoe, lazy-object-proxy, isort, domdf-python-tools, deprecation, ruamel.yaml, dom-toml, deprecation-alias, attr-utils, astroid, astatine, pylint, pre-commit-hooks, consolekit, formate, yapf-isort, notebook2script\n",
" Attempting uninstall: wrapt\n",
" Found existing installation: wrapt 1.14.1\n",
" Uninstalling wrapt-1.14.1:\n",
" Successfully uninstalled wrapt-1.14.1\n",
"Successfully installed astatine-0.3.2 astroid-2.5 attr-utils-0.8.1 colorful-0.5.5 consolekit-1.5.1 deprecation-2.1.0 deprecation-alias-0.3.2 dom-toml-0.6.1 domdf-python-tools-3.6.1 formate-0.5.0 isort-5.6.4 lazy-object-proxy-1.9.0 mccabe-0.6.1 mistletoe-1.1.0 notebook2script-0.2.1 pre-commit-hooks-4.4.0 prettyprinter-0.18.0 pylint-2.7.1 ruamel.yaml-0.17.32 ruamel.yaml.clib-0.2.7 wrapt-1.12.1 yapf-0.31.0 yapf-isort-0.6.0\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import notebook2script"
],
"metadata": {
"id": "fWRIR89nHTFR"
},
"execution_count": 12,
"outputs": []
},
{
"cell_type": "code",
"source": [
"notebook2script('app.ipynb')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 166
},
"id": "izdHKJuMHye7",
"outputId": "87b58be4-d2be-4db5-8e0f-58fb7448605f"
},
"execution_count": 13,
"outputs": [
{
"output_type": "error",
"ename": "TypeError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-13-9e3732d51e24>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnotebook2script\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'app.ipynb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: 'module' object is not callable"
]
}
]
}
]
} |