{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "id": "RsCFC9UFUEUz", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "fafe6ee1-558f-4851-87de-932ce91cb4ab" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.8/19.8 MB\u001b[0m \u001b[31m66.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.8/64.8 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m65.7/65.7 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m289.0/289.0 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.4/75.4 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m24.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.5/50.5 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.7/138.7 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.5/59.5 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.7/58.7 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m82.1/82.1 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.5/46.5 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.7/43.7 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.5/84.5 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m74.5/74.5 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m56.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n" ] } ], "source": [ "!pip install -Uqq fastai gradio nbdev" ] }, { "cell_type": "code", "source": [ "from fastai.vision.all import *" ], "metadata": { "id": "mkmZgYtGRsPJ" }, "execution_count": 3, "outputs": [] }, { "cell_type": "code", "source": [ "!#export\n", "from fastai.vision.all import load_learner\n", "import gradio as gr" ], "metadata": { "id": "2dvRZVSdKI2Y" }, "execution_count": 4, "outputs": [] }, { "cell_type": "code", "source": [ "!#export\n", "model = load_learner('/content/drive/MyDrive/Food_303_Dataset/RAW_DATASET/222/food_items_v_2.pkl')" ], "metadata": { "id": "krNUfhtzKkFq" }, "execution_count": 5, "outputs": [] }, { "cell_type": "code", "source": [ "food_names = (\n", " ['Aloo Baingan', 'Aloo Gobi', 'Aloo Matar', 'Aloo Paratha', 'Aloo Tikki', 'Apple pie', 'Arayes', 'Arayes Kafta', 'Baba Ghanoush', 'Baby back ribs', 'Baghlava', 'Baklava', 'Balah El Sham', 'Balaleet', 'Bamia', 'Bamieh', 'Basbousa', 'Batata Harra', 'Beef carpaccio', 'Beef tartare', 'Beignets', 'Bhindi Masala', 'Bibimbap', 'Biryani', 'Bread pudding', 'Breakfast burrito food', 'Bruschetta', 'Butter Chicken', 'Butter Naan', 'Caesar salad', 'Cannoli', 'Caprese salad', 'Carrot cake', 'Ceviche', 'Chana Masala food', 'Cheeseburger', 'Cheesecake', 'Chicken 555', 'Chicken 65', 'Chicken 65 Biryani', 'Chicken Biriyani', 'Chicken Biryani', 'Chicken Chettinad', 'Chicken Chilli', 'Chicken Dum Biryani food', 'Chicken Frankie', 'Chicken Fried Rice', 'Chicken Handi', 'Chicken Kebab', 'Chicken Korma', 'Chicken Liver Fry', 'Chicken Lollipop', 'Chicken Manchurian', 'Chicken Masala', 'Chicken Noodles', 'Chicken Popcorn', 'Chicken Pulao', 'Chicken Shawarma', 'Chicken Tandoori', 'Chicken Tikka Masala', 'Chicken curry', 'Chicken quesadilla', 'Chicken wings', 'Chocolate cake', 'Chocolate mousse', 'Chole Bhature', 'Churros', 'Clam chowder', 'Club sandwich', 'Crab cakes', 'Creme brulee', 'Croque madame', 'Cupcakes', 'Dajaj Mashwi', 'Dal Makhani', 'Deviled eggs', 'Donuts', 'Dosa', 'Dumplings', 'Egg Biryani food item', 'Egg Curry', 'Egg Fried Rice', 'Egg Masala', 'Eggs benedict', 'Escargots', 'Falafel', 'Fasolia food item', 'Fatayer', 'Fatteh', 'Fattoush', 'Fesenjan', 'Filet mignon', 'Fish Biryani', 'Fish Curry', 'Fish Fry', 'Fish Masala', 'Fish and chips', 'Foie gras', 'Foul Medames', 'Foul Mudammas', 'French fries', 'French onion soup', 'French toast', 'Fried calamari', 'Fried rice', 'Frozen yogurt', 'Ful Medames', 'Gajar Ka Halwa', 'Garlic bread', 'Gazpacho', 'Ghorayebah', 'Gnocchi', 'Gobi Manchurian', 'Greek salad', 'Grilled cheese sandwich', 'Grilled salmon', 'Guacamole', 'Gulab Jamun', 'Gyoza', 'Halva', 'Hamburger', 'Haneeth', 'Harees', 'Hareesah', 'Harira', 'Harisi', 'Hawawshi', 'Hot and sour soup', 'Hot dog', 'Huevos rancheros', 'Hummus', 'Hyderabadi Biryani', 'Ice cream', 'Idli', 'Jalebi', 'Jallab', 'Jallab Drink', 'Jareesh', 'Jibneh Arabieh', 'Kabsa', 'Kanafeh', 'Kebab', 'Kheer', 'Kibbeh', 'Kibbeh Nayyeh food item', 'Kofta', 'Koshari', 'Kubbah Hamouth', 'Kunafa', 'Labneh', 'Lahmacun', 'Lasagna', 'Layali Lubnan', 'Lgeimat food item', 'Lobster bisque', 'Lobster roll sandwich', 'Lubia Polo', 'Luqaimat', 'Macaroni and cheese', 'Macarons', 'Machboos', 'Machbous', 'Madrouba', 'Mahalabiya', 'Mahshi', 'Majboos', 'Majoon', 'Maklouba', 'Malabar Paratha', 'Malai Kofta', 'Malfouf', 'Malpua', 'Manakish', 'Mansaf', 'Manti', 'Maqluba', 'Margherita pizza', 'Markook food item', 'Masala Dosa', 'Mashwi', 'Matar Paneer', 'Matar Pulao', 'Meshwi', 'Mhammar', 'Miso soup', 'Moghrabieh', 'Molokhia', 'Motabbaq', 'Moutabal', 'Muhammara food item', 'Mujadara', 'Mujaddara', 'Mushroom Biryani food item', 'Mushroom Masala', 'Mussels', 'Mutabbaq', 'Mutton Biryani', 'Mutton Chops', 'Mutton Curry', 'Mutton Korma', 'Mutton Masala', 'Mutton Pulao', 'Mutton Rogan Josh', 'Nachos', 'Omelette', 'Onion rings', 'Ouzi', 'Oysters', 'Pacha', 'Pad thai', 'Paella', 'Palak Paneer', 'Pancakes', 'Paneer Biryani', 'Paneer Butter Masala', 'Paneer Tikka', 'Pani Puri', 'Panna cotta', 'Pav Bhaji', 'Payasam', 'Peda', 'Peking duck', 'Pho food', 'Pizza', 'Pork chop', 'Poutine', 'Prawn Biryani', 'Prawn Curry', 'Prawn Fried Rice', 'Prawn Masala', 'Prawn Pulao food item', 'Prime rib', 'Pulled pork sandwich', 'Quzi', 'Rabri', 'Rajma Chawal', 'Ramen', 'Rasgulla', 'Rasmalai', 'Ravioli', 'Red velvet cake', 'Risotto', 'Rogan Josh', 'Sahlab', 'Salata Hara', 'Samak Meshwi', 'Samboosa', 'Sambousek', 'Samosa', 'Sashimi food', 'Scallops', 'Seaweed salad', 'Sfiha', 'Shakshuka', 'Shanklish', 'Shawarma', 'Shawarma Rice', 'Shish Barak food item', 'Shish Taouk', 'Shorbat Adas', 'Shrimp and grits food', 'Spaghetti bolognese', 'Spaghetti carbonara', 'Spring rolls', 'Steak', 'Strawberry shortcake', 'Stuffed Grape Leaves (Dolma)', 'Sushi', 'Tabbouleh', 'Tabouleh', 'Tacos', 'Takoyaki', 'Tandoori Chicken', 'Tandoori Roti', 'Tashreeb', 'Tepsi Baytinijan', 'Tharid', 'Tiramisu', 'Tuna tartare', 'Umm Ali', 'Vada Pav', 'Veg Fried Rice', 'Veg Noodles', 'Vegetable Biryani', 'Vegetable Pulao', 'Waffles', 'Warak Enab', 'Xiao long bao (soup dumplings)', \"Za'atar Bread\"]\n", ")\n", "def food_item_names(image):\n", " pred, idx, probs = model.predict(image)\n", " print(pred, idx, probs)\n", " return dict(zip(food_names, map(float, probs)))\n", "\n", "\n", "\n", "\n" ], "metadata": { "id": "B0TzDTyAmAiU" }, "execution_count": 6, "outputs": [] }, { "cell_type": "code", "source": [ "img = PILImage.create('/content/drive/MyDrive/samples/test_3.jpg')\n", "img.thumbnail((192,192))\n", "img" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 209 }, "id": "Bk67K7LHScqa", "outputId": "a195ca90-e08b-4239-fe47-410169187ec1" }, "execution_count": 7, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "PILImage mode=RGB size=192x192" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAIAAADdvvtQAAEAAElEQVR4nAThZ7BmaWIY5r3p5PzlcHP37dw9PTnubMZiIxaBRCBAEpAEkrLEkiVZtlW2//ifJVsqqcoqCqZsUhRAgiARCHB3gc27k0PPdO6+OXw5nRzf4OeBB//4SjA8al1w6jX13e8kbFMaV+Lhw0C39GCGLJW2vex0Kj2I8s///j/41u/9F7LZ2j/b+9EPfvDow/sNVa1YURFsmS4VEsNEIxwziJGGFYRg7skYCMIAVnB6rZ2+sq0sHr1/9nTPsWuG7dRMJLFwmJJlWlq1mlt3DR1n8XI+CeutjsCEA6RK2snBCWRhE2A5ZbMyk9Zanf5aARmF0NHdPEogYFEwxaoqKZpMyzxnqyBzbK1hqYeHJ4pp9Ta3iaoKhI4P9lxNGJpWZbmoaJlmrKJVVmgYCIhnqQjjvGbqjU3bTxJFtmXDyjjtbPVXQQYEcy1dEjiapYePB6aj0SqPl5HjqAKyJAOLChoGarJ0/fYzeXuTFkIEMdKcjHEuRBbHJ48eZlHQ21pza+2iKjgqEJbqtT5RVQ4Unqfp/KDf9WSrXgEO0iHyh5Wfz5eV1V5T2zWMmVwVy8FgNlmYdothyGBpmbquq0iAPIiyEmPTtsyEoIRRSGlDcXpyy0rHk+WTfaWimcTPI5/6SKIFpJni6O3Ll6xe19J0mkY8i/LYVxW5rKo8IXkusrwYTYb9ftswZFUrBNL2ni5H++cN3Tw+Pm3vblvdOiH6yq3rjW5nOTtr9LIpc+99uMQ6m0zolavNcMYWK+XSulkM8+Hdt+PJrzXstu60ups75/unoKwwJIgQBUs6JLKMbEtFjAAhSxrBsgkZUpHAiHVr6vObrlEcnyzmnoK7nlZJJOGAA1UouiEyVyFSnqa5AFjpb2xomgEQnk2m4SoYHe55rjKpaOzHK1beurSmKFKV5Josl3FyuLff7bZrtWaBpDAuecVGJ6e2ZXUMS+RxFmSxnxqSpui6rGlb7X6apP4ySsK0yJLZZNys11RWKgpWVMuUCJNQOPOrrOICL/NpXg7dZk3PdaTLSEEFz4MiXa0iptGg8itaaS1DrZuGa3RUl5xOihh+up88+ZCcJfdm/nmc5KNcD9OcCsDKimUpLwoknymyXrISE4AJ0VWjRjLDllUMdCEuXdx2urN1UzZgVNdVSdeNMpZ4JFYlRdBP0rBEnWc/p9XXOStEFczHZ/PZ1FYkXlCrbug2QPO0XCyobPhqqFqOx9VFHuUSxAA3Pc/26mOrOn/6qEpiVGZKK5BsV69mkFIFK8jwxqMgSphfRP4qAFSUcSKqUbPh1nSmGiT3wyyNqK06m82z1cIUgNg1W7IlZFqDe/DyRVVJvU6N5SBWJKJq0NnuHDwcx3mmIjg+eHz66JP6zjOmYdebbctzFofHpqZCAXhRyViYqiwzTjABQtJkCUCumQbIZjqOb641XXAG4oEMRLNuG4TPablgUKs1mk59fvoEF0vbqkHZrrhEDIXRKg0DWKT5anl1a21to8N4NV6tNkyj3esVSboaDmRFnS2TxSo0DIMQsIoWRVKqCrAwSlarkyKWMa7SytI1tgrnk1mc5xkTBSeuYzebNUTkLdd1LEPFNBicZ1WVVSCv+PrORehYSV7yIMmiKJXIo8HAsV3TNinisu30b9yUNCdKl0/3DqYx2T9nZx/448lyOJ1OUn9aSHl+j+VBXiHGZJIHHOFKIAQR5AwBwaEAEACOAcQQMIR5iRyhpAoBpnDxzwNol+uy2/Y0r0Y2e96FNUvPgy2CurYDK6bLkqOjNJ9ypAAgIUnrbV60TLNISz9Z8rLMV7RaANkCioEIS7IZqDWblW4Ex6cV4Kqucj80bdlrdoUQIk1QmiTLM8E444ps96hQF2FQAigpJpEBgQRK2M9Zspw5VrmcTkxdSpIVNExVVWUske//YPSFz1+IMrB3RFqyVCH/1k3l8aNqmRTLI/rcy7r9nPvhQz/HqiWj/bsf3/j8tyyzWbPNVqezODwWXKhYQlwQScKyASVJUhwMFdfVaenLxdTAq/UmbpAAhNNkMeVY4hjkFR3NfW1te/vyFZH4PsodR1LkiolsPJuBUNEVJVqtIGVVnnfXmlkUlwQ0tjcUwyCAnA3GmmEYmq4Y7sUr10fDQeRHGqc1kJgMQQy44cj1xuj8TFIkSsvJ8Fw2DN1x0yjRiNJs10qaSwZxPVs1VEVTVNs4PzidrqL1nUt23UlBBhAFjNmO11zfgpLqNvoVw0+OzpJU+vjTcP9k/+mTk8kkWvlZmPlpGVeVgByXlOWIqiIzqZA5LrgERY4hRBALADAShGCk8LKgCBDATEyQAIlaMsYqzhgtswrAyq8+REMgYUlSNOJ4st6ypV4N7G40r17otVx59nBvY63tuPXFasWTSNIaFZNwo9PuXc6iCJixVsbLkydgOmlkGZU8ab2taDrVlFKXtJp+wV4b0VVT1XRdjwsWLiZBkMuSJGkwmoyhaq3CM1xJtmEmaVhv1Xs7mzlgOLIXw3F3vdOrOZaqcck4n6+WQUiEZEwC9cc/34t9enSIGzu05ggTIyFJRRLyaFAzCEJVw5Lmk+Ds/sd5MK5ZDVPR+p1u2O1iIWRNx4LomqnZBiZIV0yWU0Bzma4a/KRr85oEWQBX4/n4ZBlhGzFcJDEjer/dINEs8sMkiDPdy/I4SoPpIu30umEYLabzMIyardYkjGTA7U5DM635YCoJnKSlW7OwpmOGl8GKVqVtqDyKRRZDBRuyptVb7vq222nTaDU+OdYkx2625Va3AdB07/FoMmz3O921joBitpjJZWVC4jTbDaD7aUhhrkJhKnpvezOH2jhiBdDe2j+5v3+8t386nAR+RMO4LMtQiFJwIgC9uNPJwmQ0SQFAzbLiuZZxncmc4TgXKhAICgghY1W53rL+wX/02gcfPnjrraM4KgAHbkPabDv7B0sGkG6zJKsoVzSOECtFXgiRhQinC3Z/5P3NXlx/97TjyF1PuXohvHIhvdivs1JOzxe9bU/BqiAW1nXNdnnlr5tSeXoYjSYpWASQt9b6nXoLEyprCoeUIzSaTutebREXJ9OlhHXI03YLm46R5cFGxzbVesPzlrMxJMCUmWPqxGjJAC6mcwkxVSF+zhAUSOSEy+lf/NWD+xN6eYf5iViT3TxO1juSqFuqPTdMXmXG1VZiIkHqnXNPj5dTdw1pquE5rms7UeBjiQCGhGBlGhqWhoUiaJavgr6TXW1CQkMahedRkUeF2bxgt3ooz8ZPnmxubpRRsJhOB8chUrWSOZAQgHKVYFAyUdJWs91q9RXbQprGIx9LysnBaThctGvNRrvLCE+EyMqi4tzQVA3DVUErobIojLJl23J5skijVSFYe7tn6QZTDLnfYzkt71Ndt2TZZEIREGDZFpTneQxLoWE5z2PVkVVvDWvu03ny0zt3H5yHh9N4Mo2CICryXHAKAIeAS1BGTGe8RIKtW8prn7n2B//0+288a3/refPufvyH70VnEUSQQoERoFgADAWHouPCG+3x53/v6ifP9f/1Hz99erT4u7/y6muv7f4f/ss/skznt3/nxR/97K2fvxdkuYOggIwJQCsJp4jI4WKrD5bLeG/MjxXtowcTr3O42a9tmWjDQS9hc8d0uWBVmUlxhvMw9FeK11GtmiqypGDJKgRhxGkEum6puu3tK0f3H0xSYXe3tzo7GDLEqIpAmaSE483mWiyLEmfbF9uDgwM2G6JYj8JkOZomWQJS4sfxeQxU3USyRnYvdp8ejBstsXvpAgnCJAx6DhCEnwz8DgOAF+f+xFAJy4vXnmuuU5Ytz7nIZUXIGoGqvDqJCFExkVdF6NoqQeYqzBRI+9Ls5pqMIMnmbDqJO9uXN59pME4zRs4+/Zgtx1RlM1iZDdfdbGMsLdPMtj2OseVZtd2rWDeyssySxDZ0mmejwWh1fL6IYs0wZbOsleVqFtqNRqfbWR2fsWVQsIKvQn+VnoRJrupraowf32k0rNZu3zD1sipCf+6ZJksyWwGaTngWHD2crOKCyHrNsVM/VRDp9Na9Lh8tRj/4NHzv6c/2j6XhTImK/SoveMkRoDLACCIOIIWQV5yxgjJCmLzVrn75c+QZfbvWWF3Zgl+82tjcHf/f/rm5iIEiOICMYVRiWYZgMog+fn/yjVeTX7q2+PL/cfck3e5c6v3Zdx8cjapuV2SzR3/ndfJKe+MPfrwcj9BztzyQ2cfDeVCIrz639o2vbP/5D+++d6eIYj/lSjhf7h9DYip92/zOvnj28ukLa63dTVSz8PKcSnqCVVW2CYItGTJdk7PZ7ujsnXQ8a3cUCaILt5/BrgUJnI9GpMpNRQNCDXVHZiKPV0TwIAg1twYq/OGdOzsXLmBdjTkPcraMGcLMqTd1hNKyIsEi/7WvXK3XMpmZWcLHg+TpcblI1bMVtTxXVdxH48laTUEVevp0tCxy0h/3GSQYQygc19U0tcxzzZIwL1kmgjgnlGpstrnBNJkXjCRJ4XotAfFq6cuSWM78wp+ZMlQl2N+6gF2XARSFiWuzVqM5GZxZmgyAGI9GOWO1ek1S5ZPDp1ESq6b1zO4VWdeLIgsC33Zdr9UOkniVJpIQSs3zaraYB9pkmeUUaXBjc03CIkuLRrNFy0oBxD85G4/mpIJZkSRpnFciq6BmSsLFtZ11qkgnlfTdH9z/9NPBoc8m4TzM04pVWDCVSwggIAAElDMBAMAQxYjmUDhYfuPm2q9/s92yTuRORqtSyIDo9Mtb+g+2zD+8H2GZYAgRZAAICIGf83/1neFuZ23juSoLjta6dUDPP/7J2XqL2EZ69Clxb8D1a/w/29z+2Xf2/sPf3d7daA7ne4vYv7BWKujDGxekh097f/Cnpz+6ZyDGCMt4Gi8G8tnxo08f4r+26us7yu2dSxdr6tX1TJkMjRQIrS50J5ebUre+tfZyOmF5fJTnVVlVSlkSUTllVQhcliVRNN1qIIiAqizHJ3EQDxNqGVYJiJ+WzYbnttt+XAZB2Gl3EABZEglekXgYLKOVGrK0kvqXVALcH53G536FDRNbGpXtJ6dnRVDULXKQJkiC8mSCqJAIgYCrMoZAAMGB4KYiYUlexEWtHDeVUcfqMIDKuMAAKZKMBZARYYkvRYs1z84l3uj3OJGiJC2ZJGHNUlAWR9FqbpK6SEJSFmvttqSrUbBUZNy/fQNBKUiyhe/PJuNet1mznSKO95/uSQJ2m3W330YS1jaqelIUWSZJQtVEXuZJxM4PT6L5UpaULCuS1YoVRWHUazu31psNBxY4X00l/Ok4+mA/eff+5GToR35UBCEAnEEmIZ1ALEQChCy4XCEqRIUAglzqC/TiNfr1L8M3n8Gu7k8OhvNRaKYyh5nmcClVPn9Z+flEGgVMQZAAIQkmACiwvD9DP3xv+uYzLgaVDldYBP/o71+6t3f22Td3pIIOF9Ef/PGDZ55Jvv3L9Svbuu0EXs3mTCtnPk9KqazefC5n2k72x77h6G+9fawCoTCRcX8R0Gg+Phqod++Ely9ql9rqa1eu3d6R5dmxtGFT1AUikZVQsXtQ6uWLpT8f4DC0IGtoKidyVRbT+aiSsyDLdYlJFfW85mK6yKuov3NRQNzqrUdxVFWQw+HmztZqtUzLlFFKmgikORXeBX/FxfzEFjBKeZhUCqkkgOPpeVOVei2p2bJdWLBsGcRjwBIgaxAIjBFnpYAQAS4ralryOPHtctJ0mWBFUellklZpqkly6q8SUOmYaiwjhEiuLRt6gVAwW4TTxNI0Avl4cIqhSAGaRcNarw+qnJcwWC0RBFlZAkSTLKnKwrNMTzfi0Xg6XySLZb/Td1Qry8vVPKkyli9XrqoohqQZtqRrvCr86QIKiVWwKlir01M812j3zVa/YCJc+T97+4OPBvmD0+xgBOZBTosFYVEPo2/92ton9yaPPpVLzLhSCUQ5QgxxgQXmAHH2t761+/d/QbS0YzY/OT2pTzNS39iKl3GzLOQGFXbts01yLnn/3b/e51DiAhFQUYBLaBQCCZkhrCo41EFMkLh5af/yWk2XJxkZULQ1eIoP7iVf/CzpeZO1TgSodHjA1y1BJJXUdpVeXXp48g+/fKV1ufrow7MVBaWccMQu2tLnnjF/8LPl0j9++x54+GRt//CjT9YWX7tpOXo3md1tbFQsnMR+FDPWq9cv3+4yVC5GJwfnp7aqGRK2TKmUoJCQZ6nRNNc1S1GM8Xjmh0lWsW6UTmYzVTcVTR9PJjXPMTWlynMiSygWxk/vDg6P81dv4BrMR34el6zbkExRaqpy0RYXesSnMZGhpyiN9ToXJQAaBBwInsTRKl8kaRxqBgRMK6dNPUZASaMo9JfD/aOGKUNO/SwHNK9p+PjpE0nXeltbclEWlC1H0/x8rrlWKajKKJHVYJUQVVE1NYrjgwcPVEVe73arMmVCtDzXZ+zp3cdKluKqrGma3mpBIUBe5LzAgksQFqxM4pRITrhKC0rTojAM227ZUZIqnoMtOzG6jsaL2eEwZH/89umPHlTLcz5bLPJqSTC3JISEbEj40g579lbz7JXaKitPBs5H7w3SQuRA54AgVhKe/9ufHb53T3+2Cb94s9isrTyMTaUGO9pguNi5rKubbSVafGGI3r/Y+Nn+gskG50AIyIUgoDIURACvN2qUzgo/p8xX0YrH2PBUYM3+L/8VufcgQRllM5EmMuXT7TayHTsBWO6blWx22jlEDxo6ueDK96a5bggiy7VK/cJLG3f3ivmQliVXyPzFDapEc2djPVjRILm3cVEoZFO1rs79syiOhSIDRa1fvJYD6fDTT10VebZFiFwz5VbDslSFJpVt103TuXPnXhaHvh8maVGm3NKNcLVsOBYhclxl5P4gTjN0+TnjYm9zcB5MKYsUlpUME9WQCcriyz3z2qXuSiD/dOjpZkA5gBoDGEIAgMiLnFU0S9OsKGtScqMWtUmahERCEVFgr9OsGTjPM13BSZ7rirO1exnrmmrbcV4KynRECKk8EwuIS6BDzS6RLBlKmMSSabdaHdswiySxbAVjVKSxKNLLGxsyY5JKClFIWFktl4Phub3Z6/abgIYMBe3NNa/Wmk39he9bipGnxfHpk1qn3b2wRjnNJ0d7U+Nv7p5/8HS5dxZMpitahqrELQlAgSDAXMIDWv6T/9/sjec6L92Gr254w7Pml241H+0PnpzyRQQCv/jGl68NZ/7d96JBJq22iCWzta6Dy2GrL6Z1k1CO0hICZovJb37p0kFUHPocIwAhw7hSaL7RrosiCBaImEC2LI1aLKgoK5Bh60r5+mXz4LA6PRXmK5a/4q21htMFjGu2xar0UOHWlYsa3JKj+fAf/0Yv4FzD9cQk/99/8vB0dPTcRf7oEQJIfPYXlN/4euO7/3N570Fw5abobvWfPGLHY/jcGzMTZXGeKKUNEamiEuZqo38VZcs4jvLV2PGsnAjFtM6PT6ejSexnRZxiKo4PjnavXE6CJMtjyPije/chkksKSEL1BBa2RPZPTt45IoRzXWJzxRlRJRGg6bodXGIrDmnj4YLWVOO8zF1JlUoigUwjgWC0LGQOgobuv3qx38ba6nToNGvr/Z5eN+IkjaK4s9ZPszAYRPU1q6U6UZiPlkGt3ZaZqPxVzVEhL2MmIgY6nXXTdleLkV2r67VGmhfRYqEhmGUMiQqkccPS7Qs7QtYSP1ocHWV5gk2l12221jeFKEIwufTcJU3XYEqbnqNITrDMg+BMdYz69rbp6MFy/KPD5bv3jz45CU7HM5oWqpARgoBRygAvGkBJoFxxiI+Gzvn5IC/Ym6Xc1sWtZ6CtsusXoInY9np399ZWLFbhecIGS7BCh48XNYm79cryLEMzZouVi6R8Lts2aJeL/+zvbv/P/3p5MhxAJCsSVgAsSvlwQtdVJlkA4QzJAkpVjIisczqeKYq+03S//91Z4tr335l8vqlLdRXkKoI+zBlHM8l0WEkdu/j656UoUSZTvGL57/66e2uN1gH4ZziyFPGtl9cNs/3efO/6rPrstsqLQ4c2/vDf3v/zjw5/6Y0rt7bXJMDL1URWNNs1iaWY+iZL85PHjw+fHMTnuHn9GpPV4ei4ZblrHTuc+8iz8iJ0HJVA4/RsQAHc6jRoVpBmjYNYVWE78VNC6LO78iXP++cfJ8PFdGRwd7vdudhFulyM5ekqn+kquG4CScCk4qwSoizKskipBv3nrtjblpz4qaKbqm0uijRZ0TzLKOOSbYos1K0aE3Luh+Ei9kynbntlGCzGU5HHQirNVnNz54Lh1s/OBlmRytTiSZikOUGQ5+V4OjVMQ1QlFaiKUsmSsFtzNric+q5nGZa9f3TuuY7V3swopyHEBYzTPEhSJCnGxratExtWdx8v/u27w7fvTc/PwlWw5MgnGGAiXd9u64hcu0YXQ3z3YTlc5DnEuhL8wpvab39710SRikXpEwNUSIRX+1W/FcmUq4R4mwJo5uwobG2lhKSEoug4WuQLa7MtVsXxh8NrV7qnD89Aq/OPfv/Zf/dXyp1P9zDTXr9sf+cn2YdP6X/7200TB0VmVXACuDA3VCxgPjRSM3ztIlz/T7qmIVVbqmupUezrlgcrVbVMoIoiz0SRy6RcTB5V1SZGa7bAX3mpm/oBlunf/sX289ft65tFSIPXvun98pf7o8f79TpiYGqawU9/YJ4dz168tvaN129c6juyEGURQd0gtqO5rS3ZYIJPR2f50ejipZ2maQFWiYqqloZrPYoA5JToKtYcxvNLN66kwYpoKrSr4nRwIEC17qg24DZJPnvFShLkWfn9wbKnesXZ6SKSNA4nkXCthkQQZSmjtGIYAmZJ+bUmvuBqNC6KKJUllQHMIJnOA41Rr2HR1WhyfIihVmUsC1YaIaYth+PJajZTFA13ukiRu5trAIMwCSQJNDY304rOFzNTNxWMT0/PZSIMxWOGF1diOlrSs6Hh2FiRsiLZbG8DJHW2NhM/lFVnPlmAghMOCii4Ybi1Rhr4VEh/8tPDv/o0/PAoiqaHZYGZEIjLZVlpJv/VrzW/8GKrra+qPD/31b/6m86nT+Zf+VL/tdtqeBJykuFaaZgdPAthAZNIQhsqIImONjAiMUxxB7QNE0yQXpoxH+lds9VuJnfHl0w4myyiwv3BH09rF370m1+78BtfeYFD0KuXf/7HA9WAHPuFXElKi0UcdQWUQPJooQF7sWB6z7a2Y1l1b76BVUkvUE3w6XI0r3LW3lnDosISApUaB/2Dp3wyvatgePmKsXHNWMvx367BVz+zEQWHplv8vd9sPv3ZR2Ws+aX1Rz8p6q5RVuGD/Wg4CZ4czV6+vvb6rY0LXU9mMI2iisd5WTSvXKttbZejs+lwqhuKpikAyxmKp2dj3bQVIsJlirGkYHA+OLd0iazvbu1K8dl4HsxYFeYLbjxNi40muXy99oM7w+8d0PXzw7/1+Tao5mOtCCWz7fQQksoi47Qok0iki5qKNy2ZpSte7yhcw4yBgiUjP/bnuovVUojlqqlLUQqrEqiWl/nL6PQIaLJlO5Zdm4ZZvdlCSM7iSNDSlOSqKLMi7/c7pmEXy8i1bFUCEpYolrKsgFhab9Ycz1kGvmW7VZgwgVSsqaab+2G08FkmHMMwm5bWahaFHBfVX7x3+BefLo/OpzwcA1AxADlXBSMEAI3IbROSJc7GcbMdyKb2u7+yLtGW6sLjafrvvjd5+SZ+0YpAzXj846quYN1bQ4YJSInQichLKmo/+LG/0Wp2NT/l0wwL+3KPFiydrXLAvZdr37qhHx7G253yxfVps9EGZhnmtf/g67FrG3IRMgri8Zl/Kqoanp+Xuzon1ipbqjG+YG0ooGyAAgJGZGxBEUkIsSITQYAIFLRC2LM1+95HH0JE1/qGKkECqmcuO9lsxmgqYI8u/epk6Eh6ZuV//ePhP/sLYmkQypFGlSRiHz4aHA0Xd/eHn33p+uefWev1bCwDACpNtZCwlZbrzyaj0zM+XbqGLlEYjyftyxYt03gxqukWo9X+vXtra31y84VWsZQeHGRYdQ04a/bg5lqvZ0r5ZFDzmtgoUx4t4/LCdvOkmP/8yeqZ5iYHKK8yUKQwXl3paVIRyRBRDqb+WObAIRKBeHB05lmSZ2qEUpqXNGclgxsX17NwcXb4qNOpARVRCKqicnRN5PnB2Ykk4abnMUanq5nVrmMEhah0XVVUdbXyNSinLBcQmpquQFT40eL0rO5Zo8WqqETJSVnSrIq7G5vdC90sLqiuLZfZB58e/uV9//39yWJwSFisyRLPLQiKjFUIQCJVz72w2a13kzj++N2jL36xZjTkkh0pCYAEZynbvd4t0elsYt75BHx6D//D3+10LlXAjJBwqyAXCVU47nhrb701+soXdMsKG9sW6khsCSMHa/WavuUtnhxf3ylvXWl2jTXAD3nK4N7+INR+dJC+olc7IjdZFlH+7o+ASlRt2z7KYI2IwXc/6m83FXcvgnH9wgbRXFgRlWO7VhN5lcSBpuoCLL3a6Be/jn/yI67W0trWmmJfq7ITZJVCjPbuZIvHg1s7bv2GnCYqgwLJi2niylqGyxwSxok+W2U/D09O5/n50ekXP/fS5katSldq0yuLksoow5hLCk2r+cR3NHm9boNkiRFruFqr2SrzyFRxGGbk/O4YxdM0Khy39sp2Z+Oiszofv7ef1mS1b4PbPfzvP06ND+nXbtkFkBO57vQ2K5CF8UKUmQXyG+v20dOz+bKoSqneNFzLViSprKpSEgWBXDMqQcJE+AVs37iaYDg9PW4aas8xgopSBpZ+DECuWXq94cqalmVllha6ali6wVlVUsgpHM8my6CkM//6td2aZ0zH07PlFBGZlQWr1Kos46jww6K/c6nXv9bsuZxWcZIFEfur9x5+/+50/2TuzwMdVCrEhHPDhXOfUSoEkzDEdz89+0mr+u3fbL/UuF6RZVTSijHZUxRF1CrWl7KFSP7mYfFn3xl+5Qv1G1fWiTnOy5jQqpxhTSVpcvrSK9pLX3IURUUlhUZSljO5tll/4Zri1hnMIQK/8nsGCHlRPkYqZMSmijsaVZ88ONu4Kl95dq08XbQ76Fm9ePgA/9E76mnu/5dfUqqwWN07uvlcr76pF2mVpEyqIhiWyXJOJC47qih5MPCfPEmtTu/qLb52fcPabFKS43oDB4k4DqQzf2dNsq8SDDOpql56eeMLE/rnH4akhBkAWFQSTTAitBCnR+f/ZpHeG6a/+Jkrn3v+wmy0AGWl6qTKckOzG52NxWQYrKaYUZ4W2JCwps3CBAoaVeBo6pNwNU8Xi92e6a3V0vn52X7a6NSASN9/nPTd/DNX6hKQK67//HH08arc+fyXjLoT5kWcRLBKdZgzkdNgBTxkYbmmygyhKE6aprbea50PBicnRBBZyGpzbcMy7WA25X7utRtLP6EyUTSp4qGjYM+yoCSVVWkokgo0keXFeKp7VsbEbBofHi+YjK/tdtda+jSIzpZRw6vXGiaENcIxh3kWLvS2u3b7uRyxnE/G57PDgfzjJ6MfPjgbzuYsmrtYrgTKBTAr+Ht/66rrVfcfzv7kz2ZhoSAiX7zcWAySNU8yjBaWWgxPuRSnQZqEdDSYrRhSbem3/rb3ym4pigzKSjyfcUHmY+h2TAK4ouhI4rxc8iSufCCvW6IInEYHOF5ejlo9WxJhUXIu20r9JS7JrVdOv92ev9pXhSpAz1odRtPF8sZt7b271c/3ws1dYsvAudk9G02RZLJMvPejRzmVXn/FsHAOZKbaGlD0OMijQDp+LHWweP3XniF2q+AxgDlSWbBvnL616NZx51lE5dgfA91xXDO/cbX+s0dFGOQASQIhwTiuCsRQhcEqi+7f9/3l6tOj2Zef3/zspo5kUqZAIxJGsL25FqFyPNkvw0h3HaKKlT9rd9rjVRwXlGzWpFxrn43Lj989mVRSTsuXdpdrOso8PFoln9HxN243fvg4PkoUP6Hbt24A3SrnEU1jlCWmjFLBbd3otWp1S2EVCGlF0wJFGRPUMJx2a20aRxmvdEWa7T8ZHR6mQYw0pDpqvd3OGVQdnWBccFDGCWPU1DTI2Gq5FLxiZZoXVR4Wlza6zlbP0zngOYS42dskQHBENNMAJSgT0dna9fptCTAY+rMs/eHHwdsP+Scno5Pz001bD4lMIRCZAioSlnEwG/7eb7x8e1u78/PlJyc8TMX/9C8H33zd+a2v1U9O9gjfM3A1nFlP9qdBwSLgBrnckKCNwKcf00ovn7+tG3r9ZNJ5dDi/BVcXr3j+KqoWskSAyEFS0nozkGRlPn7UuF4HUMd0zkBd3+oKVvHsAxTnFUCUBp5tr2S5oNzSJBO6RcK++W230Tq3Nd3nUnkWNIjA4SwL8teuq7JnU0ktGMc4q5J0dVbGRd+ut1/9lcDbaRIPCzxVhMGomg/HPNHv7+X4FlMmueXWjZqFdUMv4tOT02rFKSQYVAIBSFSZQ1EmJS5USDXBx6f5NCing1X2ws4z6zrRMW4oC5hbUHPVWlHrLCiSFEtRlLqHG56XRpGt6+TtT0NUFKZtTcdBpps5AB0DtgRMbbDW7Waxn3C4dxxCCV/eqj37ymcyYWfLAxjPYFUgICRZxhLJyjLOkUkULFgQJkGa9zf669vdkiZ5tHIVhY8G/mJk6Eg2PN0xmp0mhyhZRbTkmaUHWUHLvO7YsqanYVQy3mw1VA3KVV5VketYdtPmRZZHfrqMW61NJhAtxdnhOK9y07Y7DZsWxdnpI0yUP3s4+v6jbO/JWCz3f/m5+tFRPFsSYWe9TUvJZIWi+/cWWch7DvnCc3ZSxY/87J1F2llzGvfxxz9ZvLhVf2FjPRrNViNBvdasghmX0pFaz4ofP47fhIPbr15GysZ//798sObQz1xU42GwWCXdq1e0do2nvknGxAhgXsdFRJNAqd0STh6Hw8I/0nEOaUaExLGjWDX83BVDlav0SDPoIinCKd7Yyr/5ov2z9/A//Rv/d64RTSOBJhZU+cn3eYyqxTLUrfSrb5q7RIzuV3/96WD3TfTt390BslbRuQQKmuSr8aGjdxfTlCt0OAMC4GaTcSu0nKLpqm/ecB8+WD04zzjAVVWsXdC+8rktUOhv/3z65OmslEuAKrZc3QuyRVB+7pL13LX+VdthZcBRDiExPK/kNPBXcpVfvnjBtg0M2v5yRd6e0he3mx0Xvm7CiiYEihqBIoxrqlzJaeCvIq549fp4sXj+Cy93tnbnhQinpyRbgiIlggNVBZhgmViei0SJs8A1kL2+0+i3ZAPnOeu2m4v9g+Vq3l5vSqa2iFJT1VheISRXQVplJcdymiYtz7JkjSVl5meWEK4kLcMoKktv7VKW0cXRcc0yLVmXRRxOBpmQ4jTXNc2z1I2dfk55nlT3p/F7w/H7e+OH+0sYhh1RvnhZv7GT/MG/YPMAffv3d5/dVpLjYjEcLk+e7rb5118GCZNGb0dZCX/w4/0f/XgimPR4dy59G1Phl5a+SB0uWTquLExtbf6LX5Bf3ZJgYsmN6OZV/ewJmMXMJlVtw9GaogQDIYcyQZWvVMMFXKF0f8963hHNiywE5SAjusQUSXJV2bR45Vf5ESg1zPGEO+j6Jnh8NB9Ud87MH76dfXmzu6bOxqdKoiWsj3/+uBpU8dW6k4f604f80q3axWcRfk3qX7v94VsfrW0oLU8N5itUjmqmnC0mhw+Hu1c6dVuRWMQpDhdZFo4v1nsv3bKx1phkZlKyp0flnTsPWqh4/gVvDcv/773sPAcZkTUOZZ7sHzyYVhvnpQSoerOrY7mkFucqNmq1dr87H4/OBqftop4X+SrNiVtRFqzOfAoRQZzVdDyeVQ4EWIIMVZqpDMfAMDRbX9t580vQMIvxMPNHGkvL2C9ZEq5WXrMhaXJUZiYpt7t2QUlE8fn5qeFI7d5GsgyQqpiOlQscx4WMlNhP42QWJzmEZH1ziyKsyaUnSfnKLzI6n656Gg/ms3lWrl17xups3v3oHs0Z49Gy4hZGDduMiG0RvNZvnh3sHT7ZZ0pjmpH39sJ3H09Pjs7lCpYZPyrkP/3x7B//Cvqtb9f++C/m8wfL53/xFuyOWQgAPaeJpIvEBhLK1UQVRFBCqQQgy+WTJ9EwYgxoBCNelHVt8cxuUqsH7YbXUapq8Klyeed3f+flf/OH7/m42NjUdZdWYk7kCuAQ8VaZOiKfgUiYG1J5/hbRdryeJTqXeR7ydAklVCHBwwVGTILuYpBGtNNY6ZOTlGOah/7feta5KlbLCilOmS3L7d7G330V3n+yamyD+TipCeOtDwaXXu7d/OyVn33vw8HH4QvXr330g3t1Sd3cxOkk0uvO1e16VQae5QpKBBDbnW2hHFEBmm30qg1XAVyF8tUt3MSN6GHirs2/dOvgwv9153/7d+N3H6XLCAkB1UKdHYQ/Xh0sl6vP3Ox/9uaGF2Yt143U0tQ0CMD58fH5cAKJPA8z8tUXTVmz9wbReMVBgQQVWY42HLVmG5al4ipBMh48Pa+98ZnOK19OWZUMHosqyrIEpHGQLLM0a3R6/X7j5PCQCwLyvAhFBmUOYc1wPLdmSRIm0PW8pR+GUVyGUZwmFReWZW1e2IQY59M5osV4uNR0U7JrrmJgkc7DVWN723DNaH7maMxd3+JITpcRXY5mswnpua1LuwVLV2k1GkbDErwzKB6fTGfHZ7iqMCs3160goestcLFX375kt1v81o1dT9ICNtR4vky1nLQUaykZWcGLLqi1vALwEEO+3a9laQmkK90Ov75b/+l3P03DpHPLtB3VViW8JhXTc3q+rW83vvU7L+bjCWCPinmccwQAt2tSqfpSzYTAKos4nPn7HwQqD9rXdWNDkms2kW0hFDF7KlEFNi/SmHparKjLcDQ0aoLm6i88o5t5QEeKv5I9r8SOPZ7O1i55p2F6MqSbqg6nYlCxNa3LF9bRz85d28snccNUFGjuPRnVewKEaj4NZZymeWp4juopio4KRUFWFwJZSpd0Onv7pyekpty61kSreV3BGlLaW+mlz9WftFt/+MnJjyd0nkgGSMtV8sGDeBIVJ7P4czfWL+FC0LwASNGsdm/j+PBoNR67nkueROLqhdrj+4Gmoa9+8aIcjB6dF0UmdFVbhqmGVUP4L71wofe1bwu7u5xNVsOnuMxWwxGYj2XCnZrr2noe+BqCVc72J5OqAv3d7tQvqlwKZkGZpasgWy7jqiy63XaOORXlha0tpKuj2YzGyVq3lqdFs9VprG2VQJktQloEa+tdw7SWq+VqFam6tYhpmhXZKvUHvuPql2oNpJKTx2eQmyts/XyYfPIkHI6GmGVaAT77iv1f/yfXYTWs9YkBSoTc9a2VUQNFeKJo1v1PpB++fbS1LjU9qpnos7cVM525nrLMYcr0oNCwuWlL8Itvdq/tYp3tfPL+/C9+Oqlh/uu/xtK4QqFR8D1yYV2uaYYJRdJlq4kJRemnAMpC6KiiWIFws4Gh1BSqWS3hFD16f3XxMz37mldJJVxaSYW1JizDRC4XkoWbN9daBaNzJR6S8WmkUUpw0VhrPEzx//PPZ7Ekxbm5Uys0oRsy3b5kX3rxwsN3PuopmlGPp9ESEnK+d6p7slpTHn8wdVQs6bC9aYdhlmSRyHPZpmlUqcSeHMw9Y+1LX18/GmFJrna2qYJG/qEsYt8Z45cVTXvFkh7nE2/jrY9Oq6KSV5muzvC28a/vDn+h6F7pqhGPbYSqPG/2evVmbTUZk+/fSz86fahX+NkrjbVNj+boRiPOzoosDKbL7HQuP3vdad56Zu2Fz4wLNj7ZZ/GcB/PRkyd9T1u/cJFIArNMFpTQbDyd6LJ66eqaZrHTsX8+xF68Ojk6AYzpCt7Y7Aga6wasqU1JBgFNiKAbjabTkKOQmqZVpUnKsiRctvpNAsRiMJyMFk8Gi1y2iqLYaHcHh+dFmpol2BV8dbA3ORw+OSt/PCg+OFsuBgMFVOuu9Qs367/8LX1LfiLXeKhiCByUVZZCKpAqxFwuwx99MJzl6uiJb8oFqvi6bALLzpDKEZQqqioyR5itzmBUVtnis19rX9jt/Yt/MdjpS7pWS5cTw5ElR+ezE8lWMKmg1ZcUC/JAcigrzkihFilGfE6EQ1rqxo4MZv2D9/3pqur7EyelWM7SKsi4JE6ewrnGtO69j+KdHS1cTkUcZCOVLYldE8a6GVbVk71VUpFhwe2ameMsMKBv4otb9Qf3j99+e/jVqy2zFkdxEp5jxxUXboogrjxPXb+gABMRuzCCCiNCbJYdlbPT+8RxLElV2PJym97a0CseYl6JU1jOKjpkEle5k96o4f/iVXevXjvbP5oH8tWb0v/591/57nePvvPeslxV/JWtV26vsTxQVB2HvmxYSRKT3S2HL/0b6+pujb39o6cbt3ZVS5W9dH6+MFrenQfLYaP5917/jdzqrKbn6dljPZqVq4mlE9MziASIBBfzeddzzZqH/MQyjaooyjIRRTqd+4FSGqbV7vbyMq3360G4ihJKNA0wUaRp3bJURMAqjEdjZqSFwHHJ2js7BBPOqsngtMyqjaalNjqG1xqcDnSVX97eVAwFIsri6iAk35nzR0+G+dEJkQgV+Le+3vr93yJZdlTNJLlSYUD+8I+qza3hG79qEeZzeqZTgIocEStjMEgrU7YlUqe6BgAGvJBFApI5Dc43NnDH01UlYmHAluIrN0W/gZgcqusdzTCCgwF4+Njebq5mS1Mti4LKjgxNLAqDZ9lgINMx2HBjETDpaoHq3vrLrtGjplGIcIE1SWm4xwfOJz8fbteVraY0frqqK8eWYuSFTLG/9UJNcfA4TM8+1tap8Z9/Q/nT+9GT1DQN5TOXDVCGXBZ9K/id37i9WKVHjwuzDOIg9a55QkmtSi71hNFSVxiFXHMw5EW0YuFJq1bmxbmvrtdJu8RyFU7no4N8q9sDK0lWqU0CGGbcNXiRdaWqiB7/t3/fULzb5sW1P/7h+//suwc0Z/fFilflaBBfu1Hf2jBggC2j1t9QyK0GW5ZSnuZxrtz9eBrk1UsvbEAOm83GqBTORrf/xq+ii6/PczZ4ck/2BzAYq3nU8hzKcRTmQlQSMSHSiSwM2zUMDaMSARDOJrpib9dqkmHM55O1zb4MRRqGDBphSWkQShgSSclpVqZZFnPV0IMoqve7TrOZpgkvq26zqcnKIslTUGmaUm96Kq52d3ZU1w3K6pPB7AeP8nceByBYfvWNtqFQUzdfu1KQ1b4OcR5UCq3ijLKcZGlZsJcsrobj2eK4/MpXLvyz74zvP45V1e62JLeWiwzF84kEym//0uuWstLE6IUXVNUFDPQFMy0j6NwkilEBXUkrNLq/yE8XGqNFwu49SS/tCl0jMgNVGGiNW0JJ/XtTSVhgR+O8QmEBTEwM1NltlHGW5pIkuqcz6+PD+M5p/cFJetGb3VhHMsgVSaltAMYhtsS9p/noILFLWzFWly6jYSBPPhzcvKCtSav6hoNalpqc+bH/b/5mmE7htW392iVOCvXnf11eugnaTUPAmDOOEKKFEDGvCma95I6/NyX3qGyV8AutcLh0Wg13EKd7tgFbCiwqHOUKT0hhuYZFyz70Ny5qZnd4MuE/+6uzRc5VCZbT8O3sbFiqizyyeLvIy7AKJF6QTVmoNeXpOCtwbXsL9DRxeu8xY82Bv7xz5nde+dVv/tY/iIR0vv8gPH5oBpN4NGxoMq9YEKW6rAX+su7YAUsn8wkXlQG5ojDXVhuOwyvEigISCXNQxPkiz0guJEcHBPA8FzktYEqRGByca5YbzCOK4HqtlURxlkQSpxiTrKJ+VjJVsRWt0dcMQ2GaESH7bz765C8/On///qoYLdrt4tabaxs4WI0SgQmobNXrM3e48oMilz/3BUWp2YbaTMd7uqaobXHxVufDY/bzd33MACrzIlmYKbrpstc+c/HNb26EYWnJHuQFEwIpFCmB0S2rtIziQkpZGYDkKLBkndQRbNQb3HQuILtGgB/hqAKTxcmomBTUJTieRbjJbHcL8KuTpw9oHjQ3m9g2Hz6dHw2DWr9JnyqF2Hp8egrifdRDvEMrhy5DPnuY372LbjXsZkcwj0JSrknwN58jXi2XUdbsdk8GQ5qHfpRogESu9JMz0thyTDR48EA+W8Ff/hIAENME6ZbGy6IqiNmVZONs1lSKy7t8E8OsdBoQ+JlmUbmKWJAgAMIGoljVd1tms83u76kcJqk+fjK37Oi/+rsb/9n/4/AokWRFSMXydO8DpbicJdqrN1VMgmiVkfFK5nhhI0lnlYwjDnSoWT+9H75zHnWuPfP7//F/zZ3G7Pj+4M5P9HS+HA2qtCjDJVbkne1tKITesCM/iJaZoqum4cCyrMqiKiGtWMVAriqNdiuP45PxrOt5DbeeYRxVuefVg+PB46Njo1tfv3TBcuqzIKn3unrTLeNlmYTT6RxU3K53t2+8kCmOkCUZ8SBNZyX65MnZn78/ef/xIJjPbATiGfvv/8c9m4sqZ//gN+qX1jTbM6GqmTbQCg+gxLjglvFdzizN8zde/BxQqm98yzzbG4sYU1GWEDg2vXVJeeYaINKIgYjGPi6AbEh0MYvzQDGbZa5ipmmGbXt6c6MNeMWkCpsNYyPLOeWezcAKwI3hp4+FUG6/efHf/9Hd5kb/4vX1Qu8f/PzTx2/tt00IItJ7bs20ibcKaBnS+YDpscqF46xXNGKqihu1+x8/zX1JYRWSqNWFVtMQK3G9TVDD0TyA6l1syj268Jf1YJlSzJccBQL+7KGx+fX1668uzw7CVQRsSw0XibFmyIARhecZkxV5880mMi4jueSLeyVbQmppOyq6lIIEwsJr8E2MI24BPp2wOJEVzEc59NpCWtzeKX/9Re2v97JMRsGsSiJxd+80YRIA6PM3O+sb2+TuMHruunrT1l1RsayQti8Nc/Gj/U/F7jN/9//+32kXLh9Ph08++pmczOLZMFguqyRRbLnTa8mKUBBSiIRYWpBKN5QkSSBnmSjyLGFCSJYutRv17c3Jg8cFgFjXCwAD3yc6YWUWBKt2p79164pl6ZPzMxmXusR57NMsUlRYazicy0KvCdNFmlukGWIVJ/LP7x3/4M78k0eT5cxXUMEZARwmOVlJQghlf1Txml6IUHVgFlQfvDPy6tL1bSbgSq9nNC+EPCGw7urRjR1+dD8IU4Ex0lvq85+/ZnXloqx0QthKn+6faDKWIKGVbV7ecepNthzIkk51ncoUI8CKCvFVng2N7nZcLWVbQcKRtmZ1HLHk+M1vdjdeuHg8nv3gewdnDyZXPV0zpGIWzfYettZ6T8P5lY2dG33pvacnWeYMZKlzK48g6nWbujc2gWS3Vm4dyDpDMc5XKVEKbLpyXeV1xGgpID5fMsVwvHoKl3LXzU4ny795q/W5F/iNG1yRVF0GBrHyJTy/GzUsiXgOMxoUz2CWS77FgpweocEkVmtyfaNAiuBUIzSEKC4oxaXOIE0XXKrEio+sekcD8Jc+m27cbKSS97/8y4dBiRskE6OPywtX/+qd42+8qZPDMetveW67YrCya1oC439/Z+lduvGf/jf/r80bz8+mZ3tvfS8d7QfD08XxscryrV7DcQ2OSBgmrbpXlmWjXqOFFqwimhZx5Fu6CjFqba4ZDVdxjDSMdCIJ25Y0RRBiyLWaKUSeGDVzbXtbVbQgKqsq67jq8vSgvnVB8xqmrfNSnM8SxfUU00yymMXJbLX88GD0w/v+u4+myfBMk0sqZM4lDisgZRJGGpL7/caygMY0SmcLSPGztzxs5iQ9Izxnc4UxhfkfIrVhSOmzV5TZKYqAzOSi3a/1LkhBDAzs5vOPa/UrB5+wB4uTV7/oWqwoKl+uXQziSXW2kGXEXInUbJ03fvD9O7JG3/zFwshnANhC1Ro3borxx0f3lmLdXM4P9n5avPIi/uLnXJszE6WsIKs4/ps/PP7oQShemNZNqEB4+/WN6/2lQ+gHH6XexXzriv7RX0z1ddxf7wTj+XBCe1d7Unsl4TrDGC2P5ELd22f5HDpG9LnrgkW50jJf+e0ts2KuyxDSGONCjiDDIOamqheY4JaFEaqGhPpTkJ/NzsWjA5gjdrOu6WoLYZ5TCooIcgQKLixBe9byg4gXeBVDISd6k+qyOHla/em7Z4OgvHLJ/Ptfvv7grb2bzwTv3l3/s3cekwsX9EdPxo6+KRrIJ8XjB4v+jRf/4//d/8m5+vJovnj0sx9ke+9H/vLk4AiEvuMZmiq127WyzAXHEsa0AtPpVELAdp28rKbDeK3Xdjwv56LIKtWCcZhIiu5IqkCk5ByLglKgqEq7v5YyFi/nLAg0UkFOBGdVnoEC0UxMh7OiYIQtUkbKgh1Mjp9O6Fv384dPFuHpKVIKBQqlAqkoChkDJFkUY8Tu78eXP5bsbJ7M5UlW3LiV3JYyMWJVCJKAqR6THM6qxXwZelrzjVcbn+yFst3ZaqjDux8yy7YbTUwgBSdXvmzu8LZmkuTQzwPSohC53TIIcHr2wV8u96Yw4fWDTyff+oY53Zt4Dghm/mKad3cZUanatWcn+bXru8pnzgBdPXqk671+aT7RW0q9R6Z/HV2/pHqdFPrka19qfuPXDLFaVuciKqUnTx++9urzP/5+/KMnc8XRbYjHs+Lh0eLay8bu1Vk6wNPzAsEKATktEt3AAMDPfEHrXdqSBC/je2WqfvcPQbclvfzFFtNWWkftXLzMkpTFJ8Gxu3+n1E3W7cuZrggvfvbl3bUNEuzT03eDqlysXaFeXceaAWWVcbgIADdQgbXJaaIUQgXwV15qD/3q/lSOwrCzhna/0TYd1nyj/j/8b3fJ9W32biAOQ/zOcHLsF89/4fd/4R/9p1rDnQ0P7//8+8und8RseH427NfrFRaeLWsKhqDyVwvARDCfQU4dy1BVtdaorfyw1qg7rqdoxmqxVC0ji7Lj04FqOKZp+nFYM3Wb8NIPhSRVVNU9O6eZJJhr6oCQOM1JkjmWlmUVAsAiYnmyH8wXMZdOVvm7R+WHx/Hw5NAEaSZIBsSlvtHxvI/unlYSApAWGnv7sd8z7Jf6SqeLk1D88/81Xz3fePYCo/EqpfLTD6tm37h6Q5qPdNOtT+cj15M1R8ZZbkKMHRlhYLttqE65tCxT/eSBqM5cf7mQGved9QvOtcs8XHz10qvJH33yw58+/uIXrr7yCp0eLYEj52Fx/FEME33zzcv2hT1UzOdnGdYzmRnPvQYlEcYrXhSpKlnf/IrVaOOT87KzUXOtDAVPQcWxFr3yWn1aJYoyf+2N9bt3yyLjEz+RZbi5Xp+drSScdDvr/bVmxXxhKZ1nNopwKhO1fnk7i+C733vcq2sPPo7mI03BOeLbuiYJJpLZMDhPpKGYzqagksxeVUjaJw+T3iYABviTP1/OH4TPbdHNNVdFWZYxARlGkEGjMLWzBC38sFGzbcWdD46t+vJXX6fPRs73vgdgWd5+iUWD0rZmdbQkMpeg2viz9w82X33mb//v/4Mbr/1KTGpHR/cOfv7n0eG9xenpZB42LKVpKWEKQVWEqyWRKlWSF6uFLCHXsWQi6Yau6pqkSl6jpuj6dDY/Oh9s7OxkfiCpel5RmTEAhGtbYnLKyiQqyjiDzUrEeaAhXlRhxhjHFpHtyWCVZFFdVzUCmKPtz0O1t/v04fzB/vzkbJ/ACCIAqRSUbG299q3ntL/1+u67T9M//skgLpx2H/7ir17dAWU0P+Aq0BXpNOLyQc5y6Ate3+gUOBmONdWujVfBZJ6eTzKAyl94o0YrfbVi5iYP5xHEAWZY8Ta63X7OCl48jk4mnunCet03PV1BN19QL29trm+4+4eP9z4seu1wbYPaNT2KAMSq0VDqVzaC5VTlAnGcFGPF0Grti6KK01FycT19fM/5//yzxTf/tvX5FwsRpCkTMCKGzZtWCeJ7Ny+7l9el4VM+iVTV5PXtOZTldNU+PUqRPG9syK1tS+Cc2bIQ6nQ6Wo5Zr2PNjzIh6Dd/T9dsWKERG+WIUVlnzQbiLSN/IuykWHNIFdEXOubj4+TffLxndozXfsm6vCmjSq5OjULEbs1gCH9yb/Hzcewzxa1bk3G8f1K4SO7l7I3L7ZvrFAyBgeclNa1a3QL4V2+vkf6L1994qVcv+q99/Xfr3Z2wLE4+/u7dd3/inx8dP7gbzkfr/X7dkBRIMS8tzWw2XAG5ZVqQCs+1dU2eTkYIOZTRKI5BVU3nizhNVVXPC1owYNc9SZUNTZYEzbMwDUJEKEXIa9Z1U3Xbxnw6a2yvaU6NVtpiHu3tPdnZ7cmqlPn+cJE9GJaLlf/2/vxwf18pY8FRxIRr0E7NLlez67uNra7av7A2C9nb70y/8WLt9uVYC/XFmFy7cW1tp8pmZ/JS5qD9dJZKMjMBPz8p4yw+P48Fxhc2wfOfFWtbOskspHJOIs2SCWiXJwGTuX7BUyxeiKmKk4olEmwYdr1Y7e9eoEuo//Cv7zKG3Lr93Gd6cXY0XBSG51B2lPrs7Z+xGx0N+Inejm1AioRBSy6Ry80rFR9r5MBq6zGrJCn3w+L9R3BHE0xeuGsAClRESZpZhyehbWOnWWXQ+skPUl1N23XgOogAVPhjJHMpkedZ4w/+5DEp8KYnPLl4/sXN/iVbstcXB/cIVRCXlydLppfULP0IbXTFMmBnR1VnjV5UgNlEuy/gTlvJovbpMJw8mDiuJOvyZB785E709kLZ6di2zms1a7AXTxfp9Rc2cNXAxePf/GpzCVd//W/9z39uLZvC8uSU5GtfvXD19m7/RsXs8fDxvTvfWdz54Px09snecDaZ3N5sdgyogCyNClZkEnbGo4ndcA0dCQ4p4ys/WC6WBIrZYp4XqaPpuqExACZBZCLY7W1ACc8W0/X+BUfBDz76sFaz7ZpBAaoYli01K3zF9ohshEEaBPHx4ZAxkhfSdLUIprMPj+MnZedJtPx0/wkuUynl0Gwarm5Lk7Zdff2zXq9tJ1RyLek//OWr33zJfONFJMc5AtR0oeE4VmtccmC18GIZz1Nk07qcGot4wYvFFz+zPpuVxKw2OjKyk6LQoazRcgpxICoH0TjNRuGqr6u1g9nh7V2TmoakyygKNOrnfvzWW+VsoD7/vHXhBsCa/+l72Sf3qrUL2c0vgfk0+5t3lvYL+s2dVskLPZJkTwFmDoghTO/+R9xKh80aee/94Au3miWjH7zDartKf0PmecZxXkjAqLcKKZwmXKrLkyU/nZFaHVIeX7t+UZVDmKX+hIMVuXO+Oj6tRIh7LxVb15huKU8eBgzT7Z6J6RADFMzIJ/fRn74Dtk36n/++kq9inLssyOt13N9NIManH2ZJ8mnr2vadVL23vxoMoyjifqbvLSXLKGwpv/r6BU2T5VK//qw3fvqYg7CcaYWOblxeM82ZVnVuP+sS7fN/p4JeHETHj//90Uc/XB2e3jtZPXny2CT8akdrGkBAnmZ5VtGG4yCEGcCLJC35Kg+znIkkWPAs86uy1q5dvrwpCQEFUG0v4GVrvUMUYzodEchdw0C0QhWrNTFRyCyqVNN1Wh4Jsr29OF4lLI1oxcuwAJI1XZZavFoG8cNE3+fuo8d3YLqUS4PJqHexNANWlJKsyO268ujB8frGJVsLd660+QVdNzLIKlgcdzUlOf7EXkfaGi7yIl4xUiBdTko4rzv55Ya7eUEGtwiqcaYIMM+yOLTkLhzOJCzOjzIj0aoy0pQnkoNefLUlc51qLZb7iC6Q4jzYjx7dW21oioWmYQDQXNlo9UY7tHVLglWsZNUzz+9uv95VyIgVLWqoVDuTRCznCsvjp6fH/Cw2S+P9D/P3f0n7wiX3m7+MgifLxbisqZW2LqKyMiG7eaP26FOaciakqNuxFCKe/9JLnWdJNDpbnrnf+c5qWbHnXou//qbxve/G21dxEtPv/7t552r54gv6kzvH1zZIkcYPD8H3HrBxxL98XfIU5efnYZLR0xOJUvm1l7JSis5O4WbfhDVt99eev/M/fr+cMs9WmjVxc5V2PPXmmnf2pKyy+d/9jRtGvGSoJC354/3lkyfqxevDTtdqNN0UxiSJotP9p++99db+4/ez1dQf+f5y3LK0XsMmNCaAL+dzR5e77abtObomV6uKVwWm2fp6wzQUX6pGJ3NN9drtdimALGtZmkVxCjihBUujeRnF6702T4t4uVBlDcl2nFVJnJsmquKUMKRCTmQtKQ1i6qZWzGdLE0fqzlWRaavx46cPHgSxLwAKEbZltmFl42l5bbf+D7+t393P/uqMfilcdWoauXBQY0sJaULOKSntNSfyGatSYtQkY6ujCtmdxosimcmurW1f3xLqklYkCk+tWr1cTg3JgmCMgPPxT6uVnz33kiZVMUmGWKjYbXLbA3LGkyWCkKXo1o0r86fK4HicWdqdt+OdDnrl9Uq1hXtBYqxqruNf393O55PYj2RnJ8xSRWUKSquUCmC/8OIzb4cFK/L1BqGLaRUC17Dq1xqiWqYp1Zip4aKMls0WeIjD994COdUVpfrcN92r13B4vjq9I50+TDcc87lL1a3XC6DQS2veWsP9/p+eB1G1YwDXrlpvqLy0v/Ovpp8egywHv/aLxq21PA1Z03NYVQ5HKffMo7xr5XSeZ3cekfB8/l/8g9v/0e9fmj9dwip5zik+86I8W/Drzxh7n3h/8vOTP9cnN3fmNy4CgOQvfLXxfIRXA7i6nxTuIfYg+af/0z85ePhkcnaeRlFeUcqlS6Z0Y7sNRZUFHHHh2c7u1np/o1fAarEYrW/11KLKyhxJ5XqvS1g8PeVezYvTLGaVVFcWq2Tv8Mxwa3acjQbHruPwNJ+dD+ej4WIxExLx49XOzkUiwGI4DVdn/iozOlv62nZ/Z3c5HiJl/+JW+3HR+vOPBp8cLqLxkEBcAJAIVcnTDdLsXxH/we9stuT9xajovrbz5GQxvHv2yvXXGdfz8FR2C44QhNTAKoiRABEnsyAE06horG+0LmpodnZ2fO6n5zJ1+w2CQnV5JOlbWDbtu28tDz5cPfNsS5VdteMIthSUQQI4KIpgoVXZdH8WzEngz10NnQAKZO0Xvlmv4imsjd2s1NEmJACoCYvvVUHBmJpGcQqYjQ2Yz0BRDEb7qufe3Kkt4HH/+cauoPd/GE5mcOum2N5o+fNxOldWcdbtIEBTSeELX4Iafe3zXujLP/3eQ7qqgI8uXGS1boE1qVzIuss8HMJSrF+27JvKK190pTiUa1Xo57gmWjHZvdj69V+xVbB8+rMJLXCzBRjF7W34vUf08T1/vKATVm7V4Pxb7+7c3uj3cTyUJg+DC0alYeo0kutrTPp2ZxmtijlSXsHTRYSz+v3H86215tXb5HjM/4c/Csn3/t13WJWLnCKoYGxwXF3drK17MhekVGsIinar3Wh4WCKAU4GgrhuYxos0JUhJknBtvbuYjNOyYow7rSaRDSp8SZavXN7FBGnKZhJGk+EAcS5LZG1rR3Gd9bZn2Ob5wTniFRBSf71ZGZ69uYVMB6hBo7eWQ/1v3n76/qer0clMq5jAgFOLiNUzl7Q3nkODQXL60d7SwZ7mdPFo/RrYN+x3Ppg6rs9T9sxtQ0JyFvPoYMJXaqoixZqeDfnb76ZMCmWLEpGnoZSGRpUmn/+CpMknhQ/fuG4fvhc9+u5yoyaXh8mjILj8hoXbQpi6KkliNVJkA3AE46lKtSdHs7Vub3NDP3/i62haUCM57G5cTljCKsoArhQaolQOGXRrBDEouFqVKsaCFezT9+6ighEAdncaqpkbzuaFK56BptPRUJU0ljuWqnOaSbLbXZfsTjEPwMmRjyLiT8rNvq2TKIwLOJc0C+dMhszRpZBJq+e/uoa8iwBnnHBeMtMIv/aLysmdqvRnbBHGpJBsGcmlogPNsO/dY3sPAw2DfgcSAAzC339r9rXeBaW7M5+dDGfxWl2+uI1gnWs1/xUnxZ4y/pSVJ7JUorOz+ZMP8vJKZSC1v938lW/bJItyLAmkGIIpkKV1q9jpeJ6ObaeRFeXK96mo5sFSKaSKV+1G++mTQ4UxKEk12YqTwtB01bBUzYJEhkgejGdxll+8tCMRGmdJd219eEKPDvafvXWr1WnlZYVtvdVzZudngoia1zZ0uRSokHUiocVidnI2tCX5h3v+O/dPhnvnmOYMQAEBrOhlF/zWN1VQRRdr1aWN5mIeG83caBoWNP/kx+fL8fIz1/ReM4vOI7vT0JtmNsWHT5btbUmUqcRAy0K1jvb0fDkuVZWUkglvv9o/nJPHBydf/7x3chbzSPIUCUu40sj2JVPXOK2wEG4WYJkoxGqVma+6kpBUo8OMTe8zb7YXp/De3Q8PZwEyyW9falpqWHEOgLR6nE0Py/oL27Kci6wKAiDLdZr6Fy/eON4fZNitX9RkIQkjZqqNyig8U/xBjkSQPApaW96NW/aDt/goCW8+t/Vv/+RgfFr8+i8ZmqxkSxIMVAIoB7kAJQYFKApDg8KzKKnkLBGiQjIpxkgx0zyyJFFdvs4Ho9TcMHZeMmHGykDaP0pjGPz2l2G/jvNU+7Ofho+W2o+/m9d6dz/77c9EtBnLDwpty9OnXAO5pdOnfu1Ss3NTHPw0ny3h+k7+W79EZAUEw1lIgxd2t4hlWEiVGJQAVUhe7Pb1tY6FKMWYSxLKisyu1RQZB6ulqSg1zVkgGctIQJIXQMH89Hy4DKOtRjeMsuHJPi3p+saaW3OicGI5NtaUzloPCGa4VpynM3/Vr20xXiiG7DYcjqSooquohJqwlNXgbHx6eE6Z9OdH4N7RUBS+AJwqpOK8205/72uWloNP7hS/99X6+jbrtRV/lXxwDn7wbl4teb1Vvv+Q/MK1FNYFVwtYU6X1mjkWnS1XlEiVU8NKCl54tbaiiZq1EinfuOr/2V+S27fa9f76j79/ry37m1dw/0pPvUyJlPAqD4+K8VnGNFNqwa36NjZ1ZbOhMOfly9c126v4UTHOty5deO7rfm3zGcQiVAayUUuiBUxZugB6VGhWQBgG2COGZ9rt2WkZLVO9ZkSrHC1yTUJLyqvp0ckw1Uiwvak2G01d1bMMV2A49xMgws1No2XXzh8nO5ug16pMkNFQTVPZsyRJixDzoTAg7KVBDsETLLGEGsnpsr0Dz/bN0SnqX4gRIU6/z/D5apTHZ96jR8H1Pn7u+apCuUj1vw+Vn+6BB0cpSxCP79W81qNHvEjnn38W11EurcHgEyxXvaqO7uUfjVO0vmFb2/H4gVaVrelpdLJaEK4jB9lAynzGAbO3vNI1cZbBQsAKEF0zdQRYluerVcXZgBZNHVmWGuUsTyMAcFAlza0NybAczZ4vpx6kTc+dhimKwiubzUzhqAQqEgqEAqFur1vrdtL5BKW0ZpoJIJWs1T1tMJhkj/dIuNQk+y+Oy6cPhqmfQAwlImFadR3lt7+iNW0Qr/QvvmYiPfvkXnFtp62pwI2qPp/1rrbfvzfRcHz9pY3zwXQdlmorUzTnwnaH8QzEE1TgspS8hrPeifMkS0LhddMkwXmYGTV2eG9veqBLu/lwxLpK8aWbRKm7gNmEhBcuMUoLwG2QHkYZd2uu4Gz/49N6Y9xYZ+tbQqUVhVPmf0raV4TTZ/6YDxgxzN5GoSYLOiklj7AU3TmcF8J8963j4WmlmvTChQZPVg1dgslcpJnmpr2+V+s5tbpzcjI/3GevffX2u//y7vjD8xeuNjf7zdpGWxGrJBu6bWNRiEaX6GuQpYBRDC0XSaqUFQjSdJb7xxQtzHQVmOPJJaVTLSOzj6PZLJ3l5bSSFfHMs+2OF1ABy5jKqmhclb5xTb49wEA2YBKz8VCH3k/vB3VFvWQ7ess4Z8L/4RNqKVdfVH/Rkx0bpjkqWCi8ywXrCMgIkhTGAOQQcqYQ7tlOlZVpXOo1K0yiIPR7rZoigYvb6yf7+1kSWlotyyuOEGV5FlSbm/1K04iMFc1qbW2rWYY0I4kiiUKWc8GXmCPL1IUEQ1paphmv5pm/yn3fdhsZhobrqF5dj4MgD61Lz9//2ZMHJ+fB5ExFGSRQZErLlb79y62dWk7y9NUvEocoRWA63kBqHKqgf9mtYREcPJi/ft165obcW+9g2x588mn9fiX3ZMG0008nl7awTDIVAgVilmUnZyUAcO2mFUcqF/D8OOahUlP6niofL7IkE/OBaGjMbMSmSicnOS6NZsc8/nQqMKvVwMovV0t68aLLxTGHerCkosCUsIZeUOKLLDV1ZTKbYmBgALNcpbCnmirNxg/vn290tq/fbP7lBx/fGYwUZGiJUEXVbZiv3rzg1KmqAQrsSTEDtoQM/bVrzZkGUmiezCAEI7NXUSJKXMG6om/alQgq6pmOCbyUlvssVecH2sMn0v5e8tWrRXTKg5G6fmmZTso0xJ4WaCWrCoj4rO8gxEyEZNUhyJBZVmhF1tXxx0d0+9V2bTf92hfhzofIlsrRflUdxrubppzmxKPMtkkcQr1QFd5tk+FixrHtND2i6i7hmDOogbxpckdXizSejaYN2UiTYH2j11/vBtNBzXJUsDk8H8RZrlmO13IRqMycGFg+W6wMLOmGzgWDqrIKlioWmm7QSugmwViWddWPU8yRhCDMIyS4broMq7rT4FguCbEcXVIu/PXD5AcPF8fH55IoMVQqVvY3+K9/+zVH4vfevv/izQplk5NzHSF5e9fhMcbqQsPkQuPZ7Tf8VVYmS14WRb3TZLWaiUmxzM/GE4SBpCHFAE0oSlplpSKwBUlqdMxFmJcUEoyeeVYO5mcrP/Nc9xt/m1h2wIldZRkmiq1ahtmk0QoGVZqH0VqFNbvd4aqKOPMUtcsdyvzxchWXwwMqQhYRGUBL12ilqG4NQsYdXcH+6y+3DSFBiXFzjpCum53VUhyOpzIhj84iUulXb2FZw/c/Gd27t3rlzQ1VlCGw9grAswIXflnojmtRuq8Yan3LpWgKITOcVu4nqMplxymo8OehIqFxTj9Iui84w4ZIOLKnrbVgVtQdeDKJHk/UhgFvE0b9mJvc3XBUSeerivtCUBr4RVkyzYadjaiJkXmRDOPAsdfxqqRlNj0u3nk4X69LL79JYL3QHBWsSpEv1KIgtOQFoohDHbCb2w6PA7/KipJWZXHt6iVT1xbTSbKatyzVNXVflYuKthqtestlqZ8HyXzhC1kSkFRJ6EhgMZkzXnm2BnmJZZlpMgdoNV9lUd5wauVsqbgE6zpERsolrBg5E8JPooB+9PD8ex/Mnx5MYV4BIihWKoYM1z48GJ4/HL+8BaTKDU787Yvo03vTZNVxXMRTAMhJY2324E72o3cqYEopWF5qOALRBeRGKTSW1S97pKNVPuVQlEyTrBZdjrGcAwUkRYoIef4Zd82tRoiWA2Puy2UcQDsEMS0Lj3KiwLTMn6KSbGzoYUpVYWHAeD0/fbzSdRWJgUEEgqV/Tmdn+c7lXj5dUkgWC65oUk2WKM1kURKYsDLz5EJSyGDukwWJZvsYlQ0NsFIO5sViuCy3XRXrIuHxlM9Pl4N5b8/Xf3Lqe4bjcnJyvnRr0bUNK5ovVSwjWQpiZ7q/MFFc63ugIrqEblw3nuynFOKfvh+RLfRcE//xD6sHSvDSjrrpYm5qLbeeT08ZYKas5AQVFc/n2f4nQU1Wezftm3yu5ueMIW4Z5vPs9ND70Y+mv/r3lKLSP/hhfXgyT0ihy7QiKpZKIbH1a6SvWjIyiSFpHMcwR1tNZ7tB4SJZ+LHbbrZaTcGrMqUaxn6SLyYzXua9bisouVX3LNsaU7FIswgSqqkoKYPRsspjKuSa66z3a4PjwXSZtjybQVgwsHbhQrEMijj22s2Kq6NZhHXP1nSWZ+VqeTjOv/fR+aMnkypYaAhRSCueYKzRxPYH4dc+b968oinBaNPVdYO+8kVM/enxUzCbsvomvegI27EpXUWhiKeV2WTKmsIZsCrotlvAwowqg3NYrXgFM1UtTwfRi6/ZAITddbW3xm7chpohmzWPSkExzh1dF2kMeTk7GTmNvtL34vERZrJQJLNmgaKolpmpiQ8fLBcnbGdN7XVlDOhiWlGRd1uiyujjw3yyqFpt0rsACODVSVCYZDxcGN5Wu7kVRHuX+6lkiE5flyRIgKQT3VEThGMgsldfbN66bFR89vadyUfvTdMQTpmuIfTVa059E/gs8JjkH/qy0/iXfzrPZvnLz2K9VRog8pdCpo2ffVwBufz6S5Gco3jb2FL5DVN95XkB+KSjyJy5s0wjAS11bnVMpKNCMKcvt9tdrgWdWiVFyxRpuZA4M//Nnxx3ug7RobPdbkyKUxp3LN7RqGppRKtl40DvCGYqeSUTDICATCZSt2Y2rRWqtNUybrTbRVVKiqJJ6mqxrPLy7Pjs6u52u9tZnpwnVR6sWJWXxLLctY0gy8NVzKI0K2gBJadhItWiivP+x3tXFwE0FclRBYarLAyK2MudMC3PR8v+Ti0MwqpKkuXqg735x4N4NJsooKwgAhVEXFJV/uoL6jdeq7lFoHitOMwGx9MurtdqzVyMKwykPtGatMyrbp9+4+vNh48RzkqprXN9Ziwoz0VlYBLj8VgcP8w9BLEVRn6pKrDZbAAQ65p084ah6ouUUatrP9uo1qcSpDGNZGBW3YuYohSgjt66TeNBBTtID6vxEOa6ZDiNNm7r3EXi4IEPgRIsNaOeG3VmOcUVpzt/O7z/NNi9lq6vSzyYhpXauXHN8NqP3j+9/3SpWRuabuYxgHLeaMG6JySsKaSJgczK0rMwpzIaxdE0WTEVsNOGDne2dv/9u4cvX1131WI23JPKaQp5qSpUk5W6q9TzuOIPPmWDIYTEkc1kfZ1pUPnCLSB4oCDBagotC62Kszkdjmj3IjIgRiDWHbb7qsrLBQuYQFoWMLVf4aosjvF6DZ3shXd+wl7+tv3CV69vP2ON79xfJ2h1mJ8vFDXWan0m95MyjQhRBawsFWftFmo1GrRg3ZpsmpLRbEocpLORpqFey4uyVO02M4RkIgfnE6Zww9K9tXVK1GU8ghAQw6h5Zk4rCVTRLJQgJgpiWMIyrjk2LpgCDUbV4bAYZGK91chG50Uu0nT1/il77/7Z4PyEQciRJFFOAecSywrx8KO9L1/v6TUdYuv8OLwoi8efjrdlt+VZ3Ssje2sDSGa2HKM8d7TVqzc8mqpHezNBko2eiZUiW2R+plcxc+taFXKJKRajn7tFdHEKMhny0LIxpFhdsjCMveusvcZ46XCYTz+mxqYmtUqGlkRqrQqFmAVNJAY8uWOlkN18pp6O6ZO7Z0woMJMsixprxE+wXsK6G77xXLl3Xw9mq/bmJrWgKRiOw5M7B+cHJS3MkYCLVbZM8oZO148X19tEUYCNdZlXHKVJlvMMFAV4fl3+8jPtn78fuW1x7rOPn+iXrndEPwvOzxvC+vWv4+Vs4dhA8RShW7ormk54sQlI0zgcpU+OiC5nigJc03zxxahhSlKDHjxGP3wkrdcLryLj+6G9RqSLRLO0itK33y8v78DmpipUiywqkU6+9jmR6aq7DSALs8XTmtuvf3kXBEfLD9T7h1Gz0YAl6uUzz2SEQQyEsFRS9wxdFdRQt9f6AEECQbBclFG0tdUpMSaxxCEnEg4X85xCa6vreLWECwC4LEEOmKbKeRIKXiKuRouCCnHl8kXT0MLCr7I0TAtRcs+xOJY6vS01HrBsfjhPD/zsZyfV06MBy0sCJS4AA4JJglH+7FXvb321X4ZTXtOz5AiiwHJq/ih772cHX/lGnxCrLGUg5ZKH0YREMzAeBFlZSbJqWOikjNf73mrCUr5eNzJVr8fifOuWlKegWhXZkipGCwjJn2bcxKKQc5CDXJckwZUV1pjtQQhTXYIgnazmU3vnipAFncTpkkmmUGs6i/MCZgyjzkaTJDDPp/11BWCSFNy0lCZJLQUNZ/No0bAaa8XqKDt7KlFto9EoGHh//yDA7ooZ8xl7PI0+BnnLZM9fK164CTRZi09k1VSH4XTnirt2s1Kd3ahYDU/nVQqGkym7Jl98qakCWbVgd4cUcVTlUwglUEJZTl59TWlsk9Gg/fbb0wtXrHa/0HVcb7RFlcIKhGEUx1X3umUZlchpHheKcKsoj0fxVUmtZxUYJktR2a4N1p0yLogMonmhU111q3jyviojKOtrL0t/54aAhQ+AToGEGSRYNghMbB1oCJRZLjgtsmwZBHZZ8KLsNetZknJaYQxMVa6SSMWAVhXnPAjjAkKnpUNYybJo1byVqLJS8LJI/UgQ2bOMweB0facfLKeSbtbrrYKVfinMbi99sGfwiFHlg+Po4TCeLGNZSIAKhkSBOAdYRvi5a/YL1yQlbUmyfro/L2M5d9HOtcauxwA4jyLkdgwEI5SzfFHF4zxbCoqBrWmWTMLpJJIpo7yiUSloFs9LmsWla7WMdHoucv34PtcsezHC1C3cDQ0WFcSGUMZx7P70+9VrV6FrVJgrPJKmh2G36SjrFqqfezJLs2NL6oh2z7PYJcc+eTApy1LCTJFyvS6WsHrwkCOOPI07bTybLwRq4wrVmg6EUpTCIEte2DESvfHdjwdhpUne5kkYBuVUHpMSsC994dKV16mE8l5gqq4FbBYsQldJomp2uWegfGyZlyVNKdNFpUqCloonMCtAlhIqdId6TUe3MusqcQxTtXK3zqbj4q//ijQb9PYb7qUtv/2bdRVmrCjVhip5qmJLAFearejbOFuWeqrbPI/HU0Xx4BDSItVaKmnngBJFNSafLvcP6NXXcfIEr3cxskNkIkYhMVRVQWHL4gakrChKmk/nM2BovXYznM0824rSYLBaWp4zGY14ku+srx2eD/M8gxIRErYta2NjLYuDPEsIAhtrveNHTzzNbK9vLtOos9ZutZssDgxVy5JoGYdKc30+m/BwJeXs8SA4DsDxcA4EhgxAAbgQDALBTElJOzU3XaSakk3O2fyMa4revKi5XiogzwNsGyqmM+rDdFCxIduwcd9Gfi5YmeiUOJ5qy3Iuh1orSSZ+96K2WODHD/zn39zs7nam0wLiVllBBkTFM0unQFW4WCFJ//GPrR+9E97cRaSoUJVVk2I+F+ne8vaGF+XR+f2FjpgEE9yNmVq4l21ht8uR3zYhkhciFWZlxAvorWneVuvodPHxw8w8+OiV2x4iUPDY1MvddSTh4tH80e0OAnVXtluf3FsC2lgKNCjAEvcMh1XpytPDaLH4wZ8ONMW7/bz+8recVM6smpktzs9Plzu7LSKIkCPAQpFzlDGJSE5bC4IyHOXTAdq/z7BSPfdKU1HrT+7twRswnQHTBnJrUVRMNtuSZVUooSAlGKtNK2upar5enfliNjUpzuYRlqGk6IOjvDzm3npV29LPh5CktrlgH37I6Q2p31JVJ4SIEZFFTYte6uoaz2SMCgQ3L1/cvXVjupxCyNI4DEO/1ev3NtcH58eCIwQRQSgv8kIIpGrz2UKRJZozwoVuqqZjWK5Rs9ySZgALq2FxAgEkw/MpkHAlSXnMltNDNl2sIvnOhJ8MZyDLCUAAMcEFgAILzAUSgmUliiI83jsNl3g+0TgIX3hdb5gFT2JN0bAqlVVZVVh3N+Pjc8QWhikIRmHFWYZlRU0zNp2Irmt5GzQIRGenpriD0dOj1prDNaWoFCHA2cyviwzey4qKrV1RPvoJePdnk1/6datVQwcnxaUbjuwRRQ0GR0fPlq3Iz77/l8GWRS4My/6LEdmMmaXWN2rUkHm0hFjLFz6t+HghUdM9+Kn/eH+xsdGWpfTkfG6rLV2HvAotTVzpuo2a/NXtS5MKU1W70e1p5rrrRqpGV+Pqwb8bmMnsxkbs1qVrfRcjM1uMtBa1NHX4dDkb0s2LrmbPgVKyCkIgcUGqikPKkMbthsZoaZjQtU0/jAcT/8a19V/8ak3zVprOi4ldcoZcj6ucu5rAEAsuOOMCqoUiMGKWNjuT1jZ6oB8nbRlZ1lohWAKK8+D8w3H/suxdRyRfvPzLuuax+JGqKpogKXEk+MrtS11wLsKwwMSr1xvdflxmsq5wXgX+Sggm6fpovkjzCmTFarxMK1qvdWVDXyQZgCQMUn8eduqOpKI4S9r9Tr4MFVVRDdWqmwQrmmGtzheqZcu2E2aIruaQw73EuDtPV8uFyblAggLBMQAQEIE4CjkDg/lcvlnfbtzav3/o1ssL16/2LnoiOYF5BbIyBLK9fVkBAQpRiUQagg3PJKIACCcF8pegjABQm+PRYv1y3QeDxWHkCQVmhe+VQYYpko7PToIKXdu6sDo/G49599r29nb4jy4ELYu+8zEAvU6wxNk4jYF14qd/+kEyq8hd06ycAgDtL//N/Nd/p9EDFOgEC/304KDVMxSzG4R5oVZjP7201r50gSIJLoPm4vT8o4/Gu9tuo6NKckpAWpdFPHsgCa2/eV2t4aOnP7tzGg9WxnAUXfGyL+4SQ9Ihjm483xpOfE44IzoL4XKUNDuu3QmEFJeJygsgk7zgDOgy4kBAxsJIJRCgot1h67v6dBxPTk/aTqW0eVUmo8dy77kGN60snuCmLBsyXa4kQQFWwnEFjNhwnLRA9z44vvyS7uACCVbpJnYtCVbRFDmGpPVDQetuzpdH8TItmhcNkHCy21Ve7Kuj/dwPin6daJY7DpeWZdAs6/a6xWplKMoqLe4fnCsYa/kK82z7+q1KcvxVgAVkWaxI2PIcxTU7TY2l4WB/VGYwzCOr5YCoSPzZ/Pi4YJXhOoVqhbOFJYlo/fX3Prm3Gp4ATphUCQAFYpBBVFgYp5ksaIGP7ofyl+qKVfY32oaZd/rmOz8ZLAezz9wy8mF4MBj1fWnzNka6oq5rizFehEBVtbKqwjlOSgytWHYzSXLComqs99753sGOI6+1dOjUh4uszKJwGp4Mw/q2c/X5awff3c+F53kTllf/6j74oa/7QbzMUl2RY79ACGV/8XZJK0tSDmIqH7JFjB79yfK3v6IBc9821tv1Sw/f/mTjatu+6H51xwWsJbFApP6Tp8l798KG7AJ58ujRUnqIW31aU2WM7TTzoWYdLu7O42QegvGeUoDckKsi0zhHzhWZIS/K6PpFE8qQZxWH2fVnNQEZRSkAEGDELQEVRQlzbOlUYqxghAKKAbObKl7n0ZFnVPGyuH8EX7vSOrwzdzZVingwLXXHZmAmQT2dWHsfzZJi2ejau2/0sNpzekHgRzCqsCZVq7hEIwSFrDo7r20IUMKCg4xHg5lmqJcvN4ajsphH5OqWB6IxpDSvuGWbWJZVAFleqliyNW3qB+fDoaxbNI0xIpoMdi9dZIZ2Oo/OzgYSYYaGHMeZ+kuVMOjgcDJWAKAQxUnUVluDg5N0uSAArW9tpopS63RUTSKl950P5w/O5mXsS0QGQgggccAAVBk2S5wgxnd37Oef2VpGsYWZqhFWZg8+/TTNjGvPXVCdmUTVtRLO906arZrdVVWLWQ5ZniUSwYVKQE3hIZIEJCEV4aqApKr1/Hx931x/MPDhYFoVRrYcb9U73bZ7fDhurm3vPvucH8fEaLzzuPzzvfQEBAIzLEthWiKEERW5YBCjhNIwEyUtGAA/OSzv/MEJE+qLW/f/m19ZA3rnf/1X0ZXN2LIWlrx07KTVynY21GmIF8dR/7LKq+rpA/DwjhSilQRyISrAOUVMNfW/8x92NztFUsbE6p7d82vrmaomQIOLvNx7AhZTvr1l1Lc6AmIkmqOjM7vpO3qJQhRPymwClM1S+f+z8F9NmqaJeSb2uNe7z7v0tqqyfHW1nZ6e6ZnBDMbAEAQ9gpRIUavYlQ4kRUg6lf6ANjYUoZBWWi7NLkGQAOGB8b69K1+VmZU+P29e7x6nA+o/XEf3Ffe1hEAC2BhDPdGbBk3noqBQqq1WI+cJKMtaw3Q8rZCKiXTTGEBWigjQUnl5kqi63VrJiAaRmtZ7mrIwslhyuVCUJkozEfN5SI3lU+aV+dRomkgV1Kzok/Pxxz/E0zEkG22LTY8QEoZp6pZpuCZM0sVsQSEso3g8XxiWo+t4c9lJpn7dsznlNEmyIECAOratEgVSqtAiG47Ow4mhItvy0iL2Koamg+PppO56G2ub4yDLclrDOMXk8dD/1Rf7Iz+EGCmigAACAAXUuQQCzTtd8jvv3Hnl3urB84uHhzO87FxrSdvJ1694mtcGyCwnfSSAXXWqiQIo4WmCUebU7XJkIQ7ryzYhIL4oy8TNM8bBbNHnyfmo4L2T0Ay4kgSifzlOxtN3bwkbl4uA/eKvvnj797YrykTo7vcv8nMmOYRSAAgl5EBXFMY5woBJITEUBAoOMEKFqvqGsmzSr73lmnjU3rl69uujk/cnS1VldzVMsmQW8vWN2jd+w/WvTst8hlXHCCERq5cnZ8F07mrojbtdSfPL0xEZ4zVXS0mZsNmCxONhXj00nRVsNRW10QrzKUJa5Hsn55cgLZ4+Xnz39yuSJWioBfsRU9TqbrdcRMXp/OQxi7DYvRZWd3qgu4RAOfrkVJWBSJDrSsoLaDCkUckITHs0ohief/O3XctuAL1AGufF4zTMoY6j3BNBxlhUcZGqtC8vyvXltLJu5lYFpSEoIc+ICnGnnmiuJIYIiSxCP8iYSTkTachzpiN0fnqkqmqr26s1O2UyabjqQpFlUqYlD5OZqeCaY2i6jhACgneqDouj+cVAt3S7gg3bSUFqO/rejetFUqRMMqQEUaCOpoOF/xcf7J+MwjzLdaRAxjlGElAicduFb9ytfOc3tneWrZ+/9/iP/93+l95qvL5pABCqAKS+j4gkWiuOKcxEpaNWWmYc0aKIVMy4TkJdHVyOlybQbFYoku+fzI8mOXLpdstWGY3ic26lo4ROApJLi7vsw2G0VPMg9uxkFGUHS06+KMBYgZnGcQQVJBFnBCOQU8CEkLIAguuyVCDUsKLqoCZ7DNaeyNAu6buoUcv3llSv176/h5oOYHD5xUV6NLgoiWE1WHwGa3p9cydCZLKzpuaZoiHcrdL+cc4kO/sVS0TpbWBAi6ubVcdO/FK+/4tk+zXrys30/tcJfRE9/0zqVeY1U3HLrK5Xzz6O4su0s4lcjfOLwWxU1Gvkyi4ejyTy8+j8fPhyaqnk4sXIIqzomooZzxdcaylGVVPIzdnEffTRR8vN+e4NwssAuF2W0yKcKcAbheyDLxanw/J3/sBYvqL9+s+HRk81r3nIYzqA+TgFEjATFqzcfVurdSGhqS/zjFLpB+lsPFVLqComAOXKUgsAUK9XwiTmXFQdE9Xco2g8C2PdMh1NAUJQINKiwCpqVS3FUdNgplpOtbfan/h2vQYBJBifzeemi6IclEz2+6OHZ7PHl3mwCHVRSoQlQFwCCWnFUv+bf/GNO1tzswzj4amLQdfVr651ltouD2eUQ8gpz1NCkKpV+xfhy/Ho5uurdk0DrEwXi5cvhyWxA4NNjiJlrL3004MoP41LJUYyl23HHs+i0dlUcVqMLVrrWxQ0Un98nADI4U1L02JZaDJkSARQRTrBggDKhYRYFoIBDQEIMSHIJSUUUoFQEQ7V3Rdw7cLwlkgSTi3x8ve+1BqOF1hIhhKzzvda2/VYEjc6+gLWra5lCyZInGZnZ+n2VXc+zWfJfDQrTcdFpcJg0Gi1hYxNu9SrmJp55XbTrJpc9lGaTc4BipWlVe6ts+ZOjUF0cMh3dnvuepydzmHGFYasduVi4D85h7G06JMQZb6K8NJqE+C4oIAAoiPLBJ6Kppf9hx/+Kl2peh2vySYRMh0uIaQcZJalmWf96a8e5Dc3mjeuEoimr9yuem0C9TyalVBERgMXC85RYXaQrpv5IiFxENDhWMoaBAQDVLX0QkjLsjyjmiYJKzPfD6GqLmSicZEyKS2v3mtZsiAoGuXMqVZEHmi2ikvZ21odh9nAjxKOOtVWXmSDyz7lnCNFMbSm6r44fPl4fzgKsUgzS7AQWAJgwpHEIk2Lv/rBe+Arlkvx8Mh//eu9/9v/9dVaBaNFiqBB00xXJOSU5RRjJynSRqsDcp4FQ5kKQ7qbDY3jcn137T/8OPnLX/WFTgwCTaAECb8sQsRK10FlmWfBqNBFlucMYCwVnvm8CNUluqo7qlJcZv6ahsZJEUOpIaDbOjaVjGbQVhkvBQbYxFWEDQ5gVqr7aDXP/uE/MVqVSvESCVCA6mKpZkFMVRd98SQ96H/xxtd0XWQ1Q63Vw8kE/c1fpVFRlEm91uvNF3NXlS4qJSelkBHiGYfdtsvJANS4ioiuIIE4BB7AtrNGIEmwItKIml3r+GFRTKHWzYJD0Z/Xd2800OQlr8Iv3gP/6tfsyYL+49/0/uvvOEnSJ+3y5Se8BNwCWv8wDT5j6zcTzyZfvunW3CorF1Q3SFWhPDOIaRkbxfx4HpWBQFfuFYjEEqhJFiuxZXgIMa2cU6sFsKIlKa019eS8+OSnJYFxgIRGY79RrbZWqqpaSkqklEVZDseTpITQqGGgQQWNLvumZWLHwAgAgBZR2FxaF4xHYQzbLlEJEKIsoJBFpVFLozDjISLCdbs4jypr9dLoKqPwLPOTeAYREBISziQgWMBSl4wpl0dh8x/Vf/TXIS/d+xRXiuMmcjJVOx/ETVexgQUSgVDJhX18zmt155efBmUoF89Ft4cwi3C79YuHsx9+nnLFrSu6w+aVDppl2OP8xhKyNTrVy7iA0wJGxcksg7pQPFVQnmk6T3JkiYqNo3/w3fqduf6DR6OTLEkqhBNOSyAlgRrQGGBpHhEJhX7D0N68Tt7eqVpVWV4q/nM0DqSqhiu2+TjEogFu3HO+c0067QlExFu2CyqZqF675/q0f/yg/OyLk5bjfXSwqADXBBLo0fZ1KykT5K4nwbw8ig1LIyJEgjEkkKupy0AxCEQ2YGUx1B794AgzwcIUl0o8x1Lt2ssXZRFf3zN+Ny3uj/Hvf0/FOogDVDXj9o6imYUQ9uUslinQs6plGUymiZy6XZWzFIhQ1ZQMSOLYQkovB1+/a1x9nXOrIMJ2uhpUhFAwQU2WxFCdKqXEVJkc8vMngACTxHE+m4bNdn3v9Su5KFghijw3NGUazNMitypdPwfMD3BYBNPZ6tZOBjEVIoyjardjOI4QgBI1D1IqyoOjvp/Azqquw4guYl3H3ZWVNDDnQz8vY2qI41k6TEGRBBBKDiCSHEiCIRQYIKattCgpw8VsdnjAN7n4zRuygwuozDutMvVZ/6xwHQ2YMVf1eB6//7eP/uwB+K1/sPo4mvzx+yFBWlkyf5G6TX1tqTALNh/KZtV9Y6+5YguPjAnhqfQipnNFbi/vne8/Cqbh0ZS8hPSK20jn5IefTy+lciLG3SvL/+x7987D4IePn50FuYqxBBzRUhV2iYkuyyWuf5nk37zKpOkcnBjaPPaHuR82PS3GNPH1+vGp2H0T1dcpE1KUHatz7ej5y8tRTFn65tvtN9+0jg/mzz8NBtP2jCDT8K/soqU99+J4cbo/WtrrKgjpkNGjI5lSpUKkwzCWjm7kvmCpwzPQardNx46NrJ9NE5I9ePT0xg1bA2ylDX/7exvAWDLtl09+OpdgwxQs7l9OfISX3MuO1G3zQ1Wej7JSpD3dWArSJUTaTIWsUBNFgjxINdLOv3tfW6oJPi+yWWFJgLWo9FWWm08+nF1/teFVlLIs//I/B6PL8p0vc2K0l4Lz8+ur7TiPNN1Kc5qnYbPasq1GvdlMSpCxpIjmg+nFWqfJBXA6nYiyMJiv1qoc4CLLirQYREEY+DmD165vmy6CPAE0JXpzPI1Z4M+l2RJqNBp+ejCIAl8KgSSUQgAgIZQQcFUgjNide1Ue4H/y3T2LZOsqQIuLLEzNuhkECSq1MAanZzFSOEZJQ0EIq7Cgi1H61a+tvfzT55MhuLGV/dZt62VfXUwW07xIJTi8HPNZpF5raF3FUrQVpyO4wasLrzbp9bbS2XR9NLu2MFxD+fTT7HkAHpf53HJd+3LAJ2+vNf/lnY0/+eDscZQJPVUUEOQ5gHavRNeT+H5Ttkw0hfZ//KNDT4VtpPCUBALd+daqKNjxz+fNeoXJpMgrutEU+oYwebUXXzwJvv8/He6+Ur1143pVo39y+ukswT6n33ulJStwSpX1xgp2dQlKOtunkENTh0RBiURhxibs5b7y4jJTa8yq6BeTceFrSxvVe7+hfv54/j/8O3LzZtMklwWliXtZjC7qAd271+wX2b95xEAXMzU/qjg54TyPBDUNo0ZGsZUnWwZZ0lVzATeiaLMB5JpbuUY0HscvRRGgqC9tN3F6Qq0RRUu6Br34KLS/atttqnja9AT94Y9SsrW7ns5POy3TrrmXp+NwEFZbJmeF67pcgPF8DARrNSqLdGZYBtQNs1K3HZcYOCtSVdERxpbpzs9miuC3tteRARgovHq1H8rzUea1NSmZVu2qirP/+Pn+MMmSGAMJBZAASCAgohRiyfAr972V5VYaXuztlDUt0Ap+cpoG0uDDqIjgUgUwyhuNBo/h5fF8aQVDB7gt6F8srtzofKNL/DR97Y4mbe3Zs0lFA0LFUWHU6ka0GH7yTJwMnE6FeGTYrtVMtfr+0el3f/++3sm7DXHF7BVo+nDsn85zuUGa24lUxEOAps+Pv3NlRapOJjEBmSglAbKaxzcg/eqmYffgJLYpjGtVMDitozrzo/NvvN7deF1dyY3VLvdcX+YSQYGqxtOXk//0N0/WGulrt709WBudBdHgoT/yW17+tI9Lqpx9uhC3zVtfeZ3o5nzyGV1M6nUDeNWSqopbxULI2ejFy+ThsTkuvdVt9e3fuvrio5eTByMxKfNx+8q17t/86OXjnwBX523x0lNQkpWjHf1pdH5CtQdXexEJ46BUNQXSUpOQgCwGRCAyQ/axX4qsqCTmfQv80532ikfjixkdqN66q2mMKelgSKa5tqGpBs1X14wgsDmNNUu7tqsrIoSckErd6DQ8HqfTOFqMZpbmaAjwks4mCyZhGme95SWv3lJVVGShpmIqqQpZu9mM54uTkwsda7VKdTGdahISkWcpKAhSTaWQOsZApPnxRb+5VSsz48HBdJ5LVmZISiAhhAhCCbBgAK41zb/z9Yb/8qK3TFQSTy/Z5sZmd681HY8cvdzaqIgEMNXgVJm9HF9rYLOGFhx4poCAUpE2VtyLZ/h0UAkoQ8ht1+NeU8tSMs1DU7OK3D0dhtjWXv1a09YWySx4+LMUlEdf/0ZZ8zKQnitE/sPf070d628u5WE+izKSWkBq6n9+PhrNEEeqViA7KK466I6h3KzgGzecIc8Rbxx8/nzJ5qiRMlppLbdvvGklZRRe5oaRaboCmMYZhOrGKHj56SfTU1AbLM3+4B/2bt4qCctubzgVZum47/ZsYRn+NG46/fF4UF1K6ssEqkJ1lSIVigNYIktFvchgZi3ZdbJ7w7Dt6PoV+xJrUM293kKxsn/+D9fmcy0H7uB5H54m7buvvl+VPzu/0Kwa8HhSapgzMy95nkMVqHYpeRnNS8QIYQrPYcqin5WcfaH8L3aW11eANO2cyvTiRNpFvbHzs/dGVE1311SOhNstsKpArt+6Y2xvMkXTCBU0p7A/SDkAFBp2vQZEXOblcOxj1UQKNjVNqbe6N2/7ZwdMIkqzfJEZDPjDWbwIKyurVqWytLOb+YM5EH6AbM8dX85hmTUQXMyyRc7t6ak/D744DbNSAsGAQBBAKSFEEmJCJP/Nt+yrekA2s2rNWlnv8u4EmWHVdFejJTae89DPYMWq2McPjpsIdDWcYERKUjNSTUFZYtjdMrfCD74YVis1ibI3v+q0K/CLz9Dp87Lbq6p1j4hkNAh++QHeWrV7RvHma+DBJ+ceddfWFktrmt1ZskHwnVeK5TXxw0/mhtMaUP75KE1sz3EBHc33ltyv39+8Skp4njR7XukMWwxEs7BikiUCVat8cTbgpfO3f+b3WqKh6s9eLv7F/7lnkRwzB3B9d6XxyjVnrSLe/XKHlezJg0pDl9PDEZTk1bvm1pdanKjx/Dml+91ugyZJuhCkAjHmCsBFmSKlRYVJi6ECgqs7zd02Yv4EMTEJo/qKaVhOkWerK2Xgj6ZnYBDgqF4Zg/6zCHLD4iBOyzxPCy0vOBeUwBgCZSoQBRbUVQZolGMOMAe5B997Od2mSu91C+hKBogfW72ae57OYhQblpv5c8M0oZ1P+zjO0+Vt4+hFpLOUpGnKNTeOM9dReeFnXLqYlAVVICnzUpVqMp5n4kVWpNPpTDVsS00RRjGlfjB3FJ0gJQeQYeViGikQlpmQRWniolrRaZ5lTFYqpiGSXz2c9iPMykQCKTlHEgMgAJIQSSzhtW6+2eDPD7CFeDE7UxlhKcRNWabF+cEAxkKzVds16gpueCQqMqK7NCuqkDeM5vwgYOrkrWt8XopxNKYMaOp6o+t96etOVH48HS56LbJWF5rSffp09osfxoaG/sX/Dv3+Bpvvg//P/6AXW9G/+O3sxk7DUI7f2E6uWT1T2jPF+yOB/vLn0cYaee1ezSgEGg6pWR7tpwNJ71wFrmST/dHVVbvKlE8fFZ7t5yybHuvxNGi/rhrEA6yI00KrSMoeh/3we1/qbGxYL04mP/zhfLsWr79q2jdKzQJaldDsVEWqqQPksXhUDJ7mJMI+S1e2qq2bq8Nn5wf7TxcjVLOrBGb++UF5bQkbXBREEbVgGGVtWeSmQM31azsST7kZ/7JMH3GfA5dkZcnDlOYm1ipEq6goyUu6oEVJGKcZLDQEDBVqCOch8UDe1YE/mfizpFKCitkOCOR6Wauw7/3uUq9GLj71L/cldOVlms0SuXImnjwsrl2zST4e64bpo6TWMP2pX+RFgWiaJpwLz/HyNJ+Npm469uoVd2l5OI8spAgmIpq1urXhi5GkYBFGZew3bLvimEkwK2eTrGQ5c8xWG2GpLE5V3eqHKKGKLCMBkAIEAVwSJAmUkldcR2M20sq/fB95jvq7V2ctS0LH6V9Odq7sYOjOL4P2uoTDkxXALwrtaQS/bFvMj2oWdI3S9EKDwNJG5cQJs+y1t52tnR4QSbp4WMX5JJcYsKpJ09lidw05DcNP1Cfn1mR/+AffWn09P/mTny9e6s+suezsdXVD81qNbLpwWfa/etN+FelMDK4ue6CIiIaDS7i1JN1GikYWhVTj7OJJmBRQashtKP/gOzf7B+GL57Kki41eDSyizz8m6/flkj3ddqRebx5N9P/Hf3w8TsE333XTEneahjCmiirSvpyG3LANr1WeP5rbKlY9ACMNFyqVlfOXByJGUKDVijlJ5ITmetXgzGdME0DkhfP88WyjhzjvZ0rK6saH59PHQTQnFhKS0hxACAEJyzzgdGYoRCWKooMkNRSs6TooKEsKBAFGxd2a8e2V6uLxQsY0I4OPfzVYviK8Nd3jFhZqFAydngACHR1KnxGs6ZPjs2++oy9taAT5Mcjp7la9UTEN0jk+m3JMO0vLZinygkIBFvOZoRFbMQoucJZGwwGjzKoaaVJITPwgSLLZkovX11ujue+6BjGNs5N+s90jlSrJmKsLSsEsOxJc8lJiDhHiEiKBMYQIMLG3qZSF5HTlD/5Z+ssfnvghwIB2eoZKtcWMLjXWDO2wous8DgtAPjrJR5rTuZSMNsbpor2u2g3BZMEj7fAk7uxYb75bnZ4cLy7nGop7ZlNfknGepwVJEhwnSVDy/RT89H8MWwa8d2X2ze9qVsMys5SH5Pi98dWvWqhNFacCh2ez82JvzakuA5bkGCthIvUaanQVAdWzx7Ku6/WmBlEeRNqS7p08GP3gx88bGqnaURjCw8NZqBV1oyWnITnIIcE5Dqru2ne+vPXJ4+nyyvr50/H+ILr16npDp5mMC0BtkwjAO+uep2l5FABULqbz+eMLGcIylgiWWTKHIms0IJERMtmIZYvL0KpVji5mJKhVW/UvRPBHB0+eznmmWDRlIF9oKoIaTEWOMTBNXSIpEYAKqtarOlbSIIniAhs45gBiCWjWNux6S9VlnC40FYhG1QNQZFGqEVXBGtZTaxPPA2twLK9d11yVL3cVLAuyOL00elUFp2nKKBVVz2EsExAKjKM8dD2n55oyn2ech3GoGyTPCwGERhyz7jAWT0YzwsJ6w8UywYhyKYjltFZXvc7Sfn8cDkd7K9X9fnwRZpwLyQGRCBHAIZAAE0F7VXXHQ+uroQTSkMk//gfYDCTMTewmmqpenJ6umk1ZyQxFPp2jxOgdJqdlkf+7H8V6obUN5rwKa453cQqSedZskrtfupYGhUYud7fw4/f0ukmsejanTAhP1L1FcaLMlZRG9VX21a9snJyMr+zBW3fh+aew07AhgOOnSQWWSkWOJ1Sz648PJ25stFfNekuYQezWKCzdeKj32rNKo4IJ0HgCYtFqtiRP9l8kE8n21rUpTw4vqkcjcnOZXd/whsEUIu18mO7cMr7zRv17X74fF5VH0/5nT4J//350/2b7zm7blYGex6Zr2hV0fjQWoGyuaB5SEmOu5eCLB8k81BOFchitNZficex1gB+I8TAW02xWiMnxfEKD8X3nKdLgShtRSWKGFBbzuOQl5tJUVUBUq2IDKHRD4ywP03w2j7AAhqEkaUkkQpRqZek6Zkrj5mrDoJPF8ZRmntWi0BymM3j2DOzdFrtvwu1XLbtW0rmp6BVeLogQICsyLB0Vm3Ewdh0jTGQUhnFW5Hmxs7upEvToyagMQl1ViIqrnoswQQDHcerVzdHZy4qhqKqeMhlmhVOrzWdxHJaD5weBJLPxdMNRXlxGC4bLPAUCCAAYBAJiyEXHFf/8d6/s1WWjkUE9ffi3qSaVWzfUpl0iEWoq3t6r8bgk2/BkXqQE1trqSQxOw7zrklsO3F0G6z2KRewSVOlicxksrXXf+8sv3ng9LUU0nyk7N700zECWJXOwCBdLq3heSK9iLGFbX0zvbDn4cNTpGvp6Q8MJ5TQYInGZ9hwyOsBXrufdVj6b2LW9Dk/PRJwuxsr+02SpIUxbhNnMrrlOxbs4i88ujvzZIgtBu+Hu3fMiI52ioj9SNvZUBUVJRNLcUlFvMmtQy9zvj/78gy+GMwDLhhhdfjE/KY6dip7cu6PUqu50cFFtWvZSXYoIg5yYWQOpkqz8+AMah2mzAWUoXnwwv/uuYxOr2VmK0gQZlSCTwzx9MGMxVNH5NCxLAogUlOkC2KDZbdmOywUHGFJeZGEueRkHoaID17DKmItcolTDqiAlMRwPKukiCR5coA8+ZLaWfe+76vWttEaxdbXF8Jy4QiQpSxgxbMq4xBqJpWg2W1qlm0eKQpLEv4yCzKzUEOM118r8GdCwZXmu5wFeepaJMYmT4rR/Wek2mw2nagNclIN5mkLk1Nu1peU4OZq8HLi1VrvX8/v94dnlLPVSqFDqCwk45IgDBAku+Tu3W1+5lZiOr+iv/e33nwJJMWp9+Aib9uLuvYoN5iyLHHulvro+Kyad1dzURn/ne6ufnCnR0cWNK/JLry/Hi0hyv7tqcCmanZ4fF2F44VhqEqFbX1VhjWNb3XIMOqg+iy97K9WHp4iW9K031a3q3KLl/Njx09C+aarEieeDam+5Utd4kGkkO9svd+9UNMrC4+NqD8qo1X+RjfspDXJairXXlpGXIzrZu7usHeIHzyMdk+4SuQwGMDb6x2UM5bXbzSQMXp7APF3Ue/o0Df/8g+cvh4mE0HAaLolv3sAtnYWLbONq+8o9jeSsXjcnAzwL07UtM58vsKfQEQ8Hc3+a7zQs14RBf6YQpFFGeGy7NVMViMN9i6WUFFzKnMaIyYqWcUkgkUS6DUv37CSngkNFKkIAyRCSGlC44imCI5aFNlWdkDtQJhdB7oH1uwoUBTEs4orFTP7gr0Pn67XlWoQrU2I0hUZUkImJSIpCsTmGKunsbLQ3txNBxkM/nvtrHbfW6UFijMdz3TCn4wkCvLm1hxR9crwP4qJIEwokwshxLV3Dm9ubjz54oOsuVbFa8DKjo8GQKGRlrTuhDEiZczDwcwYVzgUQQkjBMUIQKZLXXJyG4cRv7Y8ef/Yp73mo4iyws4o56ia4iaxnn52stoP902y5Duqr+OmRnJ6E//SrN99DUWuD21VyfigoobgLMXBdY7mcjV99U9XaVb1WLdIJtAxZUCamqpmsbZsCCllkv/O2cmslgAvt/DIDlmb1dFrOEWvZjlOoqaLT04McWA2rblB1cX5WnH+I3vmunD/NkFZ++TsWTd35ZNHdtWSE/DPI7QBydOM6TApZSvayDzVcK2X/3Xfrs2nx2XN2MIGrjoLm59t77ivLeU8j1zu4e7XEuomD5unL5BL4SAgQCRamkOeNuqvUXOwo+++lFdesM1DMw+sbyEaszKUGZaNjQyiz6VwkAgsWBVk/pwuFS2iayGYGTmkmaKlhXHU9CNQcgIwJAlXJEWNCxUqRc0wqnPHYj7QMsmGxpNSudpUonVI+N855q+d94xV4b0f79Xuz4YX24/eTL32ZtF1kG4bMieAQ6Y6BdUgGPPSJ0amXVGqKgpSCarJQPUpkEPgcEH+WSA56q8tOp9cfDCImNM5pEq3srkySmJRFMeVRLlOiLDVqfugTmo9evKhoSn1zvdCxQuHmxmoa0/7jM85VTiUSAjFZSKVEEArx/fcmZeGY7KziwRttRaRWGAcZmOyuuXmmj9TuIZzWVAIrqz9/7+jvXjH3A3400nunT++9glmsn15crt2o6r2WsBRBDdXV2/QZNLVYVJ58dF6cyjd/N7BcAnIH1TI1KyPf3GkwktPD/YzOiK25DAe8cEQhKC64gpxNTLSm5WjD/dHqnoPhxbUtNOmrZ+8pRxfsdFp+x1Ov3YPdmxUJYhYVVJEKFlVb9TTt+Yt4ENKzgAu4uHfLXPXkH//F2FpCnKqDBfvyO93eKv0NU0UKURnO8oWzaht56BWJ6um3tzkbT3UgFUVJkkXBBK7oS/d3Hv/gKK/S62+0oiz98LMsGWu3r1qNG1aO4Xk/pvMYGuWo5CLSbMm0hhxkGZdCVYjjal5FjQFGpqNQ5GoWQTjLEltV0ywuKRAiQ0Ioi9xa4PhUDPXogea8t4Bv32nKByPH81Q5rznZ977lDg9AHGNbg3a7QcV08IXt1IVun5pkmdMIAUqCMC45itOxZegr966Ho0tOga0bpeRllpqWUnG1wcGjIInLbDEvad02C8poyREHNE/6xy+X27Vupypk6dXqg7MLopl2pRWG0enF8Ora2vjZeVgwLtB/sV+CCABLLJCUxv55Pg/m37nHr69gwdFZbHJmiWDxwag4bzg7d8xXv3zNSvt8NFtZNz98P2yt7OzesT772QO/9OT54K23OuZOV2Zi8WiWWdn6dY+lsEj8yYNi1Id3X6sCKqBV4VQgmGI1EzyteNxwSRHWpcPcjh0uyvOjqOTa7l2oVVOGmIZIu+vAGzEuMmnoWk9dXZOPn4Z6F7KI/eF/jL/FjS9/G+T+BayajluXqd1/GB0cJJp0NA4W83x3u3hjVfv5B7PD0l5f0G/fNK++nbWWiK4vV+EiON8HhgIyQ9cN1RmWMDt6xk2J15uKTcqKS3UNADUuh6yuEwnpIse7bQgS58kYvDgI7v+9a3A9KxmPLH1wmTmSahT2BAkRmQLecRHEqqx6QpcFSzzX40AvggRIKpjQVCVPCp4JrWBSD2lG1VyVU7puqIYDs2xeb9rTSdlyUXAwbGxoUgFEK9vrdnwY1tc687F//D56NsnfeoutmV5ZckBRaVtkPF3UJdZ0teIZhq1lC5mFNE1KCFGlYqkqKorEIsKqO6JmDY9OU1oaXFKhzPw88xcS4I2dq0cnZ1hXSk4VQwdAGUwWCcdpLhIpRxmLBWKcIiA4wAwRCBgUhYSoVPWxBI+S3lJyutko6s12HSxlB+MHU7XQtF98dvSLj8vffXdj9yqH3f7+BW111z764tFw3pjM+P21quJOaD5LpmTq43qzQ1j08JOos2TdusN330Sw5oOoBhQDGDVa6kaNK9Mzz2LNNYz0+g/+eMDU8dVNo/9j+3BQoAZva5XcV8YfHty+u9ro4OR4wGuCNMtqJ1pHtfY6u33DGgfu5p4uZKza1wlPCn8YRerTp0EYEkVzFcQtHd/YTrpamvAuWOqJ/IxoUbthqFyW01PDZOpaR8KwUjW4IVPqhqUKpHJwnPbPso0uvn3DUEgOMdEyLpLF7dueXq1FZZSm+ZtvVt/+xvL23Vbpf24i9d5V729OovMAOdhhnH73nd5GEv/5i3m42Qog4xx5RtUUWpLxKCuIohKiSC6DiQ+khERoM9CK6uoJbFH/7ftGxdWXKklQgOFRlHOhaBVFNQAERRYBjJe3XazD+dOiyAnEk9Mzc6V7owjPoOYwYZHO0nKv0zk7eRnMCsKsMi84B7ppKgphnDZarYJmrEyKIq91O2s7O/P+pCj5YOzHybRuahtbV0djvz+JOr2WZVqQw8fP9hma51LzatW8oP1FXkJN0AgJLoAqJYGQQywgTCGBmk5+5659r6N2a+aQmX6RLuJAnRdHpzY01Xzu/Xf/7fH//n/Nt+uQUflnf/RJf5jev92qetnT54vNVU8pI2oo3TvLVRfn075TlXFW9C8hXrIaugVBlbMY6xortSJPTEdpN1Rg+kU2WVlHRGGjSTqek+G08sX/dI40ZBs1zyhb2ry7hMto4XXrSCnXroLutipTIvN4rVsQ28WlKQmg0zmcMulLnkOJ0HAxjXO43BC3thTD0AtLOzh51qzAhVCI8NKT9OLp1OyB3vVKuDCfv58svb7c2yG9a1P46Gg4JRqgjZoV5qqnESx1Hkwk13UzIYDqyppaydb1yfrtK8EoPvyE+tPF6s7SrXsbf/2Ty4MRq1bY15vFb7o6PXc/mfMRAomlCi7mII4Lamm66Vh+4PuzgDDoud6Uzr2Cv6KJ7V1dAajVTm+vs67DnlyYoeXpbVC5VQElF6UdRTkmUBKEmd7uaTtvNlafOw8OhkptMdofonar1pBkdX2dl2XV86Lp+GI+r9eq1U57Pp3lRe7WalDVESTx0FdtM6HAsisMLBbjoNNqCc6pP+dxEMwDxGW8CGnNns9mEMCVpV5cgoQymtJ5UAigCkaBkBJALKVESCKJJVIYW3WUbfWgqmQi0eswEcWF1mXXQjOc5Qy1FYzv/UZ9pRPCIKhZqOnJd7600XCGy93yVwUajqSlNAjJs+lZ1eilcbzR5KrRYHbj7HQeHBW9rZG1Uy1LSUxLAj25lIsFRwHSINtb45DoSdzhxjTXpoLBpECSRbs9SZIxHzhaBRJW0BFmhMSTxfvvEa8CX7lNmT9KSzWDUkeg9CExjEbXDVkKTKX/1P/KlzQPsIdD9zgOPJE7HNWqnWBmxqNgdK5ri9Ry/dr2tTyc/Jv/96M/+N++0rPJ/Rva0bF0Tde1cslLyDEQiupVWZSBMhXTIpKXetVqudXFxfjHPzwMzuh0REdF9MYbr3S7s0LJylj++pfTnoeutXrBwTg4n804sDfs7s3uRMMhpdF8hqHwDK1erZaLaCeQHerWTdpq5p5pDQbyic+6byhVu9xer7QbLnabIDoRBQsjFRBtdbcTxWVuuJ61/OnH+7pTCUbis89B+1Za3zRIludZFMZh2Gi1yzQVAEwnY4QRVjCXKM5kVvCEAoLUkgFeZHlJJUCerYEijUBR+EOYM4VKDRinR+cAint3b3KsnX3xIqM8Sdhw7ANYkZQKCYUUGBRcSig1yRUF5DIR740rWadBguBmd97hbB4rnRpdohsno+TOPfj2V66C+UwKf3nJ2ri5bDkzU1ID0m9/uSpNQ3V1XJJinp2+zONIXUFxkRehcnHlejH/ImO+AXMfKZYgGSRIdbWXL/w8hGu90lHVQmTCnOa8nKdlCRTVgE1P7O54mhKWeVFpmiJni+NEWXbCIXjaz11WLT5Kb7TV1GchlWrLKCEMzgbI0JbWzDiRhuJeW6W2VfvwYzafz+4v199aR3evuR/8YkwwD6no5qZZWMSa3ngdfXCQ/9v/7ovXV/U7e6YNonZbqbV1QH3qZ0VSQKuKESUFJsTjfJH6mRrXZsGxTQvLNTumInA+GZ7fv+ttx+DihQ2kfpbNBJ84DfzlejcKCqDI+GjAhgmK0PbVTpEXw9N5RQk1gWApw1D/nLDZSrbdMcYvC7/Cms9Fo9mDmbqY+j2pcDnXTK3ZtgpKkpRJrFU39w6fnH1xcPlb79R/8qfH01xaSZLnWyQJAgxFViS61TI9a7EINKlNp4MojF0HN7tNx3UhZEUaqVGOEKg2bazUizKHgi1mIeBSKnhzY01C9bjfX1trOjbw00zRlUxCDuAwoxLmWskmCsElB0JCKaUUHKACSnelUlt1SXL86uZ6YUR//V7sYVzz8jtk+LVbjfXXkSw/y0dRhHWsFjA6H1+UjVqkuTibq4OnqWqVRkWDWuMvf3jx+u0e2qbEaeqzGMeic6MsyownlqxvQIVTemmvlKtW72/+ZHz0KXz9Vk2QC6Mo7l/1uJ5Dze7ZVhNHWI2L9XVvQ6PzYtGfOI42PGOfPIOebXz+GTtqgFe+itsiSWn7yTAZXoLRpWY0iGHHVSz2TM01YNaxOT//F9e7d/Z4b7OqGUbdnJ8fotlCa9wRrLUQouK2jGtr+sznR8MIIXOvLYcTHzttNifJRWliBadxWTAisOlRqRJVp8RAGrBudHv+LGc0Xbtew5jmvuzU7KpRRCleRNWT6aJQIGKFaUrH8Yr+ZBnCmz3SQPx8lOqJstypBhH7eBTnhLOc+wfy7Mivea5M8menTnMhsIqPp8FW4KqyWsRTx1OE7/7hHx7t3tp7tSbe+9nRlkPUnGoImBZZ7bX4IiGGrh4fvNAxKKMIYyzSbBHwJEen54vR8Ojq9umdW2ssKxeT+ebqchQtDMsqKa9XXWwZM3U4nvhm3ZAa0gzFTnRMtNEoWaS84EC1rGvra+rDuYgBkBJJiQThQpGwQIATGW0sa9/8ypZW5I2lZl6d/Pv/qD4/UO/sKuGJaGvxzoZeq9qF0unP7XQ4VIU2Y7zRrh8dFWTNwCRQMQJJDRlEc7I3X7cNHZBmRSEqmTKeMKJBUajv/dnMufL01pc2lOo2EKJaxa+8tfzpX+2PfXr3zSYtcyLF11QxTxMkExswy7UaG1fCePH5Lx4s67pWRXmcGAhyHf3m92wBlTS0qp08i8pwEk9j5Y8els2285u3zGoZGCbHGvYwvLNGSZTMD8T2Zi8MZs16DfJi5Wr2xrsNhH0xDY1UvHu7eXA04xRaSpmp+NFz/IuPJm/cMqo6pgAKASgkjBhlpijcUBgoRVhp2FJXkpgLYYcRDuZDT9OZkKatq45pNTWsWg8/GBRZQRkasSlHiqEpOhfBZVpOs6blBhN/sshNICAUBSYqsgEAUSLX6p5ho9FslmWYAW90YXfdRKSGkMJoVjevK6p+Ptq/rBOUGXYM4K2v7Pz1z45/+P3RbheRJApdy+RxNLvsq4paUJZlwK3VV9e2s/gwngV0PjUsT5bs8vTMNHWGWV6yUgcizZrt5YOzKQQIO4bjmU3mnZ32keKFJUhK9sor9y/7YVqWAJlSACwkApIhCAFWQGlr4N0v3Tg9Ov+zn59+5271X/yusWQLZxekEXxwhr/7Dqz2aJ7G0lObV2xPIYsRKLKSQzEa6ZeH/mpHNiqO1zCnyQXQNAs7f/LHF3/3n72bR9P+o+HeKmoz/eJcjvdVr5GwyTEyW7jiJAlQ5cWNPc9RUJkLTTem8YiXSgLo5p1lx2FGU0c9//ivzocXSfdK7WIcFCVqVLRr62Tjfjk4Z5NnilhYMTBng2JU4JCULYDtVKtXtBDFQWZf1fBX37JffBSCwpycHZtdvrzVXF5HueBZkIEc6i0T1Se26mUnztSP33zTaOw2RjQ6OByyvFpdtiGYYc1gUOfASiJOk0KPoGRJfVkvsLAtVfC8yIv2UktBsKSqLisHJ8nheRiOippTLS2wCNM4zlIqYCmaRlXGSQNbBtKPFxNH11xFPUsSSrAJoSJywhmmxDJEt2F/8vFkfWOl6iJSxADEUaAcHBzdvbNmqeLRe5NgYc6msrpOnAb+8ps7P/jLJ0lBiJCAYEXXTMjpfDoHRNnc21kEQd0zLEWdDsfPNLy0RZaWlwYXZzYwCSS8KKIgBWXJObIqbqPdNm2PYKirKoJQVZQsit1Ko6AiSjImABdSSAEBhFBImCAIIZT1ulcy/ee/uGBQW24uwcvRG5vRYeT+v/4kJFBZblrR0QIWddIY1jss9yiUBBcwT+aaYi6y4uBYDM34+h1Uq68dHU6rLXTrLnQ62WBcXAwNtSQSs+5aJfbT6DQ9QXD1PkMONO1Wr5v4SRSOotFpWHcdQ+hcFbota9eqBEccASHFcrvQ71UwMh4fDmjBVAIbS8bgYWQQXaXZ8RMEnUioLJqr60i7SebXGgqxzOOxhoR0h/7V203TsC4PfUySbs0lzjiJRbKof/hhsNHV7ajQsHFxyi8u0ntvdOs7fcMNd2/6KgfxySAzqtWuyEUBVZ3SUkKJVUgUmJc4CyS3S69meTUV6VRxmJBYyavPnsr//v/7WZw7jEnHlhTgeZgAomFFJ0LAZL7VqHRa1awoXcebJ6XGcN0wcwBFFGx0tK+8s3Py5HR+GmsdBdGcJiN/AAgnpoX9C3i2zzUyxrnx61/xuR/Zijm6jGioLrmObeBRKAkiGiIiShauaTBM6r0uR2qWpKQQDVsd8pK7NeQ6yFCW11fjRRAsgjQuihQ6hnZ+ebK81t7YXp+NJjlC89nc0hW3qlOMz/1k2B9PxwvBpQRQSMmhABBBIIHAHKLhIvnPP/iY5eo3bnl3diIE4qBEf/vr2dMQLlXBacJUop7uh7Car8WOadkVB1RgPh5zRmNgWnGh+OFsQ5oGs5JkTIL53lVUbZ40tpy//csyjZFeK7SGOOjT26tkvStYOkW8JqUgNStTJ8aS6mg2DUQScbM03Q7WdFjEl7oFZTwheWaZzsWcP+kLwTGSZciDV69udKoCKmOpQIK50+D3mt4112ipI4b40WkYc9eA6PwoUVWtt1VfA0wEKJ3FtqlbNQc69a/Utx/97MnRI3bz6u7w5fMvf72xel3H1jb1B7VmWXkV0KZRLmgQCwGBiFIpFAyxaiilzHgugtnUdKtBFDYqdYJ5svDLHE7GweGTtFfTL0bseJqdBBhAyCUEnCJJDQWaNWwHIcmTNEn9VF76pekqIcvTnFcYokEqo8ndOyvPH5wcPkPTGZoFo43Vpdo6n4U5l/Ltr3R9gT59OBlORb2KV2uy61kaQLrH7txWDRWQWrs7OT3Jmaiatkuw22guQtA/m17tNdp1w3nn/vK9G5Il/rCvCqno+vnlWZlxw3GQxLqhttpuEi3ysHj58tRxyNpGN+MJwiiJI+xHvGSccokBl1IiIKFEUoHSlEikLCkRs+zK7bvuIJ/Jem3wMiOY7FhMzQHOIKnqqRRFrn7wZ2mjzr/3bQcG0oLGK/eMH38ap6I28+NpUnaWZ0vbnKXmo1+zgW/d/869xs5M+FFMlRcvYmhBohbhSMjSxtWZUAbIXtt4azmbZ7PzvJQiwwRYibXmFnig1rHMhChV23L3n4w/3p/7zEwzbup50xTuhoMlO32eLSJBp8rSXu+t1xvJ1tHxi+qPPs4dK2s0RBkApoCPfj5ZnwZ7SwYpVYqL8IyQLrOWLoU2Y3pZ2g5v86s7y+v3dhKK9h+eX13rAoFUKyaNOC/E5QBG06xmCwVxBihTWetqu7PdmM/OHAd41SoC+vDiFDMQTfPYp00Nv3KNrK3w3bL1o8/mtkM0VVsMFzVTVTTNT1kkOCOEY+xUjIoqjpMolKzIhIYrcUxfPBm8+3ty7cbSe7+YQEfZvdpb3d0r8MlkUPZWMr0bP/nEIY2lpeV53ZyvNgpHbUdhqW9Yt2654vyScAChZXJDzyXTAPCPDhXLadX0IAvsen15eSvJZJmXFbsCBU+CkAJea1bdWr0/GFEKy6yQMlFUTXc03QQ5k+c+nZV6VsKeBImuCoIghxxCnckCSQgAwBmEWIGajpCOi4++6G9Yovpt5+E42liqt+qhmKaDI+tZ5LumASjIiIwA/aMfxIlP3nmDfOfLVuNployihsvLOD19MbVN7eVl+d6z7I3OVMv2f+OV6vBC0UW80nLu3Y91xFEOEdbgJAVuhtxY5PkP/ip977HBirgD2atvkDueUMOFwFq2QJauqg2JDBMLxU8o0lwAyptdvaJEBCs7y9b5oHg4lWKcJT8eXL9v3/lGe/XWHJTT9/4GEC1fuyZQiMKjeMKc6qa0CBaFMtuPBydg4+7ya7+3QVnPqGYA8cMH0x/+4fN4wNv/pxs6QjpuUZhLI5EGwk0xScLxwDEIaplyNGfNu1UdDsH0kgFNGo0sBaUsat2lpJw6MihztbPjVdqVri24gWNKThzOYhFnLIzpwjOeJyLPsaPChomAAw/OHYKTRlOiUiwCMT7jm7eWtnOxuV6uNJqA5YtLIIrQ1fX+IRFR+PZbZrhXVQi2ITv5iNFTXmsl/iDjESJxGglKCZcsTACSWMFIwZ1uN09CRUGxP/EztphNtzdWBGPhYnZlZ5OXPMoi27Uzifx5pptY0fDq9kb/7KVGS8uxgwX3LM2fDnPkAgjBf8EGQgRUUjrCGEOlBMKRFNQapKY0v/Kqud6Id77dnB7lnw5DgvXL6fxsCK/tgPkgVoxqXsiz08gwZc7BsJ8aFmU8qrqNMoWUIKqgjBbfeHd1bzv2Xzy0mXFlvVEkwJ/wPFa3t5kAURZNUF5lvqcXxcsn+Wcf0xeXwZ0rpImQSHj2kPqcGfe3zI412H+iIj3LkG0qBMZpGqi6UBSDqFRRYgALnkObEBaPF6H48X9SllenNc+SGXjtLV5f0Vgps5HGWELURaUmszmK4nlvG77/AX7vw37vhqa6YcXot4zyx/863n9hWh3+q38/7K0HX/pm3I/Bs32vtgS379mDZ+R4kBCoWwZ59nFc2QHLS0sgGPCEFzG3zWVq5If9fsELp+JmU2BgPPVHjPkrzZVZoOwHEwhbGaMZmzmaopeZqikJzaGmVLFiS644yFI4S2VaqudHfO26v7SabmwQnPrD0WIxDlyFpYtcI/Le/Y5iynbH0HV3+IIO58/e+UpncJYdXfCrd5cIpTkWovRDZJtmzY15JiFirPQ8j5dFEIxVrIEym/T7uoYrjlmtOJPh2DBIFhQQqEXBDNuQEPbWN/KyRIB2qvWTi32eFTohWZYCKYUUQkiCEIICkhhJiJlaUdBrN+xvf6N+dWmBCv/wRbWmMBngxUhxK2rAMqPq9NYrgiZJXBqeoldJryOqVePFQ7iYk3ZHT5OCcaO7tDubXyRl2jShbToKJ4YMTD29GKX906DTsyWXuqGlAT98OsDQai3F+w/LOMGugV/ZtV5p4LIMPSlOhmz0ILrXe+vBk7M8m2aJZ1l4owcHU9FZqn7yLLTqyvaWMk2QXduxZ6OZn9surla7Gpqy1B+fkt4yUtSCOO3mRkXOzpMhZCHQbabVUVEqQGjTIfvos0lUzu7fAH/ve9e+/fvZ65n+3/+ro7/+Rf/vb7YjYfYn2cVxsLsjPcUZxxXGotwDeVUc7SfDvzj4l/+b25mcORV1flL88r3PzudGwWHVK6/s4nrXOHs5VKwKJHoexgZ3bVW7mJeXYZEzqkm63bCDgr1YpCkiK0Cva1mlYTgYc2pKUiqaVZSDK1dQs4Inz2iRlhgxLLU8gVpLMDwvUtut8iIG00FSbcuji9HhPlrd3mx01ghgNE/iVqsRzqY8BshQFVXP8hwKGfsLIGSzWk+jVFMUgiSGOAqiPCsAwSrCM39Gi0xIB6pEs2Y5AxdHh60l6lgGYqJMM4AMzgVCCAAJJABEUpQoVGvp6B//7vpX7lXy2eXZ4/HRBf/4VGxdYXsG71nV0TQs5/jKjrriwtY15fSCv+hnugrv399ZXQGf/uTlxC/febd1djwnijbxZ1gzJFB//vngw0fyVk+7vmnp0DQk3VpVdu8yyUrODa/V0U8v/CkbMcUw6VJT8yIruwyQB11WzUxc3zWsdBa8/8s8iCiuMaBLsagoErpE1eAHnxQlTPxM++J5wbJziEJClJFf1LyFozjXX6nWlxYnJ/NaaykMraPnF0ve3NXqWNEAAUTl+8/yx59xHRk1t7jSdW+/sebu9T5+7+Jv/3jfJujql92rdxvHR+nhUdJcsY+OtE8Pj/gYKBUyLfM9W3/njeXv/3Kw/8S/8cpWMTg1FHLr5morig8OAsIbk/NieSlrGdrhSY4ajihJ4CdciP58GHKAkZQiE4JTyixTkUggoTYrpqFxT3UoVBnyMz5r9ZYMLT98eHH2xJr46krbYgIjRYNaYldVWpgAAawXS5tS1+39Z+V0US5n8+ycERthTqBedynmnFLXtGjBp6MpsJU8jDu9pVF/qGCiEASgkJD0hxPTcFlBCZeGIpfbdaTi8Sw7Przwo5lBNF3RIC9oKSeTua9CACSEEEIopZQScq45WHz7G2s7O+Jvf/7w0edsexPf2l3NzsBPn0m2dnGvXYwm1BBqTys7KkNV7eCC12r4zS9t1x17fH7h2GQRKQpq9rr05dlMM6hrVqutylnOnxwt6mp5ZUO9vIgnk8WNm1oWxgTpUVhenJ8gQISmPp/Q+orYWaKTY//WrtfYJqTQZiVLMpBn6dOnT49CXXGo61pJlq9UTFJCYmvX73ernjGfSgqzRZFUNQFQyiBehKk/LzST3rhXG13kpweLTx6d9tqVrVcbC9+3Ncpjb3Ig6g3Z6iaTy+Kd181XvrPnNr2PfnL8yz87WqnzN99aETkz4nEaZ5u7zh9/f/rBx8rKjnmtWs7ncWddr1a0u5ulyStgPgZsxVBchIFryvGsBDkzKn69RTQzra+pcUZ++XR89Wrn5XlwMSuhRhoGcQjXXTJlOTItjyKVoIWfZwLoQFFVM0uSDPr33t5SVP3wxVTj7uFF9vHD+Le+U2NapspyuWZrnj06HNmr6zQtnbZGcPXli0Q1hxLNpyOfiDSjrDQqlqnXZZoDJlheaEQdXQ5NlUyGU4C1ApTVZk0hShRGlMHzy6mr6aAsPIvoWhmlBRZGGBZRlNRbnoo1TUF+MIRYW15egs9CICWE8L+cmYlEVUu4pvmf/vzlw3O1MPamw8G3vsb/cdf9f/6pMwgTuC6Rpm5sGkqR6jANMuvBIV9fMo6e9D+4iG5smK5Xlhw9/mzaaECCTawg1QL1TmX0/oHJRdMBZbbAst3caGdyEhxqlqeZni7JoijJKMCHCwEdvONYr7yFK8twUcB4cnF5DI/6QG07SU3pbLWTaXxw1O9VsaOopQ6wozc3Ur0sx4cRzVNdFzYkkqOMyls3OrYd+qPok59ok0vqbInf/m5XFHkRJwB7Zq3WfykX/kV9Bf7O3zcOPy8rrStC0wdPHy6D8f/hv1rWDIUq4Ce/os9/NO3V4TRIZcw7K8Waqd1dhi+AdzwmH75s/uLB4beu2Uj3xy9DFKD+s/wkLGex6dh6pSMv+7pkFbMVrmySqwJyxI9HeczMrBQaZEtrSpwXpapGi3zZskxanJY0Z4jOWBmMhaBf/73tlR0rzmStcgvL+d6ryknSLzS0ctN2q4nVNSktOsuIs4mUNmN4Og8A4ju77jjOLmYKmQfzOM5qXrPm1cfRecoZ0uTySmNEk3gyA4U0HZgLRTBMy7goiiDPFUOdxwFmeVsz0xBpulOKBc5SDch6r8mJGqTR2aC/u7tea1UAZ4BgjjACSBGCITZJ1X/1Z0ccAuIahsX6qf3zz+J/8jvjdzfH2OnEZIGVwqpgBGStRV4+RCWHlKPFOCNAxlnSaFo1s1xEQaEo7ZaKeOkPFhs3arevqUeP4ijjz0/A9ZtOe639/vvhVkdTrQwb0ZV79uicUCpv3nU//sQ/zBeaa0u/meOL00uKAfaaxkhUWjuF8CeWoQDM4sLBFaMCcBr61680NKQE5+nAVylUtVrZtGhd4u46rtZbL/fHkzj5yp1OrzF3tPl0QltrXszicVD3Adu7qRjba8nnlx1FCZvd819+fP+NAnRN4lSPH2R1N4wWcVqA/ZPCMCudhiBGZps5K9y//83ap+PwL382tqz6K3fw1aXm5dFFOY4ttaabgWfnr92wx6X2f/8PBfCn//DrYHebbzbgi4scERxEdJFLE5sX88LWwHhYzgJ97IBVR9Rr2rVbW+1Wlg6S85NQ0PDJeyGoWaubLhvmDQv99nd33epxd0UqmMloTBChBZW+LP1MlsrsvAhzutauT3P4wYuYePVqHCfxYsHSBALpVT1BhKlZ65b7+a8+JKYFHG9yMTJmqsITpOtvvPGqP50NLvrRNC+zrNHszaPE8ayVXrM/npkaiiXszxaNtc3a0lIYLCCQCEKA4H8JKkAAGAAJ5aqpQkSIEC0CP3uU/vbXl753nx6dZucTsbfZVGW41vQEms3noYWFQpmnOppjKojNFry+bDkzKmly79ZSHthPv/DrqtqoAnhr++rV1tnT/Z/8+bNWvY8N0H7VNNUSklKAfFWvGnbx9OXoeIoqDcuKqdvjjGumZeQyqFec2SRSmElIPZXh9lolHNMkDhXhVDRVgzNGC9sBjOZ5yS5ivnS90rTDWkX1rJaK+pbOUZkF09yzQaNHchk8far+4oPJeRB/5+veN7a7w+Jw7UoXL43aMqZThoweANBpXYQB6Q9SWopWq4KwqmhJBWpQKy6iqJnm995ZUWrK3hJbagYFTziFumZwHOrcnkTUrpkvHo4rhrKx5jieDBcC5MV6W1vbbX/w5Lw/gYcv03wBmnV+e009niVnFzEW1p4OPvz8YG3PWavLazcVuIj6JT5+Ov/hD49e23Q2eiZV55f7fHZYqkq+sWm32rrGotP9bHSWX92zt7aMxrItpG06BmCcGJZh2mac+KNRcuXarmYYk8BnRcpSLs3K8XRqFJICOVvMahbuVtpp5COery91XgYLggRAIC1zzbJyygxFPTo4tHvblZq32uwZmgyTKcEISIEgBEACCSEgEFNAuEQagpqQSq6DS58PfP6V1SG/nDfdapgRjLFpN04usyAlJiGsjCo94Vrq/de2sBZhVcb9tGRmdXMjZfmNFZdU9a/+9h1FxVWF3d1r9p+Lwdniyo2uYRRpnnsVPQ9ZUcZK1YKN6slihhZ2kBQ377aefFQ0Ld7oVSm3brbK44tgrXuD5bmmAlJyw4EKs4LpRTBhllXbWHa++/XAcLyHHx4363pV92sepkG2VC26Ji7CYE5zr1ObjsXZWD455BeTjLjOT58mrwS5u70i6u3s4vjyc200AHuvTau6L5j57/8Dfv9BWPEU4lYW01EwTwkBJVKz0vrhn4Tm+9PknL+7nf/B79XSxMdYrS/Dy1E8HIp739gw23NDZf/yt3rdntbuqP2T6NlHc0yxzIq3th22xV60iiCCV2rNTkN7MpyOrzRfvFy0NuKLU/7Dn2XrVfjuDd4i9uFFctIXFV1PasWQJAeDEiO7LEtesv4AbPbM6YVf9VykwtE826prmlmGRaSL8ksbksRJpmr6crvTv7iAAIZzf3I5gALXKm3HrMZa0W60ExrbqnQUkMYZVgHLc6hCy7ZpEkCiYM1ULGc+i04v/YQnm02qQ7ZSVQTPLjlHAGCEEEaAAyAgkEBCDhCAEiMpoEgYKrZbvGFxX9HOqNbVgFohlTowWuy9h4nW9UgSY6+Wu8r6GqHwSKUsH4v+cTYpQVyd33pnxWhJgrEaAzo9KYoIFByQbONmpb5iTSen2FBErL38LKGY7L1185ZT/ORHT09ehr37jm1rEKglzJiiSVg2qnkUqKPZsLrcTsbD7rqLjQwzxxR6zfXG47LaJtc2ebUR7a530ilTQ1EEA5mY17b1nJDRcVlC+7Pn6q8+mg98CGzabkskcsVWZ2cnV+72ILb4ODs4Dw5eYtBEr67KTz4iB7MF1awCa08OA4Wj1XaHSAGL7JwWBVcOnqRdrTry2bNHEaJ4bVsgJ4GTyvI6r7V8RqqZn+sRTUTk7V2TGE4nxvBM0JgpnC+tWcuvNOeLbL0BDTJfXlF/9IT96CBTc2/5Cr+y6nigtCtBhiUbkU4d9yoEobg/RkcvrZ1VIQuRFeTBQfYXPzup1NG331Cx0M+ec4XgrSuOtKhoqorE5OR04Jr6lM0UohwdHI0nMyzl8vLa6eExLVnF1m0iKBPNWhUWRUHheLwALF9dq0tVD2ezbDgtkILj0q027ERYSqXVbgmxEEUSLsZFWhIIEQQYIwGEBFACLCVAAkOGMItNkL7Vce43vd2688sD+7/969myx7vN4J37pGIVtNBO51GQFpcBeX7kLyZ2uFS0NKzmGvI1B2X9z56K2WJ9uQ6VC5oFphS2o0ouLRPYrRpQgaEBrVKJBplIYW9vV/Xaj3/8I5nFV6+xt9+pIjLc3AufP6MPD9nr95uyBKKQT/aP9pwtizBDlVzjAohWy6vVYEzn1Q5UuQahWt1qTcARFESBSOKikIAJJUqLw1E58jNvSVW6vFZdj6ZDDVJcyvgkwXdKSvu0YH1fvyyJfE52b66oPP/G1wzNrEgmMSt5kFhAGFDxfG9YxHssO1/IlS55+7V6y5g+/TyrdepRKT5+XxwOcrNJ628vr24mweeLMuMlyoBarG42ux1yedzXFSlyCXO50UqIFUOoVUpvyyn+/tfqJzM2OI5WGgKZjfkCFvqi1WnEl8OaBYliTH1tXsAXXJgEbNi2EWbXlgzXIP2X00GJEFfUR3mZ89qNjtZeAUQl1WozWkxrLYfKnDOwvbErIQ3CBGskKzPdNBW1bBqWLCnPyzBkOZUIID8tiOOAudFaWhsH6WQ2RUVpw+jq7dsRI/2Jb1PEc2hblud5k5ATjIr/sigCBCSQHEOBVJHe3tXud3OR85SEl0/SVddEHn58lL121akRqBeKq+ERpxphhu0cPktxgIuu0NAcYjUTSjRV82SWT4KTi2x9s7G7AfNRoABRcz0Jy2y2MDQ1LwtVx7tX6mQJhexofLkoctFaR5a59pd//IzYPErhyxPUavnZGEjsUQn2H7/80pbtagpX0Mn5VOYBbRvtdUO1E9aHZVQWMKi0AI/swEeQBYNzcZlKjcsrG60241SfJbE1OR1XDVlK0NX0bKZNzkqzir94gsrSwq76+Yvp1y5ht3mpx+uazBGkl2djkolerR0OFo8mc2uDuCrfVbRru/bVG9XorCyS8P1fRts7+pXb3pTFZw8FE2dbu8qSLAPkEaNS1ahRBrPTTJes7mgrm2YWRKZeR6uopAYfOOve6fUdvgDuv/6T/HgifDMp5uHWjr5+xTIso6npz07Qo5cLVtUd5LpB2UniXV3TMJASHy3QCBimiiZhAF5E8SXox1MNUNLqdtI05Yg4rmm5q8SpFqGfxCEoAk/DpqFFuRjPZmvdBuAUElFzvTSMoEQqhtevraimUkAliNSji8H13VXd8IBQNF07Ph/UbB0XgcECKusQEUVIBjUhmUJNqJSc+AhaMK89vrj8zjcqQTZtKvRrPfXhPBpz+eARS8/pdMDaW1VtAyZMdJV0QfDROGs3latXGrptfvzRWauhrK5VgnmGJaAzvfDw8Wiye2X55WEg5sO1LbvsNoGkSOeI2LA8VOboW9/aeuUV/8Vp8ud/3f/1r4a/+7vXoiLNyv7lVFbWdKWgFatxspgcjnXckmsNe9k2jw4HI0u0NiEhNC6oVXe0KhUETHTz+3+x0ExZlqLEOYb2kl2s1fMgdUupEiXsmBoXilDQUTgXT8n9N7ZPxodzPx0kJgagHA1Xe/jlYPj6l5tEcbu1erx/aRZFIosUEdcxbuyq4ThxtIjlxGobb3wNP/94Pj0md77cen45fP4cOsuy1rQTWqgMKDQhKAA6vRwAlqsOyg2YI0VbnMwJsVS9VNl0pYvOF7FrNXY2dHkWd7R4ZdXZulGpG2p/1jjoF0mcfnXD1F1oLzK3ZEsVU/e8cVlggkQIL+dJo1pdtZ2JRuPCengcz8uMeLWqOa0OJyML5usbqyUSvr8wNK1AoMyzNE65ZuQlp5Qjzqv1imJWaJ4FiwXNgtpapUz9LMmqFc/RcFzSyWQeZiVBwjQ0hLGgeatiipBjRZMASAAJ5AToEtISgYiTX39y+KWt+nZ373L4wLLmS7saD9kUyhIwSlBjhShYdismMOCNljBM/SCo6Omo0xUQhTs9s7WmAcUvfePmtqOp4WTB7ErtwTP25LPF/WvqhtfBrtCtugBCcJ/nSOGJU3+pIIjQ7q8/Pt+761Yas0cvopYleImkrtfqSjZPHj+C+w9y00pW1ws1G++11IJZk5PppoFMLIqcKUWVQOa65iwKHE27c6vTcBJJ3Nl8rBEoVX4ZF+czyEuxbmELlFTo7Izqr1PN1udj/k//7pZTDhtY0tzeu8ozP7Truu4B+6qeRfPOVaMJOUdxp+dmlZJy9c//4mBpdXe7S1fXw/55/OTRUTASy6u1zW2IgKFAzzRDdvk8B+lo7AzOuadloIDJBAZFSDQZTNKap+XTZODDSKubJPrSG02vkruy9p1vtgG5uPiiDBb8ybNo3dZbWFFiqBrYqzqFJn09ZwA6nDcCedU2uWRBlHlLq3Of5yyjVCfThS8QWlpZzUYn08FQc6pJGGsA7l65enpyGsSR5zitetWfjnutCkQ4jONSsjAITQIiPxVYLVPaajvI00/O9pPDWDUrCIBaza3X6sODWCOJikFBCICAQE6AQIgLpEqkJkn05hu1f/QbBsyPVzudGtFxQp98FsgSSrWsNZx2Q4NClkF6fBGBtrm2yptUO3kONUdCHlkGVqEpoaBp5tShbpRMQs9AQeRfX9Pcuj6OsyaQQkKiWZSFKqrSMoayVIxau4d+4+uGbukVW//2OxCW+cms8eTp0LvXnC7A0pIbJ3SQGS+PWJ2QjCoaFFeXDBZRA+EkYydxJmgM0WR713j11fpSPYLUjwsJhDqewOM4P5qitHQTgwUq12MAQP484PO/Pn3t3Y0Xg+fj5weaTT+cMKmZyz11a0nXaQwJRBVXW17PVE0pTml+QYshwerLPvjhZ5T9av/Ld+DX7hlIgdNhurfRqPdEQ5sHT6iJVC6i0blIpTJnpefh8NLOO263CwhXRmdQ0NxE+jgjR2f4o7PE9bL7N9HWsvnRx7PTabjTilWhvra7GVwc1HQNRrmh2mZDk45s315lGlVyefqrp5sddbUHE0nf/3V2+nj6fJbkOYESkNl4BIBimnZ9dePoyQOEdVYKglCaZG6lUsZRrVmfjaZu1eOMqohggohCavVKNBkHoWSASY7no0Gr5XW7HV6KJOeM0rSUzXaHIyWLFlBWIMYAIgVKDiECAENOaNZS2O+9ubbZnvEkxsTsdhychg3HrilKMhlggO/eXytTf7CfZAv7/Dytu7Tb0tp1UzXsfJ7rmnRt58GDuNOpGubs5NKdhGrbLraWoULkIkoefxC0J/Wtu8ztQFmslGJqOEriWw8fcceGe9srUEmxptZazTRZ/PXni/5RgaOT9drW7/3+Gx/8+r3jo8UkziXKJlQ8uQCOqlQNurxCbBsCHR2dt08vfMK04eOL5fv2/kL7n/9sVqno7eXKBw/mima/+6V1ng5V4CfQG5TD41x7/88mS5742pr74af+tLcaZrNZkPz4w/wbt4svv6HVqyo2MAaIKADx61TVqDwMFvjgqIyBpRnc9HBnY8lSYUFfdtu0t2zSGJRRhOtkEpMPn+CEmtAa37xeHZyRRIewSZXEQyDo2I4tMKiatslqLqq3u5cHoyLleeSOz/JWgDWpo4LWMHOMpNZRFZ6G1K8trXprGjYQG6YS4yJlG24mHeVkxdt/GiCsWZ5y4+oy0XhZcjEfT+s67KysSUUV/XmWF4MkSbN05/bNAkmJeKNZSxaLKIqcWidkfHm5N0FgdHYOsKXaHqNJkkDTqyR5RABWkFxMfLMSAkXrNCqaLxnUIEYECC4UAQWCpSjk9rK36mKU1EwEooROR2cbVfHtb119412LJXUEFlgZejXN3Foh6eVFiA8vilZ10VonjEwRMe0mPrq4HI7gyjbWbXz0ufNvvn95cx18651G1coGfsaxd/aESkyvm03DuMI5mA+1oxP1px8ddRuXu2tewSKfiqKoHhzHP/rQ3+xUVS1u1RLXIjUdxLSsqk6hJFkONnY8p8GGfuZWgbtqqhU1RZ3vfzCpKaKODD8gv3pRfv+hen0HvZhNNFm7veGQ8gj6RJUsUvyx76SDaM+pHP8sISQxq+TR+YVkaphJo2Xd++YKyi/CcWJWmoZKkSyEXhDiANnVPF9zEsmqy03zyloB+cKtoav3G8GoePzRpF2Dra4iNXo8ku89KZya3FQdxzBe/Y1JY1U/OZOeyihPaKjM55Ri0KiJ39hoDeaLcZJZtrnaKDumxQucxiCcna82lPaWZ9UwzEs/hsgqEI9BEF4cDKlVf3YyqAW04RhvvHOHeeefHcxTqH/zm7eIJdn56bmiWbmjdzp1Py2q1fr5wWG0mGzvbiOCFmHAEZNYEpVMzydBwlQgwsDXTKOzvHY5jiiA9YpVlknpozxIKEWKYmOkDMfzbsXbWlfw4SnEBBMMKQccMkxLJAAxn/XL//yjs3/0lbrq5VDVWs1lmGW//vF+q4ualuPWHMilVBRFNysWe7kwL07B9W1iVDKFqETjpu6stTC2KDQzbMNrV8mXLnDDMS9PQthTWq3OZJRwyT/7VIzT8O1vjX/98+DoKTVq1vf+yW9WLDB4OPn1r6ZPzwMNzp1mG9rsZFa2gVUqRX3wrN5UPysBZWBvXWur/ParZqNqZX3vYnyh5FHvmr7Wjv75P7P/9X+K+rhjBoFqWhBHQz/r1ozXr9dckM+mZexTKfExLfOR+va2u/Dzn5zjnOKvbKqvWPQo4SMq1mpWtQuthSwzcLg/ZoPsxv0WkUnJNaDUiK5BeW6hpOcAFPLZESEG0hp44vvjuZGWuVHVao0ayJLN1fK1d205o8HRYuMuVhQODFytAEDV6X5OY2TWre6KNpuNN2rYc1tpXvacmQdEypSkFCwTuoE1y+IEAISbW5bqudl8Wo5HRar8zRdDpNfmqY8X8EJctGrJblt5clEePn9OVEVr1hqCch4HNFOardaJP/WTjDNm6oqKIOF8kfC5BSFX3XpLM52S0Xq3midxmXFMyzINC1KNKF6MgzJLbbuSl1maFBUb5WW8vLZat/tRiAWyiZwTKIBAnGlC2H4S6VWdAFgwhUkFEi9M2YqjAh988nR6+ytLKxqZH/f9k5EmSxtY44IW2JUJkgmueOrZ/iwvyfK6YRsIFObWlvht6AxfRAJzXdVcnltmOFLB5bD6wftxBJ9lC/7Gm69s39t69vjFL/7woX9eEE03MJqlpZXFK5Z6QbRf9JPKOE7y49e+fKUw4v3nw699o/7dV4lWRVQVVmMl+iTK5vzFZ1MN+bUV494Vw7JRvbtao2inmzQMcmWpGsQXJ2MmEj3i5UXILifit+8bVSMaT/m4yBehvn+YfP1GByq+Qgw2jD7528jj5cZSzV1xtRUXtIU/lZbUCAOjaU1C0mwNNTJ9+qJsVXuymCAlc5ublR5ejE8//Dx+t9FdXS6X2lVJwkQLiETJBfJIXu9iQUK3RzLffjmH4yjb6Qot0CdjkutMUXm9Y0qsUM7sus1zVBQ0D2ODQ5HJAmSz02S+SNrr2pgqgZCLkTxZlQqlwdlwY89yrtcfHk8//3xA+klqVCo8inhORRD4eeFHRWe5m80h42wxmUkuLM1gJQtn816nLaEM0zyIIl7QrKTthmOo9acXw0jo01nSrDt21Uunc9dAHVcvaYwgdxWBJeTYgBjGKsFCECA9J/i7X+l96WoljvtStTxd1wzGqwL2w0VodK8tVTY6F0eXT/7mwlNliKQwwY3XnOoSC14myURU1hsbTfXoOLp4Ul65URcgS2fzq2uWwZUoqmPVjGigNzw0l4JGHducvQy/+/tvLq+v/OxvP/r0hw/MHKyouluBTUP9+UjNkhznssQQtoyWotik/Pi9DwnWWlVt/1Hw+la9g4FicVpGlXbzx++PiCl1Ezrz9MoKePBy/Oy56QfzrTZtq6LC+uczcjlCLZMRDQphtZx0tZfUFOnOUc9Guo5gXekrU83IvrSqLG9VYiaDoSjc6uYbbY6KIjFcy4uPXk5Ozy4SdzKjGz281V7Zf9ZfbSwVw1jn+uAsenYQBWOAEVK08Wuvo8HJZTCUGkGKzUzTiHxpretBnri61ds121eaP3v/7E//dLTdqY+KxMFsp6tXFFevVlJ1WkRJosswhSQEZX+y3DIsoLw8SZFVPTgrHz5LFF7cuob2vnrri8/G+5chr2Q7nfhLe63vf3FO1EaFlrBqtgCRk4tLzVVME60ub8z72vhiAJTMqDR1pWg7WC4YzCO3UhNcO3h67NWaXEpFgW63nV+Gnz899hxbUWKC2Nba8tnZZemPFILHRy9sIgiiUMGsVAi3MAqAFJt7VWTDP/yTQQHz3V39yhbbWZU64GMID0bJ/b2GS+gHH1wWsWos62Wee11n95UKRWPDXVJ56U99vZ5Vm62//Is8QIu9V5cf/zy8tcGgLdQYqll8keXPjqEt8cpKFZXTSletWt5Pf/Dw8v0Xd5dadBGKvMAJq0psAxVAaNfsJdXwLLZnlNeW6KJQq1wxUD4Zi/feD1+7lVucISJBq3tcivtXjdVNNTiF07Pw6AX46f7zvV29qtZsd/r2q61H/2lGI+l2SN+PXQuuXLGFEkSQTBJEpfqVr2+/81Zn/9MPFy+LRlvb2SqOk2WzxWAt748OLNVzUUX64egwenGWhFi6Or53q6sY8HJqHZ48WvVArU7WGkZ3s/Lzn5zDQiQhnU+rfshLSbI4jlLen2SwotVvQLdmqhy83Pe9TlBro/m0rVzNb9R4xawjRqKsrGtYlxZNQ6NFLhJ2/Lxom9ruTSWDnBvk4KU/jzUOKrdvgjff7X32IP7xj8IS8fgF/eTpZKUe3+4gUtWc/nR8GvTrGgaOrTZbNRwTzDe3txbjhWK6UiKM1CTLBUDTeUChVkjkVNpJWl5eHFctDFXNa7aNaj4JgozH29e2iWEhzSBSKcPFLJh2Ki04yLBKykg6WSKQLAn6/AF99PnUgcKX6q9P+2+cWG9dNRwUrXaX7fqUoCgePtfwpLKshguuQ+SCWEU1gTdJW0/IxRefh65wZ0H62Tl8/1j8N2u9mRE/j9oGODLNSVwaxy9EmaBql1u65EAxcWX0cHj+y2dtqag5L6UosJ4UZB4LIgrDVlFNdUyjZRdf3e2Vk1EcEVgmllJUeiuz6fyvfu4bsbJ3xbk4m5/P4NtKvVMbDo6Uk4Hsbcj/5X3r4Iz+6PuLb72D3GYBcFFvuiWTmm68ca92+Hxx+EwudJiUqFGB6ckX8M7dert1cZjo9U29jq51AdBiJjkXmwpz0/Hh4iA4OGfPJualz/auNbJY//zp5OnTqGvaheYORvHlYN5as7/yVW12llkquzgeaHozw+pZFPaqtgGz1boOQqYosIwDhbfTebK1nnzz27W1Hdp1lkpdhRVVAq6m+uXHcbEAwGVuw3v8+KJTsa1aeTkozs4UP9S5gYM0w0Xjj/563n88+Xv3XKJEP/iM/HSk7q2XX79SJShmZZCysuC66vUa3NRB4E8v+typuY4bJBkg3A9S1G1h3QVEZAKFJbMcQ9Wwglf94TlBqOIYmgoBgZu7W1jXMo6AVo3CHDLQabdK2dAPL1VGUgxmWkkEgpgSihyCvvk1PvWz1UbjN9/YkbNzlJR1IuYa6rYcBODG7V7iT+Yf0+eX1ta6pYXJyhIqFpPIp6fHwB2vfP750yubhmdraHRok9GzR6PXlrqRxf/jh+H5SHl9xzTlHAB9GvAkSd2Ls1XbiWP+YjCdFSJiCtLNVCJTW9SqgKkZBbBpW1yCl+eMcsur2qYeVTUDM+siMn/1oX88i0oLyBQPDtjr16rVtvzBh8Hr7ZVlXfvRxaGyqvbWvHGftl0LMil4+PV3rwf9RdEv2y3HtvWe4be6pZdZRpJfW3d16G3dVks4kv4YUImNBofZYDihfkyF8nwmvhgqwykbLob7++OIJSYEmucGSZaXIRF0PKGaohOKiSWwpQZZ+d7jkSBsc7e23apYSiIXweiYS6kv35L+AitpY9ofrlypg7WWkdLwZF8iilvbM9MKnoxRUNZWOzXPpKKQhEwT+3SMckqqXQpw8cmji+6O+1/9X17bsU/C01kwMpWMDhfFw9MFuZzN4yLTkQQ89/QGts2jg4CmyeRsyjhf2ViLizyOyyLJVQQ0ggUSGPE8n1qG6Zqthqqls4VaIVs9a3e12m5ZBBYYkiTK/aDo1lu1pgZJw1DHOoNIYkYY5AILFZKYgpLGjf/6t7cdt3beX3z8dOjYXnrir1R1ZODLkfbLh1qtKX/zn27923/z8NPDw+71KxtLesinP3x/FixUjQd71+rrV2X/qDh4MVeN0tHBr56eCgjNHG+3tEmQacJsAaoJpmExK5NhkGXMMdqrGCCtoGXBynnYtGwiC0RzE3vhRH4eJtio2LamINOWqk1mXadqu/nLBnU6Ncd2SKtfZsHj52T7de/3f2/HJbX3PzgKw0alFsIiy/pkb0WrG1Gn5S115CeHwfUNWzdZITOvYqw0xfgoG59P1jb1+nWc+0cnx/zoUt1axlsbkOiEJu6TB7FVy6RtzcrCz5ljgEEKuFAtHRZpNikYh9gGpq7jVOQ6KRXV6M/QJ4eLtEAbTWAb1KuWRCaKSUyhJAsoYKk4OBvZtY7lrbgUsP7nk/KAOXXBmb+9u/7spBJEc4KQaTKkmgen6scX6t88utxe9fzzFGL0zhvN732zjoqLk6NFzV67dhM4ZvCnT5WfPsmJHwWSQKde7zYckGaTZ0+LMJFQSgwZg7O573p6GafA5oLwUgBFQY6lpwWVUFimOh5ncZZ22krLwoQXVaI51WqQSkNFJ4uJStzO6ipi3DNJUABCTDtlEEoJTA6KBCs/+QK8sg0uwpNfP7mYRVLXgaqi/+Ot5nSW/+CHJ4+ewa9+s0Kq6e//fuXkPNzs1iXwTqfh33509Pd/c6WB6cWQeO2aWWMf/Dq4fFBubSk3f6MHAwbDaRDy95/Djxb0bltsO4qhIFQxRMuMIz0XwHM8NSun/UGjoVOONGQSBHnBhNSgWlfUjPLMUkyXqJ6qEJkvi6TtWZehdMfFckXTLJwVRZ6O7u6tZTQoHkWTKXYEkbuVwWyIFbbkaJ2mNzufdj2m1ilU1OdHfDjmtucuXzfKeRqfTBApT87isxP9s1PR61ZmaY6C7PiT4OTFGK3oT88yFWvtKqk4otEEjqpqQixYXNEUWPIEFKNIKznb6ELboetLq798sd9puLtdZXweI8HrTWupZmAR65pakC4CcyrCnVdIpRGdf+H/xQ8Wema+dRv1CinK5NcP/HpLqH4SUi0KtKc/j3/6YsBsK6F8s6q/9WZ3Y9eBo+mD90eV1mrn3lb7Zrl8p3Y4/VmdCrLR7R2cn2DL8QUhJT998ZSYbnttaRFFIc1nfioAhRKMRiPbU1VTBUK3DNtPCsaZImYpS7Zu3chK0HRdGoUs53M/0ayK42pL3QqUMolCRccNm5zNcqGaLIshBACkgEoElIAHH11ms1RNtIZtljpQ/v9JoZSSnH/vvnp7JYsPLvzF4u7NqtTi8Ty4vIhev7ZUN+cbHffZk+zhr4bbe/ryUv3lftbvRxXr4u7ecmGJVMauoxQj3FrbTGb9eE4rSK2oRcOGIZOLYqxgs9Fuzcd+UiQqqgIhCpYjCNOQUiRsXReII0QBIwwkmOcB4CkoXt8mQLDmJn7tO1eZEOlwHk2nb19pPN+e7y/Uv3gW/vZrrVUUFCNxfn4W52pJMQOZqqlJRnrbbn2jpvJC17NFf0ChfnbOkjLbW+Gzo/7FCN29teS4oLTgkwORAw2XPEvgrOBLbbuu8EmoFIZmMFlTldRSHj2JJIXX9pYHg8tNzf97X18XMsN0NLhQXpyz9jL/Oz3FVO1c0UvC1VCEi+LpvrhVNH71g+nTCPE5Y1/Ab62vvwzR2Yw3tq0PHk8//iRPcJhygpdW6zV8Y4P83m+aupHsH8S//uHsG6+vbl+xS23mVde/+MFBMVjULIUMRzOENduuhPOxxrjiVeyq0+jVarI5/+hpFOW6oakaajVcr+KUnGq2FUXhbDLzXIcTpd5sNaruIohPJqMi4wrlhiRRNkvCsFGtYEWtNdyDy6kBuQKZqioMQCCFkBIAwRgVkr9/eLJzrdJ20HTC+r4PkAyS9MaWemevZQiuipnGZYac/kVa6wJVw4oMV1tEB1RXy0qdF5n7+FOUk+j2a5U7V9uqCOajc12VjYqlodxDyLHVJNWSJAIJy6ep4JnX7VoIIyERYDVXWwhW5LmEuJBQMJQyNhHQK7lXVVVTIbxQAYm1ztg/FRit7eDmstu9dQfQ0OLzVGcv+urzmfmMTmdalkTYam00veTZ6CEpwTgU+4uiVzOudzt4cFpVwnIyW/gQZAVnSpCBOCWega/tyCwSy1e23JXO6OHgiIO8lIahIAuleara6vEgjjxp6p2Go1psrjng8QUbRnxn1R3OAAgFLdK9XcdP0snUIDYBOWBleXCU725WZZmhnIpcPRkW//PfpP/2b0+KQK1USp3qj+YoeX/0xSfx8jpeRODjh7Faqyk28ZSGL804fnjr7rpngedPip/8dDIKpOlinD83WtuffD79s39/2EE2VCNydHzSWVsNgqi7tCKihY6QVTXmwcRzq/fu3f3gvS8OXp7urtUURXY6TaRq8zBdxCkAoMjotMiqthYGgSgKouBZUOql4ElOi9I1DM7kaDZTbSzLUilClXNVNVMIhJBSSgAk5xxj1NbbVriYD2JLNrMYu659Y2PplVtWOB1NzyfNhum2W/l4bnDr5fNLr2N9+fVrw3ZIypk/UcfD8e1Xmp3lysrVjSyRi7NH66uCdIwkpEFg3LnWkXhwcXJkGCrXtRKapSBJmqX9EOkEaRoXUgqgKvps4WdUlFjLoGBYE8goGE0pl1wQBCQHKmRbTTDILH2pu3ZNvnz6sm4GYZz/9Kn2/jN3koZe1VSG6dWutdUpCz+eF3peGAHPDShvXqlWNH97Tfz/SPbPJ12zwzDwO+c858n5zaFz9+2b871zJ2GAGQAkSFAMIkWKUq1WWluyXVtbWyv7s70f7A8OVVt2qbZqtSurJJVWIkVKFAmQAEEMgJnBxDs3p76du99+c3hyPMEf/Ps/fk1XlGStZPkkShcZ7c0K2xRW2tLGFSkYS7hVjRIvS4Ii44JMsZxbFmrU2FJTFpj66PUi8qabVWW1hQvMwtfU94S8LQwXo3sX9NUNC1JvPEx++QhOFylNxXvN2p/+wO+0khsXlIt3qlEy3z2TE00qWUVfiR0xLrzy6STfe+DdWnZbS8qnX86JYDEMRQlqJqiS4b1bdgvPXn1Z7h4b8xgkSLz/+Fg/V5weTv6//+mVMEG6Vl64tIlzSgQsZGk2HY1xmdQsU5AVhMM8L4qYrK12ZRnarqob+tnZWJDkIMuTolhfWw38iGaR50eygFUJ26aeEdGw7cFwqEhSo1qdTOYlKc/6YwHwVUfdGUczJCAklKSEEAIAGOcVS/v2baiUEXWdE5+3yqwiG8FosJhqlmGLq44gLzI1d7uOwMnpcDbdGfjjROJau55MJtHmuea9bzYKNvj0o8nTL4uLW7xqzFu2gG3ppOelcXlz2zrpe3GceRHJMub7QBSFYhHpGlJVWZBlCoQw4VkJKZKBqHthlkEoSbIpMMRLARAEaFHSF5PxzRvGGwwL0xe9++XffEbf/Y1tUYpOHw8uWfzd7xuwbP+P/2wH1Ms0DvafHdiKKyRFxeVeLlRh3K2mWx3l8IS+flnMh0V7w7BWjdOHY8HQM8B6EWq0apIjjl6PkJ/dXXN6sZAkaREky23NAjANypoqm468USeuzjymXDlXffVyyBJ2/RtdVZ0yqYx8GIaG03JRLebJvLkCv37FD58kjSreLN2HT18HEMhWpSrxJI4UwRQUjoBoSLyzUpz044IorZX20ehEiXjNLdYrTBakzx/nz1/QV/3FWZm6IrhQ0e8T48vHUxPWlKrPhdhaQvjC5YvnLpxfLGaJNzs73uONWn39/GwSmQoyZDvwxt2OOxlOBv15XpRpWaxsrde7bUIYIVm306F5Gs5mTBRAyUwNa7JoyIokiiKCioRlVemNh64iLlUrhhQLpSBLUlnk//8mJiDke/EXnxd/7/fdjz4Kf/K1atalbTdVLtehHFM6UoQKS4PBcWjJTSiLR4eeZMoV03r1smfdFtsreO320pPHw2f3h2mqQsjqXUsQ5cgTs1A+t7U0m52U0dyVxCwuo5gce2QaYoBQ01QQR4iKKBdTQgXF0kSdIiGiQDXlLCW8yJyqbGAqkBhiSkpyfx91hsmv3ZUKH0u05S3GH/756L/6LfB/+gdi7CnuhnkSY3cVlCT5j398vNm2r10Wdl8WScqsqrpYFCIjra4kYa4YfPkcr9XV3lQcncD5NA3Dcnegff+7YquL+pMMMLMsY0wZylDqo8hRX+wv4gS3m3KrKjpuDri88yIXLP72zSojYd11VpbrsTeUTPnGbf2iIKfQwEUvGpxe3BbvPyNMtcPSOR7jRQ5AlurllAXJeCKmgbRcIe++U2NJmebh0npFr0Es1aVSXrIWKi/3XgfjBTwelzni2+vWzSVdEdHnp6GfgRUHAFEoCcyyCMuWqtl6UcRNdxUkXuB5R18/xIiKpcgTHzCiYMQBjpLI0GXDMpqNhmZZYeALGJWMqZIcMZ5lRbXZEpN8ESwmo2G93uyfDYuyVLCkykanVQUcGiqGKRU1XUhCwBlHAkSCAOnalbVFLv/kwX6itfzyND6S2cTTjNqVNTJ51c89SeBVWlmEILtyYzXK6Hxe9vq0WtMu366cnUQf/fisU60vLZs7B4MypYZUHZ6Bl4/P7nxDuP6mvNinhztEB7Iu8rwsqahzWIZcLDLKvEASRMusl0WRFuk8SRY5MSpV27SVPGnqoGNBA/EkIfv9lAMRqtIRLe4/Im9dDLqNJAjEUVjFded0bjpzf7Vj/KPfaU1Oi08+mmPDvt+f9TxGc7jWKHQq3n+FbglGtcWaHXVvZ364P8t5pek6g3lxfCJEcbG1EYlVc74A0xKNCXEVtlozD4dkFHgRguMC5eOsW2WyKRNqpiSZHs0BzVwHHO32q/Y1UdbSZHx8drJzEEhq91s3ajhTf+u3rtfOhWf7h+SrnYKWLJTrkm+XvFkxL1ySgxGQYGlLfiLKnW4zLNHh6XBwGDdFdctBpkRsuwEYgGB0ecNUFHPqFV+/HDFE6zWpyGaCICc5fvZ0gRUJFEng+wugqttXru7vvLAg3Wgt9V8enJwcm5aJMoaRWq1x12BZmoM8DReMizjnwovds4vLHSyIgqZUV1aS4+Ny7kEIgyBYcKZIEmWFqVhuoxPnvmMJ4igVDFeY9RFnGZKwgDXMzy3L016Uc6Vjxu7qqhiFiEyHYfmN5ZrhdI9egWoNienr0QtF0ei127XD197Er37+3M8Ubz71m27Ncook7QlctcUYUzYr5aVV6ekvR5mhrpoSzcvSp2IptDWt9CMugKxUZxBTRAyoBAvOSBzlPtUVops5ZzWQLhmkJhV5WE4pP52R3Sk5POMvDnC/5LCovBiWIpfON7RgHH36YPHjn09Wu+BX3pqdb0j+WV5ts0cnZwcn6L27+vlu0yzHOgi9wtIsWVLOFFp3Nfh8Ck6GEUDAlIsYis2KwpLs8V88i+csZ2A+lhSszE/IIAEBkBikFRGUSDib0MlQl2vy/mi2VNPbdc4F/vzV4Omr+MKVNUWlu8f5iyMkikMuiqv1drbgr89GfBoX86fLNdGq5jE3+p4oFKUZq+eaURArD3fkU7bwp9E8JBSpiJRvvrOybHEGvZrb2n1S7J4NLnbKz3enrz1ZKYV3L1VarurPQ4lApcpnaY7tQui/2A/ThLsGFlh3fdVwbe9sZGiYWZo3G6awdNxOWsKKqxy8Phr1plq1Os6y/jw6OezXnKqJZVnRBSzKiqKoSqfbDMMwTVJCaFpKAaUFZaTgy62WvH9YSqIgKSRPEWcYMlUSmgZWi/Jb77Dz5xqas5qP72u0Q9L5YlivNcDltzxOIMqqQgU92Q/3jgfX3zG751fu/3ISB77nK16WjEfJbEGXl2W7be28zBfD8v13tYkiPT0Un5x4NUc9d8mBvTRaZKKBwlLa6y2AYgFBTikEImBlKqlItOQiLcuyyFJC02hIoR/JJCcyZpc3LbNWPHvOLBliXChI31o1JTg7PqPzsYhALiElmIiDWDseLXB7dfJ88P51fHFLS0nhKrCjCXI9W1ougSa9+MI/7csDD1y4LSkC+Ozj0lWVzRqJe2eNmiFVyypSYKA/3o0YlnKoBbBobemGEZQeUCh8eRzPD+nhlAEVugZwdbm5VHs2KP/9Ry8B5CASHJlz2/yrJ57jcO1ns+++2dEuA39EG47jxUUa0+k0yRc88vxaFRVcfnSQRph1XXRhydBAXrecJTuHsMSyIsvJSgd99ZA/2it6OeSoWFsz1tbqhlC6CqeBH5Q8YgVeLAJBFpeXlk5Pj5LpqFOvsLSYjkdF4rddoybDmb/IVSct8zRDimwuFgmBilVzYiJUnISSksJcRnoc+BxCAHm73bhz58ZkPDg5PRvPmcTQYDyRAZRo2XGE3biUNLMsSxEyCRLGICX8e/c23nkrOj2M/uKzXgToW5eMqGd/8Wl85cqsYuT5iBOOxHb57vur+6+iYJxXqsWvfr8GePVkP/jhD4Zffy34Of/N319dvsY+fLgfDtLZALS6ilLTTubV+Uks6dmb72LlBXq5x9eXZZTHZ55fApRR7uWeJQJDEWVZzAhAAEkAUUH34siLvKqjUYi8gr79jvb++82oOOkfIky97auGyPj8i1IR8PltWLWiRs2CRXm2QFQIz62Dy3UaTfw/+zx/Y1P53/2hzQVxPnYePpvs7ATTvShKjXXONtes3ovSrmNXp4JcO50Qs162uvGden2UclmOZbPYnzND1euaxaQoWbBxWPS9HJZStEj7UAhs5ec70yGRsFaHBHIQ1rSi69JjL/RS+P43r2+1aX8vyOM8Eul4lo6S8satJc8v9vcWp8NMEscAsBUbuaa4YqAWBnWzmE6HVJerZrek8VpTv7TuHk3wguSyxDOC+x4p86LIWTJliPOsVPCTk4P3P/jAMnXOyWT/dTmeT0cLKgNBwmWeA8KCNDNV1aq645MD26gOZmN/MlxzpLYlix23YmELSWkwhgKDSNI1bb6YK6psuU4tyRfBpO46o/4EpxRzfmXZ3H0cGJYdhoEMS4xAnLO98fj2cuRqZZTTeV+dy5sFGD972q/frbRXuJrX5vnIW/D7H7H1G/O3PzD9vrx3fGDZqWPY8Ti9cd6x5dRP4pZGZEO7+77BTyVBTpmmOE5ubtmLTpIsgsEpNDC+uqZi0V++LWKzPgvFRy97YcYBARVXTQjx44hyBFVpQIGDi7sbuFuXpzl60p8xir/37bZltn/6H/dv3bQsvbP/8KUKcdVU6yvdwO/pjtPvecPIvXvHudCYkxMwDFRvrvKVLAk1c8X4m//8+vFLTrkOSKZiLZgsarcr66uhX0ynJcoz/PBJqVpyZ8z8meeN6Hffti5ckT7di17sRzAQE0ZSAteWXVWNLQlpNsuw9fHLIBMNp14rM5JGC4LoKNMuInlTiLBevfOG452eHRx7WcRm/oRJuqRZ+yejJCq9iAHMaipekZWWDQvEWRhyUwCCcevera939w/6oawQFQYay/xUyTjhHA992P/6NEipH5eICleXlYbJsaxpSJYyTokI68vtbDKOprGz1krC3I/S3E/nOWw4buzPJVWFEm4sN4iKGE9lKIgyghJSTUvlZhiltMz9uadoVppRP5kTwmURGhV9PpoYkrJa08vRGSaJoNlYUmBZAs5LoPzo53E5jKp14Y2rym/93nQy3usK3L2trK+VolUgoUmOEhbMfv1v1yJU9Ptn9aqrFrU8oYWUVlxThOTeHxihx6K4xwvNcmVvN1LqdXFZA+Upp1GtU8KKWnXss+M4y4kiwnpbZCgK42o0ZLpj5UmKeOIlnNoUYKOI0iDOVy6olTpvrZj+fpLPoNaAu08PNm91DBNChH2fTSeYYe5n8Wc/LeOC9Sdhb5CMM2QCoeso01AZ9SIBgoahjw7j9bXq3RuWQuJ4UdK2OInmnRbTtbKzLKKFkwkKFMgtUN3bLe5/Mk9zuV2Dbo2W5UIx0Nq2tSKXEEujeQHoFHFE3JVf7no73thuVGzTKZMsCQPKUiTLOdafD6IuQm2Bgdjpz5OzBZIlDCHMcrSz6wky/+4blV2Q647smMJ4L1CV2vlG6sVib5oe97PGvXohTX/0k1dLTfm8wV3MNANgYIz8YsTzreV6QxFDP5YIrxuZhhO87NZInC3KNEnDui63KxtMHNW63cBXRpMIa3alUtdUDdIUq0KWlZ1WW3Q1mmXjoa/oesJ4RKGuabiE0WIEOYAAASSIksQokDEq0lgShLLIDdmxBFKRucepalrlxGMQACwcnOa946zE2u0vojsX5XUkMyRUzXR6GmRhXaqQXkL2X4k+nl/7wI5jJ0xlvWacHc/rVV5rJNKxzbLS1gWQURISBCXN4VINFFgTuA1Yhki1zDLNStxaGS0kpylbWkpJRkpmKVAgxcVzUq8Xci5c2rD741DVUHXZ0Cp8ksZ8OskLfnvdvrqtvtyZLb44MF3QOw0NhQEFSA6XS+7lYBxh/1XEudZs5OPjUa80cw2Ljtgu0N5AqDSitqJ9foDchrV1MU1z4YZrVqpyEY6mXmAa19qGSsDjhh41Tc14yU8GBa6gWanG46KArR/+6Oz2Fry6iTSoGA6tdGr/6qfTY4SVbpUWRZnHWRRjAUq2LgmQgOkLP8MV8Ga3/NGffHR/d64j0Gpr03lmuMaiiJdta6MRG0h2OtXxwn/yJOXz8WpFaLVbX/WSnUFovTy6caVT+eKwP4LXq/bSUn4sgtNBKks4BTkCWUUq15q5WpD5JKh0DCzwKJgNKdYnJwu9Yet6WekYioKyxPCxxkje1JTcm5MixZirMq87ChGkTASalrA4AxTGcaFLSpFlVq1eTL04CURNcp0650XJqJbCuls/SHon87mYgOsO+7HvSfU2GQ+EvOQg5yjNRVVA4tNT/nrKZVOyKPn2deNmU89PGROe1trV2q9YZoWKUK7VOeecJlH3XIENwDKkVRYI6rnHJAsKNE/GEdVtQWUCPwHcIWWO2BRLKoWNPO5X9VxyJO91qSlGdT2/+aZ48KgwjWqply+PxLTMLm8UW67uasLOcShiwVFKJNnTPN0bgnlSupJ4vqvO+rlQBFdu6sE8bTn2xnL1n/37kzgRL2yxbkurKXLJ8p3TWNXUb10u0zzYagET6F+MRZv4b3xTLld0CzXineHshFNmqQ4Q2UQV5bTEyw3XMtTX+wHTSm8qCXKxecn/xtXaIg8+PcoO+8Wv3q2u6wYUst/8ZnUyXLw84ITFQKGIFi7CDlJ6C8JKiSaCmkcXm4k3k3QpNl0oS/KD5/6c6u/aABQi4pk/8oenUd1RGnX89X5ujueBT0VN/vyz3dkL2NXptI9+8nL+u+32da0sxMCWOVCExA9ERm9ewzlRw0CkhGEuIISRZmpFES8WJU+R6WqMzlgBNRnHWQQhGU7GpuWO+5Nmo8aRgkTI0kSgqamIimoOewOeF6qiUIYgByoWJc57+/t5mWPEZYzigniBzwqlqmhvXm9+/NFBKkip7uThFDLCAYCsRCKWJEuSDVm0Z3ry4c7g8oqblj2SyWuXlwELQBFz3aQQJf5ABJFZl7goYVGBisRDYbzoO01LAfpkMqo2KaVAABJLpySMIRHLIlosxHhMm8vg4Ek5m+orm7I8oOdWxGKa+gNWTKVszAqYbW9a2x046UNJUR1TZlkYzSNJJt6YVbSaIQXnV7HQETEsDOzXl8U4mGp28U///rJeXXKtqSNmWan96z95rprSmhOd6wDbVqv1vMz2tive1Y0axtn9P08vrScKX5weJQBsCpaPYIdzTZZU36NEoktb9Wh65lQXWlUyNPGD96RHX6EnB9SsNSYIRmV+zixh7ouucCZzWhBeFgKnSw2ZpERI+bat25x4YX79qvyBJZBMRxCKKi0mfPFauLhSqpxudsyMla4qNuorx0eDXS9JikzgAGZckmEcptiGTsfww/TV8bxrWC2NqmquGpyLpgJYvSYeDSMg0DSFuNFdyYqyyCLX1mxLgyTL4oyVgHPBUsWq2aQ0kxgFpEz81BMizRhnPMAQKILIOEi8RZkVkzB1XbcsMljSmmNLkpKLOStLAJg3HTNZV1W5pEBQ5bVl98py/fNhYja7szQSaM6ByBmhOE+5CEiKE9rA3BWVDz/sO7yWhHnx9W6jQVUbSU0Na0hiREacBgwrWhkk47OJ61ar623ZUPdf+b1T0N6SGUewgLwYCVxj1CVgOh+X87HQaZQyp5e/V01L/uyH4PyqYZmFVJlzHWoVc+Kh7dWWrZL9w7N6u64KkiEKmRZbHf14EhVFGoU08iKJsXYNMiykSMlZ4Ujzd9cVKCdcJxhIvdN4OKJ/683GO5s5Q3PHTHFNK8ji995R/RmfjZEjsmg0SmgpQjWcJNPPC7NjQBCSOAxDH4mZKLQNxKNFLGqSUhc0GH7rNt6oyj89UB++Si5ue9Wl8M9+QQjGNT1t1RvBxAMsf+famuoIfjTerLk6ooYYmDBbbokHR6UMJATy3/ygPk5nLQPlSYrEuN1VRVmELCkDAXMzzWWEERqXp2e+um43oLDatqbOlFpeIiRra5ohooor5oXR640FgN+42QHFdDyMcUZAmpeApaoqibLYXGqRLB+fDfqnPUPXqp3GeLKQKYmG3nq7PZ7NU1/WXQkigRGY5zmgwNR1z4+xKE3GQx0LArBkEVPCZUUneZGl0WQ673aX84J2Wo2ceOcb7uc7h8bSubmq86hgXMaQcVYWNNKVuKLyf3TRWF5XfvYpf/ysUEGi+enRgeF0hRXqidUyGPpQl0khYlzmaa5jRTFUQaIM0v5JeOnS5TyfIcBUmoMczOZCTnlrdWk4O1l45RrFmxeU3PFMedvbLvdejlYvE7dhR2Ve6+IoU0hCXh8EnRUrTfD0aNxdVio2ba4ouWr7C9BuwPomnx0XJeiKJBI0ObGUfuKdHIWxoBCbLTnpVlP77/6w0UGeqsShKDAmpIlepinO2PHLvrtlX3yzNh+MeNi5/HZ+juU//sv85x8/0zQuMXj7xhKW4M6zI65Kdl1HrP3THx3ce4uvtvlRIPUfhycL/Wdfhn/vG5euD0dMkt+8dHH3xTQfLRxblViSe6WEBUVOt9YJjQIUIBEKkiIfvJ7QAtY2R2vngKvVpnkuq5qsy4bNaMElHSnTnCNYt/SFF59C8KKfNwziCNRL9P0zfszSbhUbVsEUkHm+KCmTiV+x8PWN2jHmOMqBKCiT0VGr7sqK5se5oRuSYUNh2G41yyytudV44QWFJ6uCYmoHvXGlaNuuladRHuekzD0/cN2q61qM1PzR0PPnSUFOBmNR06uGQSch5KzVrAZR6lQrk0VRU+ImJlERW5VKlEaMUsQZIkIBhVpb+se/dfk2ewW1sz/820tl6WK6J1vS/n6enKWuLqg5EmJKINaXuhwIfFBiWQDzKKWRbFo3r9TSsPjkZ+N773U0yc89MD+L1RWZy1ajIW6vNs1qmHMqRo0iLS6+rzY3S0OURkPzs8+PL17WkcgEBWs2a3fl+YhGOFclsH3e1tfpxl17/1l5sjcHsOG0i+lsXDOyArQexOqHO/OdHhmSrIBpRwC/e9P4wEUgDHwiRJgQHZeDBAMUzsjlm0tyjWK1RiA9Hum7JwcXrtsTLmcicGyVRSkVWKutHexHgwiGYoJ9X5ZrTEknhfDZXB+jRNfok/vFm4L/e3cLZuunx+GL54dpCeMy1456ly5e+vp58fVXw9/7nnSnq2ANzVOaBFF9ye5sLB33pxLyayqCXBQAZjmQJCQZijeFL6I4ozQOBksVePnaxp9/ORrPNCtLQTH/xjtdVSX5NCuBFidBxZRVs6K50mLmxTPqzxDOcnbSP3Z00XFreZFTyuO5n0Tx+tZmFC7m49FypwuAgkRNNFQRinuvR95eIiHaqWsXNpdFzgWIOKcnJ4fb5zbaVftgZ/e4P2aKU3I08+IwztyqoyvSaDQaTSRs2SL3NhvGp5OR21xKxiMIQ8QY4rrIjXSR7D85pQ5u180LLqnWAwqaJdCMcwELAskvQKzREiimmaJ5VpZmXUcJK2bptJ84bYQN8dmjo/lYEYBMyoSkgqtgvVbmwahR5ZaWxCQOE9ko5qVeqktXrQ0RB6Wr5DffWZn0Jo26JWCwegGbFcpzvFCwKBDVAVTy8yB1pPoEEERDQSptl0fV2n96nfzxg7MJ5ZAoBSyxDF4V8h+9nlS3pJsmqNiyqSBpdS0/9cPxdPVyt8hjCc/z+URR7VLCr3ryn34yXSTQsmDCc7Es2ethbX2tudH9/ItDnXNFGNdq2nCyyn3j8/sv6rJel32+khVoVsZKmoaPvzyRVJHqapEkUQRWlrWPnx9/uR83v0CX3rMBiicZsVWydqej1PIHD8XTJ4wtD0BeRiFpt9qwiMtyQUvh89e55gj3LjkbdpkViw07259CoFIZodnh5FvfNLmUckmV5NyW5IBxqgpItEeDTHI5zuPIqTbORgPZo0VKJ6PJxY1G0zBp7iEbY+4OTxeASIaCHSX1U9EPoKQZ/mi43a1n3plAuFDI02lqVk0/5pwjxdaXNZFi69OHrwATARU3WkuqSECZzqehK4CaA+5d6zz56UvAgFqtglHABURhiXjQn5H/9w+CjTa+viG4H9J3r/utZtJqO7aUcpkoFoqmsbRSw5jP9yZSqWaAeyBdHIkFbz4Ye3mY6qp07uLyyXEgltwQbeu8qTp+HifmaqPMkapaBYCQTFUoljETFKmAeywSHL3WuuGkSQZArGspEYlqFo5JsNwseKrkLEoLTP3lOpfKMk0jYMlfzcV/99VsQTUoQo4zyFlOkaKn04K/xJ2bVsajgV807URh/EQV5PnJQZgYqq236jEg4Zt3zEuXln/0y/Bf/elZTmpH4wghMszL+CdzEhaUSAEvzZjbBs71zkeP9zOiDkipM77sqIuIHvZKt2OOJ9L58/LSOvWHLU0pZ8NDU2a6ru95LO4u1/jZNgWljEIB+U+Hdzpa/S1ZKGgWYGRR2y15QfMiX1mv/MHv3/jTH7zqL6Krq9wm6npDzWnYrJjJNF9dotEUmoatVjJBBGWmKAJxXOPLV5OHT4ls5ZgRpih2HMAf/uCjzfWVyfisUUVMAKLngyJzNJm1jb2dkwoCeUZds9lpVDgCMjfSMqaCgLHEmUQpPznpW4puOYYoSCvLS2GObGc4GYcNW1MElkWRbLhcrDWWG0LDbZXSp4feF0fjRmelN+8zSgBgnFLOAAHINO3LlyvRzqjbdl0TK4JYcpwl5Ki3QAvuRFlUATMmXdzSXj/3PrwPt9dMxZE+/LwsKDcVIX14ePGSee9Kt9tqHLx+qQlwpauJakAhFqSK03HzmbH3cC/bfXL53cuCc8WIDl4dRIoJV84LYTTPcwUYkmoqbpfv7E6gJt5oVU0u4DjBlYI6yBRrH8XoXzzsz1JGNaEoqKYAxEXOBEngnJMff7m/uiK+YfBxMhGOPV2uEBoDrH/yS75+Xlg6V6XTs2QxrdRH33ufw3Tzr570js/8NAWqZI5HQjxLXNONacLLMjDo/Hi2PwqKUiq5X7FA75iehqz9u5Vb59zzq0Tl5flloJ2XSqJlkbBdsR/zA39cfPFF7w+/v0KjGaeN3t54sRNXVJ4WhMu6iJL2siAIE8pyRRFkI7729vQnnyivn9M760jiXrNZO+oTSEGjK7TXjJ/9eJbl4vY5fOdO5fGX89YyrrY7x6c9qGuZAHAQBV5QmJorwmmzUe12TRXzcRAko7CWEKcK7LXWtZqZjIa9/oxhrEsU47LpmK12dXOlMegNgEDCWciyYtgblHkF0XQ2m4t6pdvpZtkwS+ck0SjXvLA8808lV2pqQpl4d7eXvn79AAmSUW3NxwPEGecMIUGS8ODY1xTjxnuSLYsitkaTxdkkX2s2KBam4YyehXFHvvZ3LoHs5Cykr/p2Y6uiiPlxIogukKv2i5PBeXelsV1LwqhIxfHxpC1asRBNAVpfWYViGtFQlCRvdzGpJN33r9IF2b4VFSUkuYhIzopSFGwOBLOpS8PMqVt5ikDiMVSGpUCn7sEB+A/F/BVFwFZygUEJUCBwJjNCkqhAWOBAPfDBeSywBCGsO2udP/3Bs4s3at/+fdE0aM4FRVmRBZPnYjidXLsCrnzr23tH2V/+5fOjvalV0xUaQUiKnEiqQBE7PAsPBhko8roq80RoudE3v9e4dFHEbP7ePbt/NMIJZkT+xUc9SzcJz69sOL0pefyCNRtxwyyi8YuN7fZmpTGZRHKV63Z26QJMOd7fozI07Ko5joqPn/bGZxhS7cHDcntdMdz5+jJhtOguuf0jnqVWY021HVHVNN1Sl7ehn3Knulrkc5oDDBGDvAz8mWtLV69txulk9xePtOVuWOEEhoRAM8XVjmNh/HKyOx6edBo1UrKL5zqKLGXenGVhw7FkYPSyPC/KKM0EXownM4sJeRLVK9b51dU8XozmQbgoZpNgMat2nRVZomt1tNUwXp0dNZfWZ/MFLWIMIIIQQMgFOSNipWVEIzacJlGJvMw+PYktEzTaDoaps9mSlZz7FoO5VGNKrdFZl+xGOZguokUgSPrq2mVaLCAR3La20pZFARydyO27F8SKkS2euvVMDxk6lr3jk1poSt0mZ4HBTJwZXOQonKGcc5ALMtzc1BEG3niiIRDUlcQHr34+/eMj8nJdgbpZqFS1cBEkeUCKIhNEhBFljIcF6PmMNBS37jwegI5dS6HxJ380+m/+m/P1JXpwuL/RXeUoGpUAVrf//b/5yrHCpc2VpimfkXiprt/9rtsbpIPQFXz/3Lrzy1/MCybnBbVFaOns9oZwbzvpNOdRoYrNotssWcmPT4JGraK4wsIHBmUmqPUT/G/+ctK2/Q8uIe9sf3mrrVdamKa8jA6Ps6MeCRaqN0izcmx1UJqLq22RK2FlGZZIsbB6ebtE0DJNKfNDFSWwSOyKk9CoAJpTr796MbWtjsizcJ7iwC+rFaPqyAhLiowkrdZZXnFbjYzFGcROuzufhlDkKpZkUTm3VVNsY/flzBuPTMMcjkIGiaYQVYCIA7NW1WxL5ApPFnEYypCrCmIsYQgtZpHM4M3Nxvjw+P4iwoCNx6OmUu4EY9JdrTTa87NDCCgEnHKQY3A84n816S+pLkfp7knxqpd1VfC3rqqGRjfvnHuxe4LYuFhoddW59xZutmRTkxbDsSHT3/+731gs8s4Sx9h3LCDCUoGkKHHnwpq7vEyFRJQqMOtJhozbGFI6P37duNBxV5byKZb1FGjZ/iOKeLC5bvcPBrphGo7YVJTpmZBC3O7IB40sFY2AqiJHKU6TNOM5Sn0iKhBLAkkhzBkoYMIAg0y0p5vL9VmQUejbjvDiRaJotY9/IWz83fHpgfL/+TfDy2/QioXjwbRHBu/c2bq2td628u2VpGXDfqDXJVkUCkuGrbqThtgQTu/cVa0kjj1Z3nAfvSCUCPeur4XTzJ+HRankeZ4AHUAWZFGEbZE1+p56OggvVoydJ/PhBDbkMsvJyz1JctSlZUcT5/N5WK02lts8yNmLY/boawlExR/8Ljoas/2d6aUraG3LEZB6ehLbNh7PYiRWBWxN+oeoHDkt1Vju4iSSMMxVBdVqNik5ANqoDMjR5I12RbrShZoxOhgPB7OqbnDGOU9b3RVv0vB9//XuCImV1lItzIvIy4CoTENfMHUsYt00XadiRvRod4/XaoZTs2ympKGjsrNjvxcyTVMAYUuudr7Lvz4bnF9fD8dnqEwhAICDcZT85OPj//LXV2SrukiO5wX6tC9Xkf9GDUEQmNUyfRnNdstEQPI24BIzxESkZUUy2ytw7/UTRa9oVh0REROig4Tkill1UhwS1segQkRNzlZPByPpcuVSp5VOJkXPF+2RYiyzQgdKrX6rLciM8ALrhWg5hGeAZ1oL6QT6B/E+FWNXZ6VXci6LMEkJSxWSIcMWSsaFEospQaXIOYMICThvmbV/9y9ezmfo4h37zd9c/ef/4wvuCwuvaNTJm9er8aL44JoVb7iF1r/3LUkodf+oV8HEbS+VOSKLI7vOVtuNuV9qINisqlcuXkh6u3uzdPqstXPQ314jjDmL6XGaewBcHI8jP84hUGUxHiS7JJBhJPSsXJNc4gmLsb/UUiquK14BXz8bD1liYqQLHBYLFojzAffHOYHQcnGektOI3H+NJ1F2fmNybq1KCVcVZ7YwI0/++tNTnukIzDFxNcVA9a2V5nozThcigmkUzWeD5brNGA2jPB2HOE5rNdkwUTCd8BxS4AxmpNpZwpZprbRyXvpnfnAUFUEIbWVGceqnjsBaVaWk5cHpOEXyPOBREC23jIYt8Sh1EFSE1FaJVgRVmtxer+jRaZHErbVtxrkACOEMMmwoitPEzwfjT16QR0dpwZIuourYz2fF408OBYI1ImfUPxzEkwNomBAh0GqLu33yyc/JvdtbulQ8fwHnRZbPqZiXdOyfPTl7/SQQ4HI5F0up6nZbFstASaTulmC0SFlBaVBCjZSGahANIA6gu9kiCsoSlk1RHjMxI5AzvFzzSqIQzAnLSiIJEIJSVgQZQp7mackBUa04cyBnuJb6dnLqDYah05S+/7daDx9Ofvz5SJbp6MRkzPyD/639B/8FWK7DC+crt283IVgIUvXRS+EwkJk8r+niYsJJpEiLAfPHBk+26xoqgpLhvEDzk/0PbuLzy9jLFgdnMWHLgQxPEZqB5O5t8dfvNeySapReWREvn7c/fT6Lo/Qb31LP3+3qdnHjOvy199SuSxehvd83UqEotUADxWkqRGr55ho1cW6J9IM32Deuak1TsDSwtQGqSjkflBEXhmGmOVBClsCVMi1xBuDF61c7DZUkaZzESEGWaWtLKPKmuZ8XnDIRQ8BNU5AsZUHjNEYyEM1adWWpM+3PvvzxxzqSK+0G1qx8PN2bDGRWmfvUD4qilCzbGQ374lLTj6PA8/OUFHlsO66K0vWuS6G068eXmvKTg5ebN9+djkf5YoAhK0R4NCr/p3+zB6n0G7/5dr05ujg++9WVyvm8GB9x6FMsAUJRvSlAg0CBNlrKX/+i9+n90Tguf+9vLd28Iv7ih71//b+8+N6vo7tNgLmIeeX1CU+HZxfeHEGt+snPH2y3qzIBvb2XsluVZBfimgbpJy9Pl1x09VKDgxJCGM0XyTw1uOiPCoARFCgwpVk4C2FZiKiIiCSICpKyJGMxCEuuWjKgXM3LCxZuS2X/sBdiduENcPNNuP8C/sW/PPzsaWAxcGXTfPzKf7VXWRuIl99sPZkGO89e/t4/qgoUItzrH+WGDNfPeYyLoBRILn/wbv3pX/THfvn0dTQ48N68qX3w7VUhCv1hyJCJZdm0ZZjrp5E0HU4vroiX15QkTT+44i48cn6dnNssUCFtbqQCE9LZYjouCCqWV2S9kglVMvw0mfagw4zlZSHZyQ5GwLnrlGZcC0m3LTo6IFCstW2WU78YHw+pYq8KgoaxpzphXARpKuPhPPNS5tabCmeHR0eO4+iy5pOsuVzNk2g4mqp2x9UrnE8sVYBFERYxh1bOUUH45oVVmgavnx70grhqNVxVXaTls5OFrjBNxLoE8zTkrMyyjCHRL9hs4SFRtDVVl0CzYoZhWEnJ5YZwOJoNhsOlS2+8/OynWulTDBe5FvfKpQ44d87R2yU+O1t1o4ZsVCz37LknIIAcS6kzyQpuXGhn8/Fs4nEKGxK6t+VkZ0/KWW9jRQ7m2pN5nhTB9vny3I2u42AyPJU6laqgv/pkMZgzQFTkT6fkNIGs27B+9iK+uoL5JHdWBFMtccn0zBxPooUvKYJUivm0TAc+xYpJONeZXBJOcqAxXBZUklVUIBxmdkoaCry8ZDYMLopgOithKkmZkEymF7vq9Sv6+rLw0zPw3jdxNO0NDy+Beo1rJwqmYuIG3vH1LaO9QThkphVxWvZ70bXvbPzaXP7X//lVHCZ3b1o3rncZz0VcjCcLM9OSKMyKQHO1lmLWh4KaBsm0X6nAv/8bbSwJihZ70+yjv85ePCg7Ll2uaZ31ksnlZCy6K8qKBI4OMUmS4Zgbpi4j/O577tVf10/3l2rBSGRTTRbUim7V5cRjR0dsERFO+lhDSllwgYZZEWQFjgvp4GR8aVnBAm81GxBzJMtRlkmI205lEVDTqVq6etA7y+JQgoBkguw2DncPOOBikax322IuPNkZLMaTIo+xzDpLy3nkiSxRVFZESZ7Gqtiud5acZvvw9Gzmx0gyZV0cJ5GAFYAyk83fPFf/y53XbqO7vHWx//wLTDiApSDxzqrcrbPFUd9Kkd6xMyPWIVFGRRAI3SudxJjHftB7theV9JzV+v476ObN7t3zc8mfNyHumlnmx6Jj3nljaWldJnFgMBjtZ+HJpAGknh89eVWcu9jtdGE60yfj0FsooZeTpvHkwYl7Uly7ZAWzNAiVCNjUWI1ngYzK7u21Nzfbn//0Maeg5JSJCHGAk6whCkQogpC4BLsQ8bSgVI2ZNOnns1l+5Ubz7u1scCDNJ3jzTthc1v/+5RUxS826vIh3g2P69oaRvh7pVayjSmt54i6Vsa9ZRrF+Tuz11Nls+sE7TulVXZnduioL+VhUHCBpWMdlkachpIWimeDeJba6YjSrtdJ7xaiw6NNasxKFgcCDN79z4fT01IFpfy8/PMq76/X5fJZporOsv/mN+qvP06cz7+wZgAj8wz+8IsLTnfuHOk+bHV5p6kzhBQ00U2x3Om5lstc/U2Rq1iqGYyGMGIsxEOxef1ETZaAhmqeKLqYFsd1aMDgpg1xTtHrdgkwUNLcsfJikGAgMUlUWn91/7C/VLSwCIuiIDSYjtWItVbVWVeZGzXVw3dGjeX50sC8L0J+PBd24dedanNGDVyeW4UQxH05nFGiygFdU9vaycv/5FxfuvD0b99h4KIsR4PzShS1aqoxL8wwkR6ms0rrM29eWoqezhztHpYu21paamjzp9ylf/OPfWwYAhmdHdcu8dqXRPReHsZAtRnWLgix1rHbYPyjTnEV0kvCMIVM1ZhNgLDvPhqeUi3bBJQHmOZlyblfl4YTFKRx4ZW+xEKyyyHNdKi9VaqtGRZnmCQFKFXMKLEHoVow/fPuC0rH/w59/ps6IBaSGgoaLZLfnA4w0Q989OLv1riLpOXnktpui25GefbgohvP1ju12ze+/WwYvlXkvkMCYiUaJYiS0Mp9jKXOr1GpeOpnHNdv/3e+5z395LGc4wG6fRQAAXgFJREFULUftFTA6MkxrQ2ApTWEeqr3jYbOZt/Xc1jf0ytrg4HBwOoqCcKnjxr5iXUdVDduJ6lqL188ECJlRL//yh9xZlq9e8xVTB7nlxYt/8r+/uFqNB8/S1e6iUV1BLCpxgVWloCxPS0ZTfzYPZ2RYYIeXnA6gQFVJxxCqeeZNJzO7ZqShp8ouExDicDGJMwEhRYjCSVmAUgBJVtShSMs8Y9PasjOfz+KYYIwQLRBMbdsqkWlIoKGIp4OpWV+mlALABcR1VZwGvq5JWTSDZdlUBZillmEcn/bTIFXUismTX7vaOv7Z3mnvePuNd1/89EeALTB3//IvDnc+Hf7WO01TS/MQh0/zE8Ru3hSsiv7ioX/8nKVeoNyqOk0cllHqk09/Nty+ykoGnj46WzovQqoqCtPUUrd5HBXPdhnLlKYRhyqENXU5MI6OJ0M9H3PFG4dNGZR5RrkkGMqhJw2K/NL1C40Gyw6Hy50GFxVengj5XIayg5EncsSgkpd1Xflvf+vGVSkUW8X2H1x69dH+sJ8DKFJOdVMQFG0SgpVKazzJGptys3VJEEfecDx/5K11cCokTtWlaP5kPxA1ZedrM8q9u/cqaY8IMM4ChZQkw35vyE8OvLtvdqwlQzC4rSokExYDT9PW58FouQ1yQfEG1nQ3q1fTWfBYWaq2HKuC+SRAJFaK1Gdi5aOfkxvd8fUr9G7bSBczwmqVlvpXPzmr1dYFbRJNS1GTTMRgFGmmsqzVKtVuGE4KNlFrLktJEmeD40CBcG3F0E0WhkFRIsNgtkFQwcogUQpiksKXoAcIs0RRkzU/LQvERQ2G89FkcFpzTNUw5iQPylROMiMjqigSgOZ+Nl2UCTCgYQqIpTHvj5NRkPeHgT+NoEBNS8vjyMGKSNhkPJ9M0yjPZv4kDLxmrVqp6ncun98+d05C9I1N299/AghYunO3BEhhWeTRT15O/9kPXryIWHdZaehiHImvngxmfa9m62s1SeNSlE+AxYYeLChor0vOMj4Y8K+fh19+5X/+9RCopqTKr79KH//yeZynr/eF3kB/9VR48jBOCm5rUnoyRnmiimhRQoRhIRivT+Hhvj8aslcvZpgrb9y51Zv5P/7ps9NjmgTTipC/c/GCjEmuMFHTkn7CI1qkIe+frinyt37lVn1bCwR4/wkZnHCB47KA3ni2/2Dmn5jB5JilE3mSXruDaquk0ymRtIi5een99osx/tEn4XyoxgPNmxWKKVCVHvatg31t5VzzeCr9m//1tdZGn770zyatQS8rp+zlw+FoXjY3VtfvNLhbfvp1uJjVMl+bnQTpIs2TDNIozjx7BeKo99Z2wrIw9ByOmFwRVdF69+3gv/uvV7qqe6mjfP/9ak0SbTLPtD6SdG8ASpiLILMwRgyptiup2twLrl1U3r+l3FxpNBoC0NhozmRDwEjCJZVThoyKzZO4ICnMxTgsuYCbq9121wm8IAoGs+m4223Fhpx4Xh5FEImGbnpZhjmvmVrGcwEmWrUazmcns4VuWdPpiGQyVFVKYDr1G1al0a4dTg8452WRhv7MBa6qG57nnw1PGcSh71dR+d6F7s++/ujad76XTS56+68QQooM+zPyn3+hLTp8SdGYRI0iKkt5XvhGVzBMU8DMMDXIWbWRd1aMJ4/I8X68sVqr1OD2ZWdpxdx7/jQcm4apXDhfLVLx4ctIrThqlR3PF0sdF0yAGFKACWGsaSuTk6HrqNW1TY70V0+n092jX/ue+saFVhYmk758fJSuV46//82tCFV+cTDjtFQLsPBHsEb88YgNZ1ar8mvvtA9XQV0dIJC99U3DrYl5T5z1T09e9pc6mLIQplit1RBnKFnQ06C61AlQqHC21GRXL4DFpBdFDoZQssrj0/izJ3vGlvBkv7h9oTGL7OODKJ34llMmMR75oyWTvHg+P3dj/dJl+ejRzoOX0WSW1h3h0hXh4IDsHmW33rau17AQxo4UTWblGSQrW+yzT2DdnV+7E9a07NXjXiLRW+9ud5tcCs9AbCxOJo8/PQsy//KWBSBJFxO1qWqOW2ux/CyeTGfeLMMWW16xdj0vXng4ShKSp6eLGJlr7a6TpPl0Gj19/ipLspKBJCVWpSXL+mTYt6sO44WmyVmg7u2cBSkMc6IgEYrM5gVP4jiMEGNty6g3tDDxsSKdjiMMKSz4bLZQbdtR5UWUuKamQJ5leYFzw9DDtABlUfpxR1FvvHmn92c/33vw5YWbb30RpWB4KDOecWV3Sg8nE8cQlwD87TrSDQF1K6SWnXlh1hfXtuX1lSyZjbVWbX6GOk0ZlAxzIFMy7i/yGDkVo9oSDD1b6qSoKA9OIt9XdMWZns3qVXADszgqRBXNOS+ZMsnY4pEna5Gszd0Wi9kuJujKNfWnPf/FAcp1ctPh/+Sdy3fa48PR4vw3zdubqsV9AhrRme/vHJeWbkvsd39dpppegBwXkmKXABZbte3RLusPBivrCKpNwFSeT7PZEYlP7G71jQvao3Rcb3Lbcn/5i6KhilUDV61SFMWvH3upUTscpz/7MGnZehDMfeI8OIxsG+EZ1DlD4OD8zc63vr322ZevI6DmsdSU7OOCHJM8ej4HnL9xr7OYxjDHVUOW4MLVNKDRIhfZmJmKqF9sSp2KtH9CJhQCNjntZSVis4StSFLdSAsSz+csKqaz9PlOsn3FBipqN/RgPl5vCKYqYIiEHPLTRdyPkGubkoHAJMiz9MrVy5IiUoD6ZxNIUtMyZ/MpQEjRNADR+gYE+30k6mfzaHq2WGpWXcOoczrxYkgKkcSOpVHZqJayJBBBRlKW+WeHetWmGqraht5p985Ghyen7ZVlyRJm/Ympa7Ymuyj9ldtr//JHz/onrYu37734cMCjlDIBc0Ax6uUsLQV+3dGul8dzMDqmGkQQyX6YuXU8OWWA+psXOIWyLGcCA8PTNCMwj0rZzSwHQh5dWLebPKmLZDLPx1OWEiylIpGxQGJGqa0IssCxLDtaJBki0owo9ndP5udubqxsuM3X8PXh+PuXf7PjSAJ/8muXUnrFFSUZkjAahblnMbTxuncCUlJrFk5N152lEmjMZAIxrEZl5oHPd55VhbS7pPvjkeZsQrElVgGNBoOTaHlFyFJjNldaa+da26dQnAFGLp9T/EiLHiajIuwy5Zt31P6Aj0PRm81RplNJfjkLVht6u5uR8pVWbRiViqCRnJevDmfjhBpNiTJumo08R3lG4qCMFqTRQTfu5fNSYQQO9skCifXOOcJchEQ/lHkBOluVysqyE/d4EXFMJRFDptBCLMmo3bLOnzdpmVcUOTXxLsuICHCe5hmlRQ4e70xXq+uIzEUE79y6urKyOvcGWBAcpzbtHS7iUFTlSqXie56h6ghHtoZlhhNm/Pzx/hRYNUSbGiSSS7L5EkIF5TmFioRC31+t2ibTe6dHAlVc24mDeRFnkiBossIIWVnvWoYpEQaKJE49qfC/fXXpxw9/WX37u9vX33rx5WeMFiJ1FFICucwF2ofKaVb/4cdPdUW8dVmrr9ahzJG8UDQNQB2I4uDM5mC6toaX1nVFgJ6XCjARxFzkOAySvTEquFaqiLpoMMhowq2SFznTVJVwFFFSxmUvAH6SVhy+0RRXbWVb48e95NWOf/dea2X1KC32WZkZkoGCKWV6kWYi0CY+S3hpXqq8vH8sIHXiC6cvX00TaQLtZnPj6ps31I4ut/nk6KE/L3UTIp5AtQJBK4uz/dP55UpsO5VPPs2ANb5ww6DjWZqXlszvXZBNufJgx1ut5cvN/PlTqd8Tag24uqVELDoaUQ9ORbcWhMqDR9P9XanuFDFNR3PiR8RxBcsUrYo8nZQFwdWWkOTh8ARYrVajjTJvUjpld3vLqCwnowNN5eWKSkhW3ZYUkc4/Q4u4rKQpljSsyKCiXbqHj3eSmg3LaG6LqmJJq8vO0QDgOAiIggA2nu+Mz1W0lXoJs4gTmEQLSQCD3qkq1w1ZH/QnBsBJVMxnYaEBEWsIi3ZZfnDnPHbMX3y2nyBlj+QEKeeroD7zoeUCRc3KwC/JJE5zzrFZ0dxKpem8erFHUgpFTZREU9csSaC2Lms6KNN8OFMFYd2m31y3P/n84/X3fqd+kU2f/CIXfb0oHCZGovhi5lUm5eZ5VcIVQQ/NpUyrdLAoyEaYF2jr2gquSX/8b8c//Mno299wvn3H0SyzKOaiXJK5BHK0fr0SR+Lzl/7xgecxPchhL8ktTRSyXJaljHAGIRQk1RIHC3+tq5i2OegFv3w9aLn2hl1MHh3UV88pqx2anJXj/XxUsDQBcilI+uvn/sFpkWa4Pys/fzrLkszpdHY8eTJ/4X72iuSwRRQ3VfYwvbCaoWyfxDMRYhyT6dSMFlE8S7odNQxPWVjT1Wo8jyREbCu9crV5MkkTLjx8kBowevuCXSJhHgYFK0VReno4F38Mv/+te+evLp6+eDgeEyopbhVqkmqI6MImrNTR+BRxJK6eN6eD2GisIjUDJGQMtO6sGRtLJFqI8zOQI6lpVvUqklg5HvSHM+eCLWla4cWQpMTQYlndHy/On3OiRdabTHrT9MoVfvuWgM+trSY8KxksvWj3cKqzxJVQ7AcS57Ik0aSUTGq7ddFS4jQez2d2xcUATkeTgtK8CJVFvymy68v1pGRM0E+OBvMp7ym2DkoFhwgRTTVHcz9BIubAJLhMIk0zhqPIgLIAUZaRpCCMktCbChAKkri01B0cHd9Z0YfTxfMHX2zd/QbzB8PefilKDMiKWN65Xf/uW9qTU3b/UfGrN9ZvXWwCP4A8jbIYQxwsdryi9Tv/xd2HP3+42pEzEgrMV7AQzsHOkzTwBaOdd1YbzSUkHfFgwhaJbOiiR0sORDLLtrpGOFkwUajVbV2QO91681wNSJN/8M5SHofj/isgtFVjfX5yFhwfmATqgoYUKUwDkYdv3lw+dxlgSfn3/3bXj0qnagzGZJaPImBFY6mMJ0CcdJfNl6czA+O2FmtmwrBYMn16ipItsVpRUhKuX5dJLC08v93sFGkK4UwEccdO5qq1ff29YrAbjc8IrAoSFqMAcb2x1aUg+vAnuxn2Ny/J2GvHSSZWyVAQaBnUW6qIcTQ9ExKmX3YSGmhWJuhjWkDRteW6SyF78tlO+fKsomBfKW+910rp7PXztLeQ3lBclucSTtNoihX5L/7zXhYkP/mbNFwUskgtyyAkFYGMS0JExADARNQTVqqGPT47i/0ZKxOMlJxxxsk0mGm6WXdtRVV1RcnSWPWF+noXCe0kzXAQXlp3KQAAlt++1p2O52eDIWK5UPiVVmM2JUgzszglcex4KiVEVGuqhWeTSVYStVKXVA2hvHc6ZRy41YYAM1CkRZzcPd89e3Jy9vzLzWv3ynAWBEEpUJ3lvcPkX/e8r/cXozkkOeydjDpKeLXrTHq82raffeW/6p1+9zebf+fvvRmPXwpM1pS8iMRXO/MXR8R0xdlZoVhAlNTIZ4AmzSo3VE6w3JunUV4enUW3LtQ8348mnqHLsccl2aqtUmEy/erRaWy3zr39rYOXu/PnT6omzRTUn+DAA42WCIjR21lcfEudjPsOYK1lPWJJHtsih6KocEk3ZQKTcjBN9Zw934+EFmiUBFtCisqb13kWCoVPSCopTMPNecLo3t6RZZi2yiQwe/eayjctAKPXx7Gk8iTwrp7vEAzN2gWtpvB0+NP/cHo8ZhvXVcVeSGKxSHl/zGFJFHGFMQQJVBgdzQdRZvW+WrTaDjQwt7kgjiRTWnKtp3hVr/vXblyAlqEQsH7Jur9z+Od/MbqwTm+9A3J57oi37l53ppP7xcicBAvLkLJeer6VZ4Rgu1LL0gAyyDn147IQWtUuqLdtGTNaCkWQUlHnrAg9H+lUBDAL46IsNEPDiqzaloUx1vuDvb2V7urUp9UKWu62t88500kQpMRfBIqiSZglnGuKsEjCRUKQJnIu2K7NoyhOg1nvhAlyVAgnvTNn7EXz8fikjwwHaPA7l5o/efhkoilX3rz38ItfsqyUqPjzLwcp0hGSWYY/fFh+8Sx475Ji/KopirB3Epi89Xe+3/zscc+qbJqaFBwcymY+mwjjVLKauL0kDw7F8SA0rGK9Zl1Yh1EKFmWwiGVOiW4ok4mwM5i9uyEba63BojzYH+zs0OaKNjk9a9qV5t17oT/w4v3tW0sqNo9OBrujaRbaz08SP8hrhrA953QWX1ipBoRGHkE8tRR5vggKQiSV23YzGA2qjlIq8OkoXgZyV5ERzttNGi5QkrIL51xDKXnOytJcDMe5RqFTOhXmNCCSildPX01HQa2pOzV90OtdfKOxdkHZfbHb3z9tt8TTCbv/Rd6uQkvgYVmA3LCxmk3LQONpqYNS/pt/7U8W6QeX6ekJy8Wgfb6w23bnMtbN6c3vboriVNbJyd7BfDQzmdjvRZEPmvXak+fF8nVTVZeBeCJJYPUSTDPEMlnFyDSUyI/w2dlZGHgciQBBkAVfPWfv3WiRksTxokwZg5JquiQNBsNjnpaQUgh5URaqZkz91FZEiUuqarUqZpkEeclSVohYkC25Dirx8WQxW9QbLcMySJnVKjXI6O6rPX82sAz99rWLw/nMy8p4MUuYFBNRNxxaxK6uyd12gvUoZ02D4eutP3n2lCt3t26+9/rBZyRecAwJEqu28M7NyuVLUjwSP/7R0f/18GS5pWy14q26vAzs7XNrOzuHb165+/T+GXYkL3K++GTUaUhb55uEHUkSXl0SZw3AcWiLXCiFySBtGHAe5rrhCFosqEwyQleMbtxrrtbx5Nnk9YggKW8Vw4pVODdWmbDKZ+q8F4lC0Nxo/um/O1q/aF25q49GAc1Rs6YuTiYIiUEUZIJOSqkANBZgL8+bWg2r4axIigzFY2hWdQOUWUgELAwGORQKykpUGNG8oAWgGCIkCxIVTBL4dNjnaabt78d1B3VtfbmmLHqPi5OFXYiKRu7dVr96nsex2GiBWl2+dHepqYOu248KqRC4VvW+/bv6/ftmBKbc9q6+5Zh1ESsuASk3You+FInBZilLBomfG8p5W8mXuuO1zfSrL/NPvkT/h/8+yzJPV5SlVTQeolm/uH3NoWrYm2LcaFQNWaGc56DgRW0ekcNh4ZoyoFKahqHvVRt13cDVRiNbBLHviyLmiLvNZR3b06FfdS2x5KSAcy+Q692zsUcEtWJaJfEQJY4iQZKzQpwvFgiBVqO2ur7x8vUBRkxXBAFSWRGb1W5vtAjHo9W1LVVwY2/SajeiHA7ORrNhf3116/uq+0dfPN28+db2jTd27v8MZYnK56vdxj/4/V9ta3v5dHy+uvSTr4+/fBhHEdrecB4/O3nrW9dW1arKo7VN+WBGH7w+Xblc/+YdzdQHAmaVCjZ07lYyBpHcEJREK0KmV+FoFk3Gi2tXlWqT6CJpAhORaHpC2h2p1nRWr54XKjoXJEwkFtMi+lICQ+qx+mayuSGcHYZ/EwaOzb51d4lGBSc5RpqmsDBJBQoELKdpiSDXgXQ6jSAuFEGaxvCwn2wv49FA2Ly0dPkbsxcP/clnxnIni/1IwjIF6GRU4pppyCAn1MsLxRYNBDWpRAKbnp2mCVWonhVg6KfX37CXNpLBCLRsORX42aKYhLmt0HpNb36wopDCWl7fvGGevf5POoF1tVRFDnAEikyENBoJi/mBrMnPHmWv9vCFC/F3v7cMQNR01LfvmA9fwqdfPPn0Z3uXNoF9s3Fu27W0TFZDESXn1jWsK2LD6MZxkqI0iSGNihd7861VteO6tapuyCFNkkySsYQpoxAJs8XCqVdH3iJJc0NAi96eDGlR0Nl84WDdC+OTw8mdqxelPEZ5pBtOWeaK6GqSmsRFlpaGLi916nnox/5cACwJM2pVDEM1RarCtFHvvJpP06ioyNhExDeqslm96+QCB3/6+Yebb39349a3Dr/+yKTp7DT8f/w//+wf/O2Nty+td937/+d/rJ7163/6v/azSSKLlZ/+8P7lq9Xt9UAQylcvk6LUOE4ubtfT8UTCkqaJ/iLXba0gMkfk1s3q229pSRqMhohSudk1Rl5atw0WjqIglpzup3v5s9ezf7zOO42cRsLieM68PRmNtrZwtVIHMvuV35Z/+lfp0ZmG9JgBpElpTecsBdASRAgkUZiQtESFLgiQ0UxQVIkJSChTMJpGrabiE/7x1/03vqNf+Wbrxc/4woftWhEVnGDt5Wt/Cstv395MvNPt9Yo/J3tHPqnZx2G6rmsWUCpNY6GFDx7nXC2/9S282bZfPBjv9MEvHoVpzH/jG8rNi8PphDQ1K9Wfm0vXrrz9HvCPiR+mM0/S8PFh0D8DHz4K6q68eV79bKf44n7ycn74f/zfXPBOIUgTIPClVfXTD19wAga94mh/3mpWzg73s0DnchUpHE8nkwAGWZ4yTEURcyjMci0/HJMUdA0ti0osRHbDxKIcYq/R1LqdKoXg9emos9puuErv9Wx2NnNU3K5IiEVUElTTXpwNHFQYAk+zrCTpnEEOmWoZ48iv6oph6f58HMWZwKElisPRSBKAa8oki4s8lXV55+CkkEUMgGNbioIlnlys8TdWlU+/+vjK27+6ee0bh48+Z4V0PJr5gk0Ms1lfT08fXVwa/cYH6MFnhyubb6Ws9fi+Z0IKOCkKR8bycmOhijOIpTJNd/eywVm81OG2ZhYJYgUNshc1xw0hsRtm6BcPvpi9fS+Ti6jTtWlF+/iHw7MB2NsN2m7KQ5otgKYrkNdULVaNEgi1EMTf+nXn1TOlPwhEIeestHUZYKjkFBUlhCXiKsUYikWeFVi2kQDyMsOAEcami2x9WxKN+kc/nay0YXc9T0YlKZXGmh6V9O3VZdKCpSCdPQ9xmapafX298WxncRyy/WPeRtEHvy3hrg2EeO9V0qwXF7eAWecXTPcvfzlxDaOi0krNzon4p39ykpNCtI5+92+ttzunmuwAaPqJ9Gin/OiXs2PGg8dFeyc+f2P1MkjrJiUcpqVj69iyMBHzzfXmygovffryxdQybUqlyRhqFQ0JAg4LkqQByTNVU2lZMka9DOkwO7/sZhmJgogyooxF3a4BSZ3Ohyt1S8ZKt9IwVbkAcWN1jSUKDE87jpQWrDcYOs1VVpZxlmqKYJgqT8uM5xIGhikzIM8XAWKUcD6YziUAHcueTj3LViASo4giL42i0DAN3wuX3IqIGGReQbgooKurtQRETz790e1vfIffvLv3/Eudlz/4470NzfjGrUoZrZJ8urZVDAdwt/eys7GCkdLvBZ2OBEWEQXx+EyOlRI7a6oZf3s/Onauc2wSGvBieiYPBdOucQUsyG6YvnhLFVhmWJb0hoJSj0HEMV8fVi9KVC3U/PXDalVrFhCkt58fZgqqcE2F2cpqqqvz+O9U4EGUYH40LwrBrCRqBpizavBB7cB7RBOZUEAGLCSNYFEqRJhANZ0w+Kjdu0W98p/3ZX++LbqXetmb+NC3g5StGiefC0sX+14XF0fo9+4snc8tStlec6GW4eRWv2IIfZZ2V7bfOe0Hf80eInms3Nvwmjt7/juIP4vNbkEPh3Ipt/Fer//E/fF031Ecfn/DttLuEAUIAdzvd5fULHE7JURjdure5ddX26+G6KQM2bLQ0TEAUJ0GoHh3NBVFM4kyzwOOj4OhEMmQ2Xkw/fx7ioEgJZ0ASp2HAGYMQUFYwhhl3ay261KCgJAwI09kCiaJqOK8OjrGsyNiQhFyxMCA0jdKq6uYgzjgXFKPW6syms5PxuOKqS0tYwgAVQGGCkRHbdQcE5GmycuXKZHCWhv5Jb6aYbQGJGCE/LYpx4EW5a2u4ignLKWSFH7my4QWBP56/f+OmYc2++OSvr7/97bWtzbP9rw/P0D//n1/D/7Kz1k7TuTE47m2sIUL9s5MDUa8QLsxiIqJypZN1V6sezZS6e/5m1mhxVxI0NA2Twm6pnY5Ssdu9l69qLg5GvKrlzw7jP/1X2TtvlnffkT/9MDvey977VVW3CEMm4LooqgylfC6mviTo2iJL2iud2SANvQUW4igIVQkwkcmigBASBMYQDMIccMQpR4JYMp8zwIAIoexlNIrIZA5fzIZ3vtlS6/bXL7LkWbSyjpep2HNIrhfnKkAX/NwpFF14870rX/9yb+fVoq1rty61fv7FbO95/E87fPtCfTcJRBF99WB8+7pbv6b8ynf0RV/NzZGF8ePPj9/4oPz1X9MOX8MspIBbRW4wRAwDdzriduLwIjY3s195f2MQlo/HQRDE36jVBTzFEs1KYRAmXzzJjRqikEZ9LuzmO8+DK9eUpQvLuFnibns5S5M4Cl3TZoQwRtNihjJ999BfbZr1mmZwxUvY8XHfdKrNVpMW2dwPfH+MBTdl0nDYN22HSTDJIYCg2dU0XTXdzZTSNFnwLK3b1Tgm4+kc6WoS+5ACkuX+fH71ymVGy8PDw5ggRcFyxZEUsghzyor5ONhcWhJldRrMbFO1uTDDWAHE5MEHN1bzPH/82c8v3/22IKoHLz57cDb/7/+H2W9+t33n1iXmqkH5rLqsLFD3Lz8+FUXS0aDO4c0LbkWo/fKnu82lYPtaQ6IDNJ9qIodGNdMqqlEpcuBPWd2q2zeon03u3gPpHDNePnmcDc/0jQ23mMdHz2fbV+RksE8LQbGriltlESgoBKpaWas1NizqhX5vASRJrykeKII4LUtebxtXznXy9Axzjgt5ksk+a2BAMGUKZK2aIRRBGqmchh/9YJTPkCQR1bEPXmQXbiUHz1JfrgiL3eUrmWTUJ5OksUUu31wTWbHVlE4Gsw+/9G/ftPzygbV16+iLeP/rSZAmk37yBxfXW8q8u9wizWWhzNSZ/+CzV2/cazZ1EAcV04g9byIpooKmoqJUKrTbJZeuNrxJ9j//ywdP97ybt9z33/8eSw6Lcm5YqjY//Vu/s/r4aPDZF8Xua1YKUyDA+atoxTtDuYCLKGWE0pxKAGMoMA5EQSoF1POjB3ulJlsEERHjimUCUcKKtrJ5Tl/MDVUSED0bTYAqVZZquiqPT2nuh3kRx8HEqjSW1tYefTXuH4ycOpQ1E4riLAmiWcq5LCC0WMw1XdN0FUoKz/1GvcO4kOTUabScjkKjnKU5gqjIS0hRKkgconrNMRVBt8X3bm5l8dNnX/384t3vr11U93Z/cpLAf/+TsF/6v/arF1cqnf7p/KuPd18MYk2Dt37lXIt7q904Hs+dUvRfHy6aFxyn7k9mZVzJBNiPwsvL7f7Bc3/BSi+ttXCR2bDAuhbSgvmhAGW/XnfHe2y/Hmta2rUpyxIgmTHLfOLBEnWubmU8hZKMRckI9SDOsrxM8jQvGKHItGGeeSSOQQ5kiFkhRKVTFJ4Gi/WKYcmsVsGiQmce8GPiNqxWW25cyBQuO6WXidJ//DB4+Qvwe/+1u3XVhjigec8wtoJMSqnw7FmaTvWdB+UXRnz3++Trnv9yL7pxXZea8vBgbCcZTYqyrOmt8uZ7Wy++0H0vaq0jMoNMtRW7raouNrUkBuVBf+4FhpOl4dxUWKsuDXvlx08effvtLZwJIgXDk9xoBEKhqgL5/b+/eTTyPvl4HHjSo2ABBYBHC48xWuR5yRnkHABeEMggpRL++nWoYvX2pqTkU0hBlmVZXmiGkGVpxVEVSVlbMfX5xK3quqrRvO4BpggFTeaj0A+p1OyuTM+Oz45Hph7rulqr2ZqiZkwIgtB03LPRolJDflCEE9/QNAbQaBQZVbZxaYNzYbR3nMzmjlFPGRilRHfqEUAUYUKJwpI7qzYAw+ef/8WNN74tXvzWy6dfeAT+4BfPX52d/f537l678sY/+m/vXr6/d//zLxU52lpSRcP/8tnh/BhcOi9HYehWpVyQ8ySEcntpQ+JkCPLyxp2t/tHi5cF8NAHeVF7dEjvL1YILWlXYP83ffO96a8P88sGXl2touSKpjqiYiIdaPPWKwwGqqaVVFgXlDPXOfFTAghDKIQUISTzLCshEBaJFluVpbqDYbap5DPOc7B77nkXX2rhpqy0pkbNYg8W5rjo6Kfb7YGMVv7FFvtojRw+iJObNqhOPh18+ePLsVfHqOetuiX/3dyCdCRqE6uTsVpsZsY5jImrV9FSgOVFqQM3j3Z+eLF+Prr67FUdBgROiLwRc33kapnl+7mpHwuKDh4evXwWIYFHw37tmvGcoQtnRpGLnfu/eHYWw5PBYqgrO1naj3obX3137oz/7FFBBwBgDjLmA/cgvCYGAl7ykhCCESFYCTDgAAtEevJzLknG5JuVZGGZxamshkAAUdl/uWrqh6DaGPByNYkEQJRXLoiq7mJD5Ijw7nSyfu1Dt3nzw+eOs5FKcF1Ks6Gq9UkUAaKYRJVmcpJpqQL2y9+pYkKWSi5pNvZmXFCQIwyxKZU13Hbs3HE+8oCCAhLGomSTydR7f7NY46z+//8MLN3/n4kV95+lPJMBf7Uz/789+dOlC+7f/zp3vfffyB2+sPv7ZL+NkVqBGL1x4ifjmql6pSIwkqgkKUrPaolTBB4+jcCybG3mJg8Zqbf2mqaB5HHh5SbHQNE07QicBOePJslK5NAn8xfC0BfrL55skpaoil6EvVSqiUJ2Oj3AO4pI3rJqjwOP+nOQc4ywKGSNUkuVzS+icrG8saUvn1l7uez/7yU7BYJqLQV+Tl1kWwjoSDC0fHaHeERUrsqQZrj25dA2nPeWTF9HaZfnKVnt62qNAmmVhsAe+eUVebUc5R/zE++5F+c6GkpE4Fk6jsTJblC6Wz8msK1revu9nD1YubiG5Jdsyy2VrTSWLLM5PXNf9jd9a/creXa+7o2FpWMIb36x+/bT/xUPjeKcfBsmNu42VzVVlqXP5Cp+M7P/pf/r8l/d3kChAIUeAc1bi61vrjHKIoCwrZVEKAk6LOAiiJMkVEUOaPDxIOcGrjkGnh/HCIKUNIfYXZRLHXPJlSC1ZxoosGwBhMSKCIApaw26VXIdB1XLBpXNHOz3MCBKEjHEw81UJShIRitwU5WDqYwXVGvXFYlFmXre+XeahUEDLssIgIkXaQvqV9frLw7mt2K2WXRSsVJQE0VWjVEFF5PnDL/7iwp13tm68/+z+L3XEMww/fnT8ZGdw69Jqw5U3OvDCueWh5zt18ubtO+7SA1WYwyLgkT6fZhO22K6tv36SYJRsX2hsXVgmkJUM8MianBR7+7HuRu6yXLWrP/zxyeW7585fbWqknLwuEM15BERN0pzG871i50dnv/Fby0f7PEvh0rW1mt6Zj3pQErJpIYGipqNLlyxk1pori3IRDY/S109ntXblD7+/MthdkLRQWTIWpIen7P2r6srNikeBvFh0l1Spmzo1BS2Mz0/91abixbP7e2HVReM8DSNBoCCKQSxKL16GHsk0k6pKyUpoCEquO1Am/mE4LbK8KFxDFxNp/myi1mNBBYTB+vpm+5yTnTwli1G3prjfaktlLNfK7QvdoB/8h5/M/+rhTARg9gkbzgJVRFura/ki/YsffvnDTw4wlg0xE6CUUKQ5Gi7jjAOgKZqO5YIhCBHWDF01ZVnNk0jGLI99isa6bRWhnhepKtiIg3a7yQUg6sjVVR2LGSnDPNUsk3OUxakhy6xamw1Oizj2UkwEikRBxjiIEialrMRemmPN4CLWauLgaKSKomm6ruvUXKugxcEwQIKMZXk+mbm2LQmCqgLNxm5Vo0SAAHGQloWPyeKirbMYvfjy49qNWxfv3Du6/yUCzDKNOIn/5qvdjdXqO9/8xiToHz8Z/u3fudowI0wxFMX+BO8d0SJz1prVWR8s2eI84E8ejQkHtIhEJCCz5NDurlSwFriOX5ZuVUHXLtbqHQFlmUQcpyYWQr7/vGdSPZqh02fpyUa/YZm4vl5fLf2FR2DsCnKSci8xUBFjUOztnc1TDJj29W6cISTteHwWr9VwowZ1Ax9/ncu6tnzVUFe0yEvcy5Je45JGG0jUTUupLDigZ0Mm4PjeOb1TyqqYXt8qrlxA9x+Tp3MY5EktQCsdfeanIqcbW/Dc9aYuYJmm87lcqVlIF4KCFZmiAm2+83w+f/XoqZoy8jt/4C51iL52OQ2OdX3ONfr6dIFKpdMsTo5Ab2JZev7GDWdpqfnF09Fff9njQBARFwRUlsRqrGxcuopFTaWUlYCXgHtJjJAgSUhAmOQFyUualVlaIlLqtfW15UYcemlW5HGm6xKShFk4dQyVQUgY51CAohSHiSyrfhSKkswomw4nuWx3Vtuz06M0lh3ThgaPU1gUAoA6E+AimvTHXtWyTBWTMp0Oh07FtB1rMJwDCLGAJ+NZritRGDS61dPTE04VxBRIAMsxhIqqC7Uq2zKUV0/vdzevXr73/rMHn3OaSZIKIOFY/PmXB8Mnu7/y5grl8unp7lpTzHMnKtq4Vvnhn312LVKvnpOdaqC2sFdCLKh1o4KLAojE8/lg6DuKOPez6WTa7iqOGaEiU2mGQDx4PO5NaRwlrrinaOrlG3h3b6wwo2FPdMBFAbsNt6zWP9p9akzSrZYCsxAA6f6DJMqE/UEuiLIj4yVVMFWmqkxzLEOWL1xCS+tzRiYIwophSAUmmTybFTHDcWFVm4a3N2g2Fd0EDVe7sK6d2xbGC/PoLFdEbtcYJ0yU4d3zWAAoSP35CHFTU0xsVvt+KNPUlF1ZVbAsq+uXz5t7z+OFshMI2DKLaATElwQE68urX345+vSF57acDcxFWo/T2GxoWxc7JKLPXkyCsNBFURBxjgS3vbSxstHbe47HUUAIEQTsk4KUtCxLzJgoCIaqK5IYhhGhoEzFg2FWv9i0VVXN82QxW4yHpmw1O93B2ZmG5IxwUZPyIkIIY1nO0zQry+bKCiizeQGiKNre3ugdnGHdlgU1L1NKQBJnRUoAlpc314soZgJTFCPNiZSXsig5uhJOZrWKwyhJ0iRLc5ID22ocHQwRLcs4Dxd5kotTVMxYsLmyfr5q/uLJ02jj2s177zx7+FUeTHWB+5PxD/5qdLW+/vZ3bu/sHTMPNSpQxOJXD2duR/0n//Q9mfQ1MONRNwMa82h/mB3uz4QibekGR6UfpIM5fr4bKob8h//w+mx2gEbxpqVI84U0CoRM49D0y2QYxMdTaTYDg0H/zTvG2ig716pabdE95/72P34rPNkpSOIuOXKgTJ6eISxWTJGW2EBsY8lUlZByQbayd99sB94AxhQC0ZUU4NNokQzH+dGAv+p7erNSdbUiKVy7QkkZBGHVFaXOxsAPFad4ex1brnwcyEc703tdTRYi3BQKI5rEM1utCGVjdzd88dJf+ML3fmN5/XIiNKu21HjrvHFPbQIakYkPJ0d23UTFZDz0TgKFA3p5pdqw7KBk3/nuhiKrf/RHX3328EzlHCKQQ1zpLjUay+PXD9/oqHgxnxNCRVFizJclOctzRktLN9I0Y5QUpAQCCoIkTXYtVdhcsREWVduOQi/Lc6wraUrSnHAkCYRXXF1VdY4Eu1obnB0LslxpVpSCT3tnhiorjvny7EwcSKQksqJAUWRY1B0niMe6LNUbrdHgjEZZzICtE6EomhU7ilJNUwxD9tNM15Rqq8Eo7u33qrbSrKg5x/OcNuYe52WlY0hy+68efT1IV6/evrvz4lk2OZUYJwWrt5Fi5198ffSNO+2YMebjR1+N3Mbx1tLV+QI+O5xiFIqykhZoPkow5iIWAhQKIt64dj6MOdA5goWjZ5N55hiVNJoFiznSpNUaDgh6uW/9p59NUwnUa7AUhGHIhsPy4ChaXSHt8QTJzb2TlAZpswv3z6iIZFPJDY59mrRbWn1Jms7w069S9SF/65a/sQyKLFN1mk6EwUky9cqIiFQRz28zWQrllF6/oFoaePU8EixFNN3hgceisNERbdWanIVRJh9O0J8/ln7jbrtTyanBu3cuBH6+88ve1w8KxahuX2S8nDPfDrIjWWxahs/nr6OFJRmugDIkO/5gdP363X/x48ctnW1sdE8+P71xcyON5L/5wc5//vErv6SyiJCoLK9vQYFnR0/uLuurLsI3zl/JsowyBjgsigJCRBDAAoyDAAFZR4gAoGhVmo2/fnpYlq1u07IxwlhGIlI1o1Zr9vZ7btU2bBXxMgoCQZZ1XbVrtfl0wCNmKTYGaDQc29WqGBASgVq9YuiiF4Y5A3lUaJauiKJu27Lvl4TkYcZibz6ZL61shrQMwhyKWNPVOA2URJZlZJoiz1PLAhIC1QCbkTpMUyDTmlt8Z9v47Ojk1Qu6feXm6b4yPTnBMIKq/+EnD/Sa47b1NA9PTo6zLANFuff82VqnmaYYiwmjdKmjXz3XzAh4edg7Sdjpq7T4dPedd+t3bthCBoOT42qlQgoJqpa9UXKm8qTks6Dd6TRWy6NpRnl2Y1XcqOAnmfj5CdkNwDvA5ml6OPZJKr08jefzuO0q1ZqYFch01Bt3Vjj1dp6U/Uhb63C7AbGESNkYDcr+YbzXk8Y+LnhZqws1DXZdqPL09hXjZETO/KxR11S7Eh+fqkVRW1+NfHY69dpLtFTIj08W3/vtO8wYTWdTodCh0oDa9Nu/hZc3uyIoFsMDtcKKs/KrL+ZLa7gmCYMB17eMxrY+TaRHX7Gnr08hl771gcklcvHmdqOz8cO/+OKHf3VANLXQqayamxvnF6HvgOxX3tgI+ntphrAiiLKGGaUcALVaRQiFcQQhhGnhui4pSk3TIEd+KPrF9Ke/PHnjXHvVIrPFWHFUzpkAkW6IMp7X7DrlEuM4LWieZaZtCxiODw6AgQogno6iOlFWLHuEIkWF3eVmtai8eH1y0jtOJb1iGqqWcMYRIbamcUJLKM39hBZFCaDZXB8eH6OxhzjkVGRMDoiSz2lZFn4RMc4ETGqyqDJFrEBVNh4cTPc+/3D51puC4nhH9z/8Kr3/JPl//d9uLkZoNB8PQr4oUjVwJeDoGlpe7wyG86AExVk2PUPVpSyO8fN9IgOwvtTd2hZlMSGBOBqlSTBPyOzS3XVFYb0H3lc/y488oixNqvVMVbnGkQDRwTRPCoQwj2LwdCd4+27zdlv58U97EZGRTDKZMrc1HQ51Bvde7KVRjkvlG2+p165aTh4hnpzNqz/6bGG4QNWlmsJdQ5il6dBDYZ9fOy+b1bzmKDNXachUyoahAhTXRSTBPNe0fLle/Y3zRlSWm0teNBrReRa+fGisN66+0Y0nR7oboiTtbrVLW5HDs5tvCo3VpTCUdp7vKI9o/6Sw3BnM7PFB70pNn09wJkn15c7OSfjRkz63RAkTp7Oy1F3xTvbaMv/OnUssmcdpZDIR7/aPKGWyLEuSqBA1yzJCmYBxCWkZ+1mcWMympMzLJC94EpMXpwPnmiuoWOAsTxNaAs2q5izcPR4ooqZplqabeRznKFREodlopkmm64plKdNJHwrC0tZ2madhElZrre4S5YL2YOegZmpYQLVms0iTOIllxYEyXQQJTfwkSztrW7qIREBifyYKep5ksohc05AkSU2TYO6n80URhrQsaVmCkty7tmH0g0df/Xz54h399ruDp08tlGBo/PkvD/O8NHXxLJagSHd7w2qzSgGFUG53rcRPMVeqrZo8LtLFaaPNN5Zh0E8/fzLxDnmvyO69Z15dRv3Hu0vblr5sXvg166bd4nLrr3/y9Hiyd25bL4tsHkMNkYoEDc2ltHz2Yvrtb6y9+Wb9+au5ADSWJcP9wXQuQisz2kKZkeV1fudd6fXTuVQNZYxOjwaNSiGJlRSLdkNoVHQxjKb9uSVLaY7qmtytQAxkzAoJod0XEQH0/DVxY8sy1UpFc4cHiwsdxtPXMsCzU/HwOOgE4fZm3ZDl9OSwSJXdHt64vpKNeehpqjk5HRV+BmZkmpWN+SzaXBf+7u81nz1fPPpwctwE7zX0P/3jf0uTwjCa9Y0tFbPJzqOttnFne1mFmZckWJKdVhOPJmPOOBYxJRSLGAIgiDIAQMQixgKnLJmM8jyFCDDK4ogvNJphqVGvFf6CUZbmPC3p+auXvGnPH44kBWZprkgyZDSNElIUeRoDRra3V4q0mHu+JMP19c39/YPRZGzbrheky3XXECEtUyphpIqGXun35gVSdUMr8tDRpEX/qOkaqsRVVUwT7vFiPg8qeocQbtvm8d5BXdPrFTfM86JYjMZTRTe+c2fbkcknz74Uty5dvX2nt/Pi//I//GLcZwBxmpMigQTjrULe6c1a7Ya60n56+JJH9IPbWyUbaJp485bdceK6GQ+OeeFJ125XlNkAwJQWtZNHRf+1f/l9RxILRIOK2b59aY3MRjIGhiFvXaqnvr8YF4Nx3p+X4xn49POje99cCtJwcBAv1W1ZzUSNXb4g2zKJfWFzbTWPwv2duHpLzYvIboCKXPnq8/zDJzMsgVvX3CuXHAKIWqdpDuKccwHKsrTerQVhsbahqaazCD1GKwJkR4dnMiirkppPOEklEeBOtQajcOdZiVp4WRP6B+jL+0HuP6tX7ZfPFpMFUpztT784jjB48+3w4uryFwelrMorb62JF/KP/u3pP/+XYy8Ctfb28vL6dN6Peic3OnbTBRqbpx6J5lG7UXerBr516QrnvCzLsiwppVEUabpFKeWUUUpNxyBlSQ2jJKVp2KHm8Gx8cOR1rq9KgpSnoSBBRkvZqFicsDTHokwZFwWMMGBlMZ5M2q0qI8XMn6mi6jiOF4ckdxr1+oNHT0SsyrKuoaJqOCIoEeAUCZqpY1manA6XL51f3Wpl0fxs5gGaOaYjiSgOAtPUkISiIKQQ5VF06crlaDRJkzSOY02WOo1qyrKNponLro75hy+evJ5NOts3J1OnFPskmmZMAhI+XCRnsbsiN/qF9Cd//er5A/+3P6jMmT/4glKcVpry2rLlgLGhuKtbplPLumdIsoqSZmFQzA6ipuYeDVMive5snw0mSauuCaI5m/e3tuPNlu5XkQA9hkCQCs9eZ1pzVGmYEuKyUEAhr4hg/Vx1cDCFArRsNQwjq6p+9CWVMLywLZNIv3DPeBoo+8fp02O4iKY1jcmSvVxRuAg0o/7okx0VlfWuee6SlNHi8EEYZzzJpIdfzper0jz0FkdqpwW65/y4YJMAvRhLH//Z6B9+XzNkVnGRjhS9mr71PWfvOPrl8xfmpoi5PT5KNlfg4SD78KN+qSKusMAvuM5Xrr4nYvN479GqsbhwqRXOJzBh0EBZnKoyblTM1W4D50mq67ooC1g3yrJs1euSrCVJihBihJCSCDpiAIaxZ+iSIlbCWdkbTp/os+vbTU3WSF5wIU+TtMgz27aynAABT/yg1qiqbqWLeb1RYUXKOJ+OPMTFyPMgg1bFvbR97vXOjmlpxlpDEgVNEwingqo0mlVNNFQRz+fDtlmXNUWnVhonpq5WaxXK5fBo4lQqi8HIC8JcldqtJaxqJ4f7jWYDUUghglnOikTiRQ0Xby7pe4v57sOPl7euVS7Zx3sviBcSQP5/LbxJrGfpYd33zd+dh//4pnpV71V3V0/sVndTpGmZtGU5SBxbHmBASOxkl0RAFll443WQZYAAAeIECGJ45QSKEwg2hFgkJYuTRDYlkT1UV3XX/Ob3n+987zdnQW8Pzv7gh4NzOgf+6OPrh8/LqhdnG4d0/OlzdnQwPPmk9DNuEXvxSfkffRNC2fXGpJNDblrfNRr3d6fGi6OLJ12HoqO30tDvPvpwYtF4sSJSLn2oCXZBot9/b/oRSz57vHrE/WrT3D+aZAd9XVbc56dvv+Z5bLsraKSW5ZOmNsu2f3RDiw278/a9Fy8XyivnD/a+WFeXPZigUEDwk0/lO8f4t14bp9P8w2/eZXClQIdYAoSfz3qBqtFBKDSGXnLbFqtzsGvtyR2KEfBj/4P704dP5eMF+Ssf6HunWIJ4Mg8XFV4qeKPKDrvxlB87YXQbJkndV0ULYejfOz2dH+9fL5dd+fybr03fPZx5jLw0A4OubVwUZdxnySgahCCbsrheLhBCDjgpJQTQ80PrHMEYASikIJhoA5Vp9G2LIQmob7X3s0+fY2ru76c+QM7qerdxpgHQ9FIGUTaZ74dJpGUXJrEyyhrD/GD/KHvx5BU0qNyUZV2PxqO33nh9tbzN89F4lGutqrbFyBWrhRAujSh3QVkXaRIRz8NS7XY7B2yaZABubpbLEFMIkJRqV9W+78+PjsqirOseedw69+TJVxQTo3UA4N94c/70ZvuXD3+K9o8PHrwrrl9dbW6NJL1GT66kgtSjgyMDjscnX387PXJPzi+nods9LFYbeDSNpa14tvMR39zW/cUQVjqI+2dhewviWT5xKUQcM+w4X3/jw5MACWsHAC1wMvPlvT15teg4gtvL65OTpN1KqIJ05M5eXjE+pmxXtdXtRbreeIfvsmBHl7pwCf/RDyOcr2AAtIXxQXx6nPFls1no60WHwmfx1CAlLYgADBZL9ec/7/eOqq+9Kd7/FpnkdCB783eZBwYMOuCc7LdvzOjf+a12/v43R8gvr38W3beA9ety4pKDg/sf/uRfPd6Vr6IAhaPOUFONdb4fH935oBnYF4//8t0pef9r8zxiURJqN3ih35ci8BLme4hJ6YDoHTnY26+qKgrDwAusNVrpMA66ocOYaG2ElEobjzitfW2nUkkjBbK4x9NPn2ycMAcpdKLeqS7LAkBxWVZVsbyzN4dWQCXrfuBQWCm1RPEkmp3smcH4XBohF6vWS6do3N9um15jz/OWmzYbcwdt1Usf2ZDDy6sKedPQI5LIq5tVVwycF0DXBwdjQuH4IFpv2ptnT5ADJ3fu2DRtCVdS7832rNEY23yWvzxfxNoE+wnm+LNXZ6vFevzgo6Px7Ob8MSwrn0AKrIMGcvqLr27/x/9V/vZvvfH3/uYHOWmL16Grd7OD9g4/erUG1XozZWOeAsD6naXtpd6tirMXTrSM0eHOgYhA7yS8KIfRxEZR6PssmrAx4sEXZnVbTzK2XqlsGrZlePbFJXDA4yzI09tt9+xm+OIS7nP/3mv7P/rpV2UhUBbe1qofKILk5ab1M++tN08O3lNicb19uTj6iN28ok/+YhslumYm23dS4t2iun8v9oMM5BmI8GJdNno029Nkt8QMv/OdO2ken3/+VCgxioJVS/jIgQE9fTLsXLPBuKyhkzrZo6+/9xvA2vMnz7z25hsns6NJKvuKxKxbr9qmygg8uBNJwrLZPPPJJA0xQfB3/4t/IgeR53kSRUopZ12chkpJzw+NdXXTDEKkoYcRshC3bedRlCVhWezqchXA7r3708McMddCN/CAW0fbVviMEqC0GNqmSUMIjE2yuZcl2EO7q1ufyYT7Z6828Wgyvzv99PMzpUySRErL0TinlC52tQeM7obltru4WY1inyAnu5Y5i4AzFL/xwa+NpuOublercnm7Fb0cul5AkB/eQZA6B4MgkKq3GH/x+Jndlr1WCw0KQTdb8eVyHe3dm0xPt9e3q9vnBra+gw4QRJhSAgF95zD+r/7R5D/+xuuJXRD74pOfjn78SfW3/+50FLAsjBEarpabh0+qPMgYMr2oRqNYCtW3cpBD1YgoSv/ab56G2a5tC4iyl6/IqyflfBJuNw0L7MHB+6W+QZCs170XTH/+ixePnyxrhIoe3L0zHtZN6Kls3/3lI7ZrjcMySylSlij49gk9Tv1pYN9+VzFkkaLblbxY48lxOkoFFXjoumtpvv8ZyiZ3Hz3eId38t//N6ddea7hZJ+NfL4Y7P/jpHz7Yz/azreWH2nvn93/w/H/65x8LZCAM4snx7CCFTm6vVzFQRxOa+3g+mVgtunI3SkOgpRfE82nmMWgZn8zmolhN48BoTZIsQwgGfsAZh33vAKjadjweV3XTdp2xViqFOoAxsQBpbeu6LstKDC3GBNB0rYP37xyx5oXqDaC8rPvRaFQ3zWJTYueYtoN0GCHtHMJ4EINy7vZsMUuzoeuUvIoCnGej1XY7CDkepbLtO1EWmzL2aFO3iKezwyPZF4SgaZ4zZ7XoachGISPQck6tFnt7k92u2TV1WZdxFo8nB0Xdn52fR0lsIOLM70jd1y1xyNf6zcPk9JD87Nni2Xo4Onrjbhq+un40tB12kBrDCBeWPF/Yf/eD7vwXn/yDb5G3H/DRtP+1X+8SOzSX9cJenr51nKfp3Vxd3pbLsj0+SrXFw9DXlUizrKn6x5+2Sbo4OmnU0B+/tn/yoJqPs3bXcyJWu16bxezoXlt1Y1p/77vPlmt6/53ZwT7kSeSM0jugWvzkZTn1h7fe8qHPLy4tdlESEhDWLzb28887ZeFHH4BkFFkP87mLAuPjnvr7r0T2ky9u/58fNto+BphDLR7/D5/+479/9Hc+pMdmfauO/49/2/3Dvz7/7W+QP/7hxZ9/tfn0ZgBZvpeheXxSaXxz/izC8oPjo9NJ2G9f+VEySeKqVAIYgmGa5paGnbTA6VEcIt3nAZb9rukECYKAMRZHEQQw8P1hGKIkwgjFcQIRdg4Y5yhCSZJJrY2xbV1yDIGLeODVbXe5Lm6r9jSNwphUjVmvr/0gPbp7IqwzSp6Mx35g+67Z7Vq7KyADKJ3iDl6XJWf+ttjWj19YwqM0Levi6uJVwPhQt9o4nKXL5RomJhpPTu7f295cG+Aw477vtUOzWa7Sqe26AWiptSMEzvb3ozTeLZdK2CAZGaU3m62xDmqrgU3i8PXZfFU0m6IZBel33ks+u1i+Ov8zHh28dvLRor5dX51rNXhOM4KN1X/28fDW38fxflkpQHL/yY/olbd676+OYJyBwztnj69/9ni52kCD6enbxzjQYldCKJ2VxIf79/iuaO/qQwrL4rIMxvHi6ULWtR+64xFr60tRTadxMPDdt7+59/hZX5qz1+N9FpNltZ6+wZvOBvPR21Yl0/zxi74tPEL9ybw9nE2pyc8fP9o/FqfH7Bd/0bPx8fyeUGWt6vm6r+fvv5bvMvUnD6HfAthBytcl+9//5Wr9lPytv1n++Msf/vyr4tnjTzL+1p8/r/74L8vo7un+aWy688vzM26be6m7tz+dZ7yriqJuGA+sbJFTe7Mxo5hQvG1rDAwLcOx7WglCHYi8+d6MFLsdQWhxfQOs5YwjBC1wSioHgDIWYSylckZtvE0vlXOOE8Qx7PqSB1wqY0Xz459/GX3nndzzCRdJNnYQUUbv3T99+PnnrbFaSkpZHGMtB865l408b9oVO5/2d9GdoVVGttuyODyajcfp+bPzLM2TKNgsbz1GLYKqbzkMkzw2yj19eZEGobN6kBoTWuw2HvGsM5DxXSMY90bjUd0MTXsDMaUE50m4W63HkzQP/ZT4Tsq2hXXd+yn88Ijd8cIvXt5cfFGkJ0dvvv3O7eV5u11zqyh0ygeTw7tedv+nf74u5ZUXRrM8m2apgANs3PblbhbENxdVdhDzIHx++eL8rA48P4SmMwJzXyqHorhbr599vitqlWI3S6NkOkgVXb0qy7NffuOje5zVdw8oYq7oj7fdzeYZu7wZ5nMwO/RHRxPl0j/87pM/+fGyV4FDIknte2/OfuPb49e/ftKVj1cr/eV59Qf/8uFrb5EPPlJv3R8fvnPvq3X0/T/9mPEGIWgVhdaDxFhkfvKlFSH/7k8e8QBANPu9H+F8fm923G6aYnm+GIf1gzszX8gksPspIci8LAocxH7kjWfpSXJklJRDTymOczcKvXp105algi6ZpUEakTglR3v7nueJYfA9n2ICIcSUYIyGQRrrpFJN24UBN8Yo6xDGBDrdtw5OIKbE4bYumm79xz+//vW3pwehY360WK4QJdTncZI+Ozub74XUWdNqYgxySoLl9Xl5tDdTqkkSb5xOsAmDECkEx+MDhnixKCgCR/uzF5eLom2ZMwFBKI0g9q8ul82gA8bbRl2+uuAEAKykdJUEzWD3Dg9JHNfNFca4HwbE0Gg+mQSHzxbnF+dnAwvzLLcBe3lbiK5OCeOYqDGecfzy+tUCepM7J0l+sLk5G/oSIPFH379NDf83/9/63hveN0/NotzSV2I2I+V2KYYiHrlff59BNFy9fHRdyB3If/nSJiO2uR2KJeW0YNnthKDlLutsA7lMMEoPTdN4WY8WZ/XZxdnxfm5oQXjw7FPv46f+5bLOc/abdwLgRUly5/e+9/L3f3Dbq8ARBYGqtmz9491t+/lf+yt7R8Po0fP15LWDD50eZeM3PzrlvP/Xf3D9f/27h2c7QTFzRkOAANQAD5CDpQLff3iWzU7T0APB9Km40R8vGJUebgObH3h4wqumF2mUMWiGerc/Sf1RmOchi7h2quubLIkZIWzoGZCRRzyfkzj1Ut860O468vL62hoDHaCUUkKssVEUAeCEkISQfhiEEJhA7nsIYaM1wRg6CwEIPM9ACBnBLrnZdt//6fMPXs/uZJHuFqvzSy+Mpwfz8SxV28IWFTLWEK15oHrXqa5oypz7TQVuFteMIKi1qErrmyhM3AF6/MWTANE4yKCu1tcXmzwkSdyhIdubDLdbphWOuXPSqr4b8K6Ui0r4+Ww8yjwflk3T1EMUJkD1xfJsvH8Q+fG12Eqjmd1ZoEcMRslcCrU1bUDcLA8PRsmy6B+//ByEyfzobj2ofrX+7GJd/cGj//RvfbQ34/Ww1Z45ky2ECePzT68e7zb6vQPy1j2zseblznt8Tn/8yRXxCNTw6J5Ns+jffryJLZQ7+a2v4708i1hPMHO4PL3Pc5pFUS20/LPH6t/87PzhF5MWtg/ukf/yd147PSDcy796cfPHP/pSAEQ8rZ0GDgOCBuL+4ov1i/N+wjxm6+/8ZvzBB4ceTj/+tPnDH3z26NlGYeZ7FCktLTDEAoyonwdx6idTP0C6bcvtyq5vktA+OAjzfFaUuz6ys/ksjDiSlwhh5Ug0CsIwiuIon4/CIGircnDtUHcKQWQHMg0PTt4IojGyeHX9EiMne0XeffCWkrJtWmdMFEV910WjvG4bgDsIwF6eDcMgh8Hn/6HfMFprpRCGEDshBMKoG4TWdtepZ5fV4STzE7/eLhwAfRP6mU+Yt+gX4yyCCGdZKjVkwUw0fcBZwMnt5qoA0dE4a4v+y0dP872D0dF0ujdfnF+1223K+enhQbPbkaFneeoBa4HaG+cDVL3GBwevGYuTSoiXV8oaZGS7qxOPEgeMVr7nbbb1drtmyE/jJMtHauiskWVdlVXBPD9MwzGEQulRSGfHMx+jp5fb7fPGj0eTowMxRK/Wl//6B18QLZw2nIWzefhr78G3X9NvffDey+ePXnvbvfWAf3mmTllks2B2P7+4aZ+9WPE48KKoGer5YfbeRxlsv+pNN49c23Z2SK3V4xMxVFYjGh282bIvKq/Azv7d337v3XcYNvoXn2/+xf/5uOkQZ9Bogx0yxlmoIdII2KquGjtwx//f37/97p8sHLGDsM6gOMTEit7CmniEe6Efp1nGODVKtdvrzXWdRWQeQy90d2bj1HddX+Qxv3MYxWlW7IoQg9T38nyknXVOAadd37V9W+w2CABjHPO80XQS5R6PAgus7gczdJjB2Gfkq0ePGWUIQoJQW1a+7zdNvdlujdZRFAEAjDEIIgQxAMBqSzEN/dBBBxAgpEcIWgeGodeMrapqwN79r72NxKGRdret1zd1EMcnH7wvuwbL3ikXeSaM+FW5kZ0QtcqT8NVt/6orqBJVuZNadsPm+PU3RpG3Ob+MCcUQ9IOOCACi8wmezBOfuITTZ9dqWQricNv2oyQ6u765efnM48A6QizEEIxHo6bddl07yAaIrl3rURo7TGUUNnVTlDttEURsPM7TKEDURw5hY3tpi6p4cbFEUR7tn5aDbpu161ttzFfrzacvVq8dXL1xJ56kAZ14r0rwhz+6zWbhII1HvPuneTWIzz45xygCdvgqu/no/aP37ubdaus4DO+O25LmqQ/Tqlj5IMk/+7I8O1eOGTPAX3z64j/5zocvLxb/4v/+6uF1hIgCQDoArLMOQOcsEh7FwGHhgFEISUyLVmACAfItYspijxEeJ3GcYAdV19XbpRaNj+zJKJrcm2dJYESDnQo4aWUrtRiN09hnzeYGSzkK2F4Wx0mw3m3iLHVAuXbHKOF2CMMwzbPpbMqDQEOlle7rXbHYINVYBRn3CeS0kcLjnAZc9gNGYLdaAQCUUtvtdrlcGmMMhJRRKSSC0BoDIaIIMkaN0RACY42z1liohPz3H3+W/e0P74wPPADHU7taLS7XK+B5eZKJjW7b1hlLAtY10hiYRGEYxncPZMRds7zd/+hta5y0nVNdloUJPX7x5RMrZJ5lxGkotOxdh6Ag0FfI9+Ozy4WH8DjPCXIBg7dX5++9+3oQpHXT1V07HacE37293SDiJX7btoMRLYAIITwej/qu35U1Ai6J/b2DSS9MObR5xsJBTCJ+1/jPb3dXFyVO98eHd63RVXndtWWp6S+f9g+/2Hzjg0PNvO9998vbKx5mF4NremkBIoOWDkEFBoThpnHf+9Pz2yL5xhsPyiv9UhSzGH3rmG5unTReU21W674rMPMCCcTLl/rf/0B9749ePLnU0jNEKegAhBAABwAAEELHjFYWGkAAxM5yylhEceAHCfUTBaAGQIpyuHlBrPWgO4p4PPJk18xH/jjxnJUYgTCMgLNIEIY9AqjpdR6kJIRpAAOfiLYMKJwkoZAyIcaofp5HfhT5Ib++eOnFWZiG1qjdul5e3xzOk3bomB/Bf/ZP/6mS0vM8grE15lchZa31fd/zPIyxEKLWCiKste67DjgHIaQOMEIgBAA4z+d1XVdVDYDjpJ/E9ttff+N4EvnIYKd++fnDdJQfH+yHDF8+f+Jky+NYDCpjvucRHDJgJIaiWtwMpQy80FjRAOwcnOSjYrV59tVTRmiIzSRJlCMXVUkCLyXcYW/TSwYcchYAO9/bQxQyCpFDYlDL1Sobj5jnXZ/f8CiyiJZ1iyF5/vJVaZDvceSA1GZXtkk+ZiEtO1ENBmOmhg4oMeas6vRFJc9KeVVKy/wsmSKEOynaRqiu8EgNIa5qSlBgrDGggUg7S60GFioHAXCQoAgiDmgx8v3Uy7RevHs/+u//2Tt6+RxYsFHon/+r+ke/bADBSmMCNEfQAaoJbEGHFIQAOQe1dVpbABFGmnDIfeZ7mU/yyPMU5521qKtguyGqiZgJIk8ZfTCdpr6HTd9V6zzPgnzqU7ZbrRmlkCApRUwwpSRNEgzhMAxxFE5S4owqinIymQDnpJB5CIKATaazJMufPnt+fn45vXPn+OSoa5rzV0vsyGQaEoY8PyJIaqytrFrhbBSEyBqHYC8GrTWEkDFWluW6KCGCPvcQwnVVaaUYY5TRMAit1d3QKyWNVQ44K73Hz1aLq5/91Q+OT4/izEORF/SbegNIH3ka0zCKHedpnBBnlRPIR01pfI+E+4eL6uJyUSRJMLSlVqbvhvFofHh6ullvq3IJlEEsUdivFBadQ6DuTDee7zFCBtHvynUvB2Nt7AVJGPmcF+tdEAROCENxNAkQT+u6Tycjue27snZWK6mdAbptZ+MDLV1nBmCB6cUkDiEHMYPHSJzsTdcdeHVbX22ua2NREsXjMZrNtahk1weoNHbnBLXCB7Z3UDmEEWDWAgCcBQNyDhvSdE3dawCs/qL+s5+Jv/7hbLlc/PAH+tEXBDJPA4SAEEBZn1kDbK+wshoAgB2lNPB8zwuCIEQ8BAQ6Z03vZD9s23NMBg+7CINxRvMgTEIund1UTURMHjEjNEfp3nwMiNN9HSDttA54RNMwpTYdZZhxpQ1o9OlbpyGz69sFF0IppfqBQMQ8P4gCpdVqsbBK3T06yucTK3sMHIZoOtuf7WVhlght4X/3u7/LKQu5H4YBAMBYK4FzzmmtEUQQAKMNIgQhrLVWUkkpfN8PAo8SrLWJorDruqapIQad6LWw2Dpie6fKWYa+dpJmHhyKXRwEJMTCtnmeiWFAg8oowxSCiF1elQSqNPS7WhZVw3yEdQ8gMgBn6ahv6r6prDa317dtI6aHR2EajdNYS3W1WBlnjw+mHkJVM1iA690GGeEzGiaZI/66aHa7Wg/9fG9ycPfwdrtSzp2dLa8ubzweWYfqbjDWHu/P79y7//ziumyGqqogAIABazSD2BosAKuElUoti/Jy21SKaugz5nPPox4GDAhNxIDkMGhVOtlYA622wBkHNHSQQoipRQhhjInDeyP0X//nX5OO/c//248bHQmkrYPaGIcRYhRj5lPfwwwGPuWMQGCVslIoOThlnNEQCJ/AaRZkCQ4YZNDVm01A8HicQ8yE6MPQi6OUUb5drXyGo8jrVUsIdYOMiEc91llFOc4RA1olh5N4kmHrbGfX60XXFB6nHLM4SrMcxUkkBrNYrBnDeZYQQgetzi4uKeRJnNIksBhz5hMDQdt3CEBllJCq6VoeBELIpqkxRFEQYowxpoQQIYRzbhiGYRB1BSBwzjnP9+WvdCUgBgQgpY1HcCfwsOz2Z54fsHgUMotlJyCBaZqbxNSLlTPACNN0RXG7KVdneUgpCQ7vPyCJD50kmGEeYohNlj367NPj46PTNx6UZd02bRwHQUitC1EYnp1dWG2D2H/x6sZPphb7XS9a0ffY7529XRXMGTP0u8XtJPH2E448Ok3i471pPzhAfGVsWZWi69br5TRPlFImDDAhzMda6vVqV1UN8cJuEEgPIwx4HpTCVl3te7YZqnJnFMCOcu77CfNJPAN0CiG0xmhlnLHWGG2UtQ4hACGwwN1I+7/83pfZZKazOYU0JCEmhBAAIIQQW2u10kop1e6GUmBrCDA+QYnvjXOSBEHXGqNEFptJnirrhJBpksxHCYGorOqQ0YhTaLVRzmOQIeNhOJkdU04jypbPX2rVM46Luk7CNGAsjQKOXLfeLK/XCONJms335ruyIJxE47xu2rZVxE8QwdtWY13vik0U+Hdmc4ZxqXphIdCKYIgtsEEQckrjCEZRAglSUqVhRDHxg6DvOoQwACj0A8ZY13WEEMaIFIPn+RhjAJyU0lgjVA8BVEo5q7H1lbRPr6psNDu+u096hbUTQ+d6hSNuOC7Lpllt+n6ImeeHKISd0SYL2VopgklVNklCAUBREE337+4WV+HB3v44/XK7LEtJ2cgRQCieRqkt6qJpm6qslMuyPBzPEIK1kEUn/CwbMejDsawK0VY+DWNOEAE0D4tarnYlhHh/nBXcr5umF4JiYLVomtqT5OTeCYYkjqSFmDYNtswYw3sJbHt4kOZ5Wta9gbRsu6YXUgnZbuoKlg4jhCEiEBFCGSaUeB7GCCGAEHLOQuAGYy7XDpIMW6eFFl0HbYugQ84i5xilAWOUNONxxAkhyDk5IGgTT8h+l0ZREM09P0CY7IrCQzYdZwGnSkgELLBadm0QI05QMgrTyKMYNUPnDPTyURKQg6Mj4DMxaGhM2zdNuenXyhZVzHScTDFPLs5u/IQdn+4RRgEigQ8eP/7K80IL4NFsdPf02Dlr267b7bqhjqcT3ydkvdlQiK22vudRxoSSAGGrDcFYSeN5gbNAKMk5hxAJITjnhFBnNcJEaS2VCoLAWIcxjRkFwLV9ayxm0HWW3KyHn/zimlH2YH/kuhJjvb5ehQc5ojjIU113BFKoxenJcYSkUEjLARHKGbfarpYLgohJJICoKqtPrs+PT+53XRVESd00jeireoCtc7stJy70eCkaotlmu/rWb3x7MG4w6Hq52m12jVazdNyJzhZiEM442Q/GAhpxAimVZhCijwLed611cpqHgwowtdDp8SgDrqSc56m/KSpprMFi3w+Qc7otYo4NMj4FdJ46gLQx2uKqlnXbOWiEUn1fdJ0ymFBKnHPOOfSr8wrIiDWhRzgGEErqIeIFBDriHLSGUhuE1KGUEcwJIQhS5Pse7+qtACqKgiTPeZBcXi9E16QBAQZ2dQsdSHzm+zzPUj8MIbBp4gcMEACFwYv1YnVzDkUvhoYRHw7qarOABEIppzyYjUYo1G1v6qKoijLK511focaJtqt2u5HnRuOobuVgQYs9At26WHFI4slcKe3KDv7O7/xnyDqfcYoxItRBoLWWQvqBzwhllBqljTWYEACA1hoAhzGBEGCMAYTWWimENibwPUrwIDplFIBQa9s1lkJuzJWPt9/58I2378S+bZavboNpNB7HuJfEIm1BW22H8ir1CKNJqYA3TnkYhYFfbrZPnzxJ4gxgOol9LXse8F1ZRkkahkmURctV8eLJRYogd7o3Vho5SfxmkNlkirzQADQYIBzZLpfE2u1iQQDIstiZzjikFAjiJB9lAMNXN0Xf1rHPhkEYTLPJPuR4t6u73jbtgIBDwAjMW2F3RRV6fsBoV2yLvuyUQAAGfmgA0MA5qYBQVdMBCBHECBNtXScNoSRJIkoJwtAYW3U9sir1mVE9gsBY1yjCMOTIWimVgxbgaDrzwwA5oKRIowhjpNWACQ6DSGnXD7LtZOaZxAP9oLjneYwRAAKfex4XSgkxjPM4DTgCbhCyk4MRkjvoJSGNgxARHHkQAFPUm5vbbujSaRxF+XbbGecOj/cQsXYQqmuIE5PxOJvsv7pY3Arz+ge/pkXf3K5kXRsKMYT1ZksAwZSQumowQgBCzCglXBgjm8YaiyFilJpfYQHBxhgEIcIYIoQwHoYBOAcRAgBYBKlGXddYZzj1jIYYOWV2gLBdF//Rn15+lds3j4LM9mVbRHYfdn1R99F8fvf1By9fuBfXNx7WXVMfYue0gAOrljcne2NCvbLpMQ/8JPUDMjvYHwax3ZZStEGYnrzz4PnDhweRh6tuHIQUAZ97u12NfScMoBTrvssoZtTz0ezy/Or6ZgUoBgABBwddMkYIQ0nAkELzPAr8SdHJqq+1wW3bFOXAedhWhVOdn4+og9h0sulff+N1G9OrNS26HhlnjTXO+h6vNegxgh6C0HqcG6WxgwAqTLDPCSXEOgut9ZDjlFIIKfWVgUIpTLCz0hnjELaO0CAFRiHdY4Q4J1YNyCIv8Hw/sFJhIzIKJiOfYwmcAJwSQjAEeRJJ0XVNX7d9EidWOdFpjp1sSg0cIywO485Zqe3xvRkJfaztoJGdOs9H49H0+PDg0cNPnVY+JU3dFpVimEwSrqy5uL7sNXrwxr2QOwUxCtnNqneOptNsOklJ1fQYIiEVwQQgiC0k2P5q7KyUIQQqBwBEzllkASbcWgsdBMYBqxzCQgyEEAdAW9UYAs7pIFQrOoK5MQog5ZwzONh1cvtyFeXZyd0Ranee7hF3vUGb1e3hyf6Dj74+PlzuLi7ywMwSD3rIQUcJ3pskVtuQJ6umfvp8OZ6M0ywriwICCNSgNtXk+P5ob1qsl0LrfkAjHvMo0FWh6zVDjCPf2g4CJqUJs/hB+OD26gbGqTPKZ7Su6m3ZYMabtqdgIEBZAUPKrYOa8I4NpWySxCcR4yyknHXdEE1iqfTy5jwOozSJAES79QoByBlnhPuT2CAshyHwPK210EoOQnQtwRAgMBjrlIZaJBQ7B4wBCFHOGWMAUgtR4nFGofEYx16oVYsAQBDFcWSNJggixifjsdFysVy3VW2bLcBQAUsD//hoHnlBWRQKoraqq6o7nE59J6HsNUHcQ7M0pzwJ0gni1AAhnW0boeq236ySJAiyJAjTL7/8arXZhGFcNl0AQZ4GxtrBurqWZdfm0xlwWrRtL1RVbecHeZCPLEZaDOT5qzOEsAMQQGQdAABwCoEDzgHrAHC/AgQLoAMAAYDcr6zYOWcAANba/4AQCAJnCCYAACElAI4zhqCDyECDkAbY6S8vl9++Px+lIbFtPE15FtF1O4gaCjaaZKC85D6PIgZ9aolPGK/Wy3a7RSwazY9uV6umEW2/U0oBo6HugyzerTfWmP07d1bbpq07BVnf9lB2OdGUUQX1gFA/DCQZbepyEmfjcV5ZhzFqyjWl3raVm1XNEHrtOAfOlLuikZCnkRemEWeHs2w0igEeG4irYscCzwDQ9rJq+noYhNJGq739cRIngzCXtyugBs+nkyjglDadVlJNR3E4SzBBlTQK+dQYW22cFgbiXhpCKYEAQesQcDww1o5iL/WQQ66WZOhl1zRx4I/SeBCtVMLJHgILMM6nc9IXzW6HCd8/3CfIEWe1sV7gQxMn6QQowblJs5CEkdCSAbRYrapFcf/+XYZFp13Vatk0IQYOaN/a3e11s9sc7B1KQPuuxWbIx2ndSW3Ypm4dotO9iRDy7Hq9Leu9cThYqfvWD5PVqvj/AeAVjU8D16eyAAAAAElFTkSuQmCC\n" }, "metadata": {}, "execution_count": 7 } ] }, { "cell_type": "code", "source": [ "(food_item_names(img))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "Im5t5qtVSzxr", "outputId": "7298157c-8f93-4259-8a56-9a3ae7467ffe" }, "execution_count": 8, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [] }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Chicken Biriyani tensor(40) tensor([4.1885e-05, 7.0188e-05, 7.7076e-06, 3.9197e-05, 9.8625e-08, 3.3583e-06,\n", " 1.5797e-06, 1.6496e-05, 4.5342e-06, 7.1055e-07, 4.3120e-06, 1.6645e-06,\n", " 1.7846e-06, 2.2229e-04, 9.7932e-06, 4.6404e-05, 1.5970e-05, 2.4046e-06,\n", " 9.8921e-07, 5.0169e-06, 3.0510e-06, 2.0119e-06, 5.2408e-05, 4.0896e-02,\n", " 6.7006e-06, 6.0860e-06, 3.7381e-06, 1.3090e-05, 1.4943e-05, 2.9606e-06,\n", " 5.3581e-05, 5.9757e-07, 1.1655e-05, 5.5662e-07, 4.1828e-06, 1.5792e-05,\n", " 3.9094e-05, 1.8446e-07, 6.9659e-06, 4.3161e-05, 2.7412e-01, 1.0392e-01,\n", " 4.0997e-05, 1.7875e-06, 8.0720e-02, 1.3019e-06, 3.9996e-05, 5.1573e-05,\n", " 8.1181e-07, 1.5523e-05, 6.9722e-05, 2.3505e-07, 5.8503e-05, 1.5983e-05,\n", " 3.0450e-06, 3.2559e-06, 3.8178e-03, 2.9023e-05, 8.1928e-06, 6.0572e-05,\n", " 7.2485e-05, 1.5593e-05, 4.3378e-06, 3.3973e-06, 7.0165e-06, 5.7478e-06,\n", " 1.3689e-05, 6.3174e-07, 6.9213e-06, 1.2450e-05, 2.1368e-07, 2.7332e-05,\n", " 3.9442e-06, 7.4708e-07, 8.5466e-05, 4.9215e-06, 3.1051e-05, 2.6476e-05,\n", " 3.6763e-06, 8.0514e-04, 3.3591e-06, 1.5696e-03, 1.4232e-06, 6.6984e-07,\n", " 2.4074e-06, 1.2988e-05, 7.4286e-07, 4.4507e-06, 4.2827e-07, 1.8679e-06,\n", " 1.5863e-05, 6.0925e-06, 3.2322e-04, 8.4201e-06, 1.0259e-06, 2.6617e-07,\n", " 3.6201e-06, 2.7797e-05, 3.0194e-06, 8.5740e-06, 1.0681e-05, 8.1521e-06,\n", " 3.6441e-05, 3.2017e-06, 6.5015e-05, 5.0744e-06, 3.0619e-06, 1.5424e-07,\n", " 2.1373e-06, 6.8256e-07, 4.3048e-07, 8.5803e-06, 6.8154e-06, 1.8538e-06,\n", " 1.0154e-06, 9.4147e-07, 1.1835e-06, 5.7107e-06, 2.3953e-06, 4.8497e-07,\n", " 7.8759e-06, 5.6531e-06, 3.2804e-06, 7.1470e-07, 4.2331e-06, 3.5828e-06,\n", " 9.5407e-07, 3.2404e-06, 8.5845e-07, 4.3655e-07, 1.6596e-06, 2.7315e-01,\n", " 4.6331e-06, 3.5130e-06, 4.7896e-06, 9.0566e-07, 6.6924e-07, 3.3898e-06,\n", " 3.0542e-06, 8.8811e-05, 1.9998e-06, 9.8647e-06, 1.2020e-06, 4.6380e-06,\n", " 3.0145e-07, 1.4949e-05, 1.7884e-06, 8.7763e-07, 7.2360e-07, 4.1487e-06,\n", " 4.4788e-07, 2.2452e-06, 4.3534e-06, 8.3085e-06, 3.9496e-06, 4.9040e-06,\n", " 3.1434e-04, 3.8076e-06, 1.0497e-05, 7.4962e-06, 4.7196e-05, 3.7631e-05,\n", " 3.8848e-05, 7.3565e-07, 1.4283e-06, 2.6667e-04, 4.4754e-06, 9.2067e-05,\n", " 3.4667e-06, 5.7273e-06, 2.7538e-05, 7.5419e-07, 9.6612e-06, 7.6191e-07,\n", " 2.9704e-06, 1.1311e-04, 7.0196e-07, 4.4461e-06, 2.0663e-06, 5.5833e-07,\n", " 1.1546e-03, 1.0318e-05, 3.4046e-06, 1.0295e-06, 4.2623e-06, 2.3243e-06,\n", " 5.0159e-05, 1.5453e-05, 3.7946e-06, 8.3985e-07, 4.7884e-05, 4.9272e-05,\n", " 6.0175e-03, 4.9735e-06, 2.5407e-06, 2.2658e-06, 4.6090e-03, 4.4774e-06,\n", " 9.6703e-05, 5.0975e-07, 2.3352e-05, 3.1915e-04, 2.9783e-05, 1.4302e-05,\n", " 5.6529e-06, 1.1870e-05, 1.8730e-06, 1.9897e-06, 7.9109e-06, 1.3616e-05,\n", " 4.6980e-05, 5.5654e-06, 4.0660e-07, 1.9918e-01, 2.6288e-05, 2.0881e-05,\n", " 9.1781e-07, 7.0298e-06, 1.2238e-06, 1.5688e-05, 6.0739e-06, 5.9012e-07,\n", " 6.7340e-07, 3.2046e-06, 5.2613e-08, 1.0708e-06, 2.9957e-03, 3.7141e-06,\n", " 1.1482e-06, 5.7471e-06, 3.0294e-04, 2.8388e-06, 1.7664e-06, 6.4145e-07,\n", " 8.9533e-07, 3.0256e-05, 5.6394e-06, 3.8022e-06, 3.9107e-05, 2.1921e-07,\n", " 2.0737e-06, 3.4422e-06, 4.3199e-05, 4.0451e-07, 4.3973e-07, 4.4816e-06,\n", " 1.2771e-05, 6.1618e-07, 1.2822e-05, 4.9549e-07, 3.4140e-07, 2.1856e-07,\n", " 3.2931e-07, 1.0468e-05, 2.6668e-06, 1.6541e-05, 1.6238e-06, 1.9920e-05,\n", " 3.7240e-06, 1.4234e-06, 1.0762e-06, 6.2945e-07, 9.3324e-07, 9.5646e-07,\n", " 1.0605e-06, 1.0681e-07, 1.1029e-05, 6.2469e-07, 2.6232e-07, 4.1444e-06,\n", " 9.9446e-07, 2.4325e-06, 4.6827e-06, 9.8957e-06, 1.8913e-06, 9.3634e-07,\n", " 9.0780e-07, 7.0691e-06, 5.5333e-06, 3.0602e-06, 5.8224e-06, 5.1269e-05,\n", " 1.3078e-06, 2.2007e-03, 7.0734e-06, 1.0311e-05, 1.8793e-07, 9.3279e-06,\n", " 3.8494e-07])\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "{'Aloo Baingan': 4.188527600490488e-05,\n", " 'Aloo Gobi': 7.018813630566001e-05,\n", " 'Aloo Matar': 7.707640179432929e-06,\n", " 'Aloo Paratha': 3.919660593965091e-05,\n", " 'Aloo Tikki': 9.862480965239229e-08,\n", " 'Apple pie': 3.3582839478185633e-06,\n", " 'Arayes': 1.5797179457877064e-06,\n", " 'Arayes Kafta': 1.649572186579462e-05,\n", " 'Baba Ghanoush': 4.5341826080402825e-06,\n", " 'Baby back ribs': 7.105484201019863e-07,\n", " 'Baghlava': 4.312014880269999e-06,\n", " 'Baklava': 1.6645334426357294e-06,\n", " 'Balah El Sham': 1.784624259926204e-06,\n", " 'Balaleet': 0.00022228507441468537,\n", " 'Bamia': 9.79317155724857e-06,\n", " 'Bamieh': 4.6403736632782966e-05,\n", " 'Basbousa': 1.5970052118063904e-05,\n", " 'Batata Harra': 2.4046348698902875e-06,\n", " 'Beef carpaccio': 9.892054322335753e-07,\n", " 'Beef tartare': 5.016868271923158e-06,\n", " 'Beignets': 3.0509681891999207e-06,\n", " 'Bhindi Masala': 2.011920059885597e-06,\n", " 'Bibimbap': 5.2407598559511825e-05,\n", " 'Biryani': 0.04089563712477684,\n", " 'Bread pudding': 6.700627636746503e-06,\n", " 'Breakfast burrito food': 6.086044322728412e-06,\n", " 'Bruschetta': 3.7381100810307544e-06,\n", " 'Butter Chicken': 1.3090472748444881e-05,\n", " 'Butter Naan': 1.4942533198336605e-05,\n", " 'Caesar salad': 2.9605705549329286e-06,\n", " 'Cannoli': 5.3580668463837355e-05,\n", " 'Caprese salad': 5.975662134005688e-07,\n", " 'Carrot cake': 1.1655182788672391e-05,\n", " 'Ceviche': 5.566186018768349e-07,\n", " 'Chana Masala food': 4.18282934333547e-06,\n", " 'Cheeseburger': 1.579150921315886e-05,\n", " 'Cheesecake': 3.909360384568572e-05,\n", " 'Chicken 555': 1.8446162641794217e-07,\n", " 'Chicken 65': 6.965889042476192e-06,\n", " 'Chicken 65 Biryani': 4.3160904169781134e-05,\n", " 'Chicken Biriyani': 0.2741245925426483,\n", " 'Chicken Biryani': 0.10391724109649658,\n", " 'Chicken Chettinad': 4.0996517782332376e-05,\n", " 'Chicken Chilli': 1.7874942841444863e-06,\n", " 'Chicken Dum Biryani food': 0.08072016388177872,\n", " 'Chicken Frankie': 1.301872998737963e-06,\n", " 'Chicken Fried Rice': 3.9996073610382155e-05,\n", " 'Chicken Handi': 5.157285704626702e-05,\n", " 'Chicken Kebab': 8.118131518131122e-07,\n", " 'Chicken Korma': 1.552337926113978e-05,\n", " 'Chicken Liver Fry': 6.972219853196293e-05,\n", " 'Chicken Lollipop': 2.3504831858645048e-07,\n", " 'Chicken Manchurian': 5.8503275795374066e-05,\n", " 'Chicken Masala': 1.598253038537223e-05,\n", " 'Chicken Noodles': 3.0450382837443613e-06,\n", " 'Chicken Popcorn': 3.2558916700509144e-06,\n", " 'Chicken Pulao': 0.003817793680354953,\n", " 'Chicken Shawarma': 2.9022574381087907e-05,\n", " 'Chicken Tandoori': 8.192839231924154e-06,\n", " 'Chicken Tikka Masala': 6.057246355339885e-05,\n", " 'Chicken curry': 7.248495967360213e-05,\n", " 'Chicken quesadilla': 1.5592951967846602e-05,\n", " 'Chicken wings': 4.337780865171226e-06,\n", " 'Chocolate cake': 3.39733878718107e-06,\n", " 'Chocolate mousse': 7.016514246060979e-06,\n", " 'Chole Bhature': 5.747815521317534e-06,\n", " 'Churros': 1.3689186744159088e-05,\n", " 'Clam chowder': 6.317440579550748e-07,\n", " 'Club sandwich': 6.9213365350151435e-06,\n", " 'Crab cakes': 1.2450293979782145e-05,\n", " 'Creme brulee': 2.1368475700001e-07,\n", " 'Croque madame': 2.7331845558364876e-05,\n", " 'Cupcakes': 3.944185664295219e-06,\n", " 'Dajaj Mashwi': 7.470782179552771e-07,\n", " 'Dal Makhani': 8.54660029290244e-05,\n", " 'Deviled eggs': 4.9215132094104774e-06,\n", " 'Donuts': 3.105106588918716e-05,\n", " 'Dosa': 2.6475729100639e-05,\n", " 'Dumplings': 3.676339701996767e-06,\n", " 'Egg Biryani food item': 0.0008051434415392578,\n", " 'Egg Curry': 3.3591038572922116e-06,\n", " 'Egg Fried Rice': 0.0015696408227086067,\n", " 'Egg Masala': 1.423150820301089e-06,\n", " 'Eggs benedict': 6.698419952044787e-07,\n", " 'Escargots': 2.4073906388366595e-06,\n", " 'Falafel': 1.2987796253582928e-05,\n", " 'Fasolia food item': 7.428623121086275e-07,\n", " 'Fatayer': 4.450742835615529e-06,\n", " 'Fatteh': 4.2826894741665456e-07,\n", " 'Fattoush': 1.8678567812457914e-06,\n", " 'Fesenjan': 1.586272264830768e-05,\n", " 'Filet mignon': 6.092536750657018e-06,\n", " 'Fish Biryani': 0.0003232246090192348,\n", " 'Fish Curry': 8.420121957897209e-06,\n", " 'Fish Fry': 1.025945152832719e-06,\n", " 'Fish Masala': 2.661709572748805e-07,\n", " 'Fish and chips': 3.620074949139962e-06,\n", " 'Foie gras': 2.7796966605819762e-05,\n", " 'Foul Medames': 3.0193857583071804e-06,\n", " 'Foul Mudammas': 8.574025741836522e-06,\n", " 'French fries': 1.0681442290660925e-05,\n", " 'French onion soup': 8.15207022242248e-06,\n", " 'French toast': 3.644056778284721e-05,\n", " 'Fried calamari': 3.2017383091442753e-06,\n", " 'Fried rice': 6.501519965240732e-05,\n", " 'Frozen yogurt': 5.074403361504665e-06,\n", " 'Ful Medames': 3.0619105473306263e-06,\n", " 'Gajar Ka Halwa': 1.5423829324845428e-07,\n", " 'Garlic bread': 2.1372520677687135e-06,\n", " 'Gazpacho': 6.825605396443279e-07,\n", " 'Ghorayebah': 4.3048262909906043e-07,\n", " 'Gnocchi': 8.580275789427105e-06,\n", " 'Gobi Manchurian': 6.815409051341703e-06,\n", " 'Greek salad': 1.8538423773861723e-06,\n", " 'Grilled cheese sandwich': 1.0154160463571316e-06,\n", " 'Grilled salmon': 9.414682722308498e-07,\n", " 'Guacamole': 1.1834531505883206e-06,\n", " 'Gulab Jamun': 5.710677669412689e-06,\n", " 'Gyoza': 2.395282763245632e-06,\n", " 'Halva': 4.849703145737294e-07,\n", " 'Hamburger': 7.875918527133763e-06,\n", " 'Haneeth': 5.65312075195834e-06,\n", " 'Harees': 3.2804455258883536e-06,\n", " 'Hareesah': 7.146994676077156e-07,\n", " 'Harira': 4.233123945596162e-06,\n", " 'Harisi': 3.582768840715289e-06,\n", " 'Hawawshi': 9.540679002384422e-07,\n", " 'Hot and sour soup': 3.2403816021542298e-06,\n", " 'Hot dog': 8.584502779740433e-07,\n", " 'Huevos rancheros': 4.365475945178332e-07,\n", " 'Hummus': 1.6596482055319939e-06,\n", " 'Hyderabadi Biryani': 0.27314651012420654,\n", " 'Ice cream': 4.633096978068352e-06,\n", " 'Idli': 3.512992861942621e-06,\n", " 'Jalebi': 4.7896178330120165e-06,\n", " 'Jallab': 9.056585668076877e-07,\n", " 'Jallab Drink': 6.692430360999424e-07,\n", " 'Jareesh': 3.38977224600967e-06,\n", " 'Jibneh Arabieh': 3.054187800444197e-06,\n", " 'Kabsa': 8.881060057319701e-05,\n", " 'Kanafeh': 1.9998055904579815e-06,\n", " 'Kebab': 9.864711500995327e-06,\n", " 'Kheer': 1.2020175290672341e-06,\n", " 'Kibbeh': 4.638035534298979e-06,\n", " 'Kibbeh Nayyeh food item': 3.014542073742632e-07,\n", " 'Kofta': 1.4948790521884803e-05,\n", " 'Koshari': 1.7884151475300314e-06,\n", " 'Kubbah Hamouth': 8.776319759817852e-07,\n", " 'Kunafa': 7.235973953356734e-07,\n", " 'Labneh': 4.1487387534289155e-06,\n", " 'Lahmacun': 4.478787900552561e-07,\n", " 'Lasagna': 2.245163386760396e-06,\n", " 'Layali Lubnan': 4.353384156274842e-06,\n", " 'Lgeimat food item': 8.308543328894302e-06,\n", " 'Lobster bisque': 3.949643542000558e-06,\n", " 'Lobster roll sandwich': 4.903990429738769e-06,\n", " 'Lubia Polo': 0.00031434069387614727,\n", " 'Luqaimat': 3.8075941120041534e-06,\n", " 'Macaroni and cheese': 1.0496703907847404e-05,\n", " 'Macarons': 7.4961708378396e-06,\n", " 'Machboos': 4.719592834590003e-05,\n", " 'Machbous': 3.7630568840540946e-05,\n", " 'Madrouba': 3.884820398525335e-05,\n", " 'Mahalabiya': 7.356452442763839e-07,\n", " 'Mahshi': 1.4283394875747035e-06,\n", " 'Majboos': 0.00026667152997106314,\n", " 'Majoon': 4.475391506275628e-06,\n", " 'Maklouba': 9.206723188981414e-05,\n", " 'Malabar Paratha': 3.466715043032309e-06,\n", " 'Malai Kofta': 5.727334155380959e-06,\n", " 'Malfouf': 2.7537727874005213e-05,\n", " 'Malpua': 7.54187340135104e-07,\n", " 'Manakish': 9.661186595621984e-06,\n", " 'Mansaf': 7.619132134095707e-07,\n", " 'Manti': 2.9703612653975142e-06,\n", " 'Maqluba': 0.00011310820991639048,\n", " 'Margherita pizza': 7.019642680461402e-07,\n", " 'Markook food item': 4.44610623162589e-06,\n", " 'Masala Dosa': 2.066267370537389e-06,\n", " 'Mashwi': 5.583315214607865e-07,\n", " 'Matar Paneer': 0.0011546122841536999,\n", " 'Matar Pulao': 1.031820193020394e-05,\n", " 'Meshwi': 3.404636572668096e-06,\n", " 'Mhammar': 1.0295226502421428e-06,\n", " 'Miso soup': 4.262282345735002e-06,\n", " 'Moghrabieh': 2.3243171654030448e-06,\n", " 'Molokhia': 5.015918577555567e-05,\n", " 'Motabbaq': 1.5452820662176237e-05,\n", " 'Moutabal': 3.7946022075630026e-06,\n", " 'Muhammara food item': 8.398463933190214e-07,\n", " 'Mujadara': 4.788354999618605e-05,\n", " 'Mujaddara': 4.927211921312846e-05,\n", " 'Mushroom Biryani food item': 0.006017524749040604,\n", " 'Mushroom Masala': 4.9735222091840114e-06,\n", " 'Mussels': 2.5406725399079733e-06,\n", " 'Mutabbaq': 2.2657957288174657e-06,\n", " 'Mutton Biryani': 0.004609026480466127,\n", " 'Mutton Chops': 4.477381025935756e-06,\n", " 'Mutton Curry': 9.670317376730964e-05,\n", " 'Mutton Korma': 5.097527377984079e-07,\n", " 'Mutton Masala': 2.335182944079861e-05,\n", " 'Mutton Pulao': 0.0003191548748873174,\n", " 'Mutton Rogan Josh': 2.9782882847939618e-05,\n", " 'Nachos': 1.4301857845566701e-05,\n", " 'Omelette': 5.652932486555073e-06,\n", " 'Onion rings': 1.1870391062984709e-05,\n", " 'Ouzi': 1.8730137298916816e-06,\n", " 'Oysters': 1.9896679077646695e-06,\n", " 'Pacha': 7.910863132565282e-06,\n", " 'Pad thai': 1.3615832358482294e-05,\n", " 'Paella': 4.697961776400916e-05,\n", " 'Palak Paneer': 5.565381798078306e-06,\n", " 'Pancakes': 4.065998950864014e-07,\n", " 'Paneer Biryani': 0.19918088614940643,\n", " 'Paneer Butter Masala': 2.6287838409189135e-05,\n", " 'Paneer Tikka': 2.088072506012395e-05,\n", " 'Pani Puri': 9.178148161481658e-07,\n", " 'Panna cotta': 7.029755579424091e-06,\n", " 'Pav Bhaji': 1.22377127809159e-06,\n", " 'Payasam': 1.568777224747464e-05,\n", " 'Peda': 6.073897111491533e-06,\n", " 'Peking duck': 5.901173949496297e-07,\n", " 'Pho food': 6.734031785526895e-07,\n", " 'Pizza': 3.2045700208982453e-06,\n", " 'Pork chop': 5.2612737277968336e-08,\n", " 'Poutine': 1.0708424724725774e-06,\n", " 'Prawn Biryani': 0.002995701739564538,\n", " 'Prawn Curry': 3.7140955555514665e-06,\n", " 'Prawn Fried Rice': 1.1481803312562988e-06,\n", " 'Prawn Masala': 5.747053819504799e-06,\n", " 'Prawn Pulao food item': 0.0003029413055628538,\n", " 'Prime rib': 2.8388101327436743e-06,\n", " 'Pulled pork sandwich': 1.766401510394644e-06,\n", " 'Quzi': 6.414454105652112e-07,\n", " 'Rabri': 8.95328469141532e-07,\n", " 'Rajma Chawal': 3.025578917004168e-05,\n", " 'Ramen': 5.6394383136648685e-06,\n", " 'Rasgulla': 3.802212631853763e-06,\n", " 'Rasmalai': 3.9107289921958e-05,\n", " 'Ravioli': 2.1921118786849547e-07,\n", " 'Red velvet cake': 2.0737393242598046e-06,\n", " 'Risotto': 3.4422046155668795e-06,\n", " 'Rogan Josh': 4.3199281208217144e-05,\n", " 'Sahlab': 4.0451172367284016e-07,\n", " 'Salata Hara': 4.3972690377813706e-07,\n", " 'Samak Meshwi': 4.481610176299e-06,\n", " 'Samboosa': 1.2770608009304851e-05,\n", " 'Sambousek': 6.161835131024418e-07,\n", " 'Samosa': 1.2821973541576881e-05,\n", " 'Sashimi food': 4.954871997142618e-07,\n", " 'Scallops': 3.414002094359603e-07,\n", " 'Seaweed salad': 2.185621923445069e-07,\n", " 'Sfiha': 3.29313877500681e-07,\n", " 'Shakshuka': 1.0468443178979214e-05,\n", " 'Shanklish': 2.666784894245211e-06,\n", " 'Shawarma': 1.654080733715091e-05,\n", " 'Shawarma Rice': 1.6237540876318235e-06,\n", " 'Shish Barak food item': 1.9920003978768364e-05,\n", " 'Shish Taouk': 3.7239947232592385e-06,\n", " 'Shorbat Adas': 1.4233964975574054e-06,\n", " 'Shrimp and grits food': 1.0762347528725513e-06,\n", " 'Spaghetti bolognese': 6.294516197158373e-07,\n", " 'Spaghetti carbonara': 9.332405852546799e-07,\n", " 'Spring rolls': 9.5646112185932e-07,\n", " 'Steak': 1.0604601357044885e-06,\n", " 'Strawberry shortcake': 1.0681044670945994e-07,\n", " 'Stuffed Grape Leaves (Dolma)': 1.102891837945208e-05,\n", " 'Sushi': 6.246913812901767e-07,\n", " 'Tabbouleh': 2.6232390837321873e-07,\n", " 'Tabouleh': 4.1443850022915285e-06,\n", " 'Tacos': 9.94459810499393e-07,\n", " 'Takoyaki': 2.4324508558493108e-06,\n", " 'Tandoori Chicken': 4.682674443756696e-06,\n", " 'Tandoori Roti': 9.895691619021818e-06,\n", " 'Tashreeb': 1.8913276562670944e-06,\n", " 'Tepsi Baytinijan': 9.363420758745633e-07,\n", " 'Tharid': 9.078030416276306e-07,\n", " 'Tiramisu': 7.069111234159209e-06,\n", " 'Tuna tartare': 5.5333425734716e-06,\n", " 'Umm Ali': 3.0602086553699337e-06,\n", " 'Vada Pav': 5.8223890846420545e-06,\n", " 'Veg Fried Rice': 5.1268918468849733e-05,\n", " 'Veg Noodles': 1.3077537914796267e-06,\n", " 'Vegetable Biryani': 0.002200671937316656,\n", " 'Vegetable Pulao': 7.073413598845946e-06,\n", " 'Waffles': 1.0310981451766565e-05,\n", " 'Warak Enab': 1.8792964340264007e-07,\n", " 'Xiao long bao (soup dumplings)': 9.327863153885119e-06,\n", " \"Za'atar Bread\": 3.8493715237564174e-07}" ] }, "metadata": {}, "execution_count": 8 } ] }, { "cell_type": "code", "source": [ "#!export\n", "image = gr.inputs.Image(shape=(192,192))\n", "label = gr.outputs.Label()\n", "examples = [\n", " '/content/drive/MyDrive/samples/test_1.jpg',\n", " '/content/drive/MyDrive/samples/test_2.jpg',\n", " '/content/drive/MyDrive/samples/test_3.jpg',\n", " '/content/drive/MyDrive/samples/test_4.jpg',\n", " '/content/drive/MyDrive/samples/test_5.jpg',\n", " '/content/drive/MyDrive/samples/test_6.jpg',\n", " '/content/drive/MyDrive/samples/test_7.jpg'\n", " ]\n", "\n", "iface = gr.Interface(fn=food_item_names, inputs=image, outputs=label, examples=examples)\n", "iface.launch(inline=False, share=True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "XmxzTmYzUL3f", "outputId": "d3463146-c797-4d81-fbff-18599f3fd4c2" }, "execution_count": 9, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ ":2: GradioDeprecationWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n", " image = gr.inputs.Image(shape=(192,192))\n", ":2: GradioDeprecationWarning: `optional` parameter is deprecated, and it has no effect\n", " image = gr.inputs.Image(shape=(192,192))\n", ":3: GradioDeprecationWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n", " label = gr.outputs.Label()\n", ":3: GradioUnusedKwargWarning: You have unused kwarg parameters in Label, please remove them: {'type': 'auto'}\n", " label = gr.outputs.Label()\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n", "Running on public URL: https://6e58c41c5340b7599c.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [] }, "metadata": {}, "execution_count": 9 } ] }, { "cell_type": "code", "source": [ "from nbdev.export import *" ], "metadata": { "id": "aTR9c6m0Uq9V" }, "execution_count": 10, "outputs": [] }, { "cell_type": "code", "source": [ "pip install notebook2script" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "N2v9rON_Hh4e", "outputId": "ea002b54-e396-4463-f644-887063d0a9c5" }, "execution_count": 11, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting notebook2script\n", " Downloading notebook2script-0.2.1-py3-none-any.whl (62 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.6/62.6 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting astroid<=2.5,>=2.4.0 (from notebook2script)\n", " Downloading astroid-2.5-py3-none-any.whl (220 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m220.3/220.3 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: click>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from notebook2script) (8.1.6)\n", "Collecting consolekit>=0.6.0 (from notebook2script)\n", " Downloading consolekit-1.5.1-py3-none-any.whl (42 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.1/42.1 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting domdf-python-tools>=2.8.1 (from notebook2script)\n", " Downloading domdf_python_tools-3.6.1-py3-none-any.whl (127 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.0/127.0 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: ipython>=7.14.0 in /usr/local/lib/python3.10/dist-packages (from notebook2script) (7.34.0)\n", "Collecting isort>=5.5.2 (from notebook2script)\n", " Downloading isort-5.12.0-py3-none-any.whl (91 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m91.2/91.2 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: nbconvert>=5.6.1 in /usr/local/lib/python3.10/dist-packages (from notebook2script) (6.5.4)\n", "Collecting pre-commit-hooks>=3.3.0 (from notebook2script)\n", " Downloading pre_commit_hooks-4.4.0-py2.py3-none-any.whl (40 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.9/40.9 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting pylint>=2.5.2 (from notebook2script)\n", " Downloading pylint-2.17.4-py3-none-any.whl (536 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.6/536.6 kB\u001b[0m \u001b[31m13.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting yapf-isort>=0.5.5 (from notebook2script)\n", " Downloading yapf_isort-0.6.0-py3-none-any.whl (26 kB)\n", "Collecting lazy-object-proxy>=1.4.0 (from astroid<=2.5,>=2.4.0->notebook2script)\n", " Downloading lazy_object_proxy-1.9.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (63 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.3/63.3 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting wrapt<1.13,>=1.11 (from astroid<=2.5,>=2.4.0->notebook2script)\n", " Downloading wrapt-1.12.1.tar.gz (27 kB)\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Collecting deprecation-alias>=0.1.1 (from consolekit>=0.6.0->notebook2script)\n", " Downloading deprecation_alias-0.3.2-py3-none-any.whl (14 kB)\n", "Collecting mistletoe>=0.7.2 (from consolekit>=0.6.0->notebook2script)\n", " Downloading mistletoe-1.1.0-py3-none-any.whl (48 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m48.8/48.8 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: typing-extensions!=3.10.0.1,>=3.10.0.0 in /usr/local/lib/python3.10/dist-packages (from consolekit>=0.6.0->notebook2script) (4.7.1)\n", "Requirement already satisfied: natsort>=7.0.1 in /usr/local/lib/python3.10/dist-packages (from domdf-python-tools>=2.8.1->notebook2script) (8.3.1)\n", "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (67.7.2)\n", "Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (0.18.2)\n", "Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (4.4.2)\n", "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (0.7.5)\n", "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (5.7.1)\n", "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (3.0.39)\n", "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (2.14.0)\n", "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (0.2.0)\n", "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (0.1.6)\n", "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.14.0->notebook2script) (4.8.0)\n", "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (4.9.3)\n", "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (4.11.2)\n", "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (6.0.0)\n", "Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.7.1)\n", "Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.4)\n", "Requirement already satisfied: jinja2>=3.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (3.1.2)\n", "Requirement already satisfied: jupyter-core>=4.7 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (5.3.1)\n", "Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.2.2)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (2.1.3)\n", "Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.8.4)\n", "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (0.8.0)\n", "Requirement already satisfied: nbformat>=5.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (5.9.1)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (23.1)\n", "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (1.5.0)\n", "Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5.6.1->notebook2script) (1.2.1)\n", "Collecting ruamel.yaml>=0.15 (from pre-commit-hooks>=3.3.0->notebook2script)\n", " Downloading ruamel.yaml-0.17.32-py3-none-any.whl (112 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m112.2/112.2 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from pre-commit-hooks>=3.3.0->notebook2script) (2.0.1)\n", "Requirement already satisfied: platformdirs>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from pylint>=2.5.2->notebook2script) (3.9.1)\n", "INFO: pip is looking at multiple versions of pylint to determine which version is compatible with other requirements. This could take a while.\n", "Collecting pylint>=2.5.2 (from notebook2script)\n", " Downloading pylint-2.17.3-py3-none-any.whl (536 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.4/536.4 kB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.17.2-py3-none-any.whl (536 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.0/536.0 kB\u001b[0m \u001b[31m12.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.17.1-py3-none-any.whl (535 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m535.8/535.8 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.17.0-py3-none-any.whl (535 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m535.4/535.4 kB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.16.4-py3-none-any.whl (530 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m530.7/530.7 kB\u001b[0m \u001b[31m17.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.16.3-py3-none-any.whl (530 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m530.6/530.6 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.16.2-py3-none-any.whl (530 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m530.7/530.7 kB\u001b[0m \u001b[31m18.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hINFO: pip is looking at multiple versions of pylint to determine which version is compatible with other requirements. This could take a while.\n", " Downloading pylint-2.16.1-py3-none-any.whl (530 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m530.1/530.1 kB\u001b[0m \u001b[31m19.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.16.0-py3-none-any.whl (530 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m530.1/530.1 kB\u001b[0m \u001b[31m20.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.10-py3-none-any.whl (509 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m509.9/509.9 kB\u001b[0m \u001b[31m19.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.9-py3-none-any.whl (509 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m509.3/509.3 kB\u001b[0m \u001b[31m13.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.8-py3-none-any.whl (509 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m509.1/509.1 kB\u001b[0m \u001b[31m18.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting dill>=0.2 (from pylint>=2.5.2->notebook2script)\n", " Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hINFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n", "Collecting pylint>=2.5.2 (from notebook2script)\n", " Downloading pylint-2.15.7-py3-none-any.whl (509 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m509.2/509.2 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.6-py3-none-any.whl (508 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m508.9/508.9 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.5-py3-none-any.whl (508 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m508.2/508.2 kB\u001b[0m \u001b[31m21.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.4-py3-none-any.whl (507 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m507.9/507.9 kB\u001b[0m \u001b[31m18.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.3-py3-none-any.whl (507 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m507.6/507.6 kB\u001b[0m \u001b[31m22.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.2-py3-none-any.whl (507 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m507.0/507.0 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.15.0-py3-none-any.whl (505 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m505.4/505.4 kB\u001b[0m \u001b[31m28.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.14.5-py3-none-any.whl (488 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m488.2/488.2 kB\u001b[0m \u001b[31m25.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.14.4-py3-none-any.whl (488 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m488.4/488.4 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.14.3-py3-none-any.whl (488 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m488.1/488.1 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.14.2-py3-none-any.whl (487 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m488.0/488.0 kB\u001b[0m \u001b[31m18.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.14.1-py3-none-any.whl (486 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m487.0/487.0 kB\u001b[0m \u001b[31m31.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.14.0-py3-none-any.whl (485 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m485.0/485.0 kB\u001b[0m \u001b[31m19.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.9-py3-none-any.whl (438 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m438.5/438.5 kB\u001b[0m \u001b[31m22.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.8-py3-none-any.whl (438 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m438.2/438.2 kB\u001b[0m \u001b[31m31.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.7-py3-none-any.whl (437 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m438.0/438.0 kB\u001b[0m \u001b[31m30.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.6-py3-none-any.whl (437 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m438.0/438.0 kB\u001b[0m \u001b[31m25.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.5-py3-none-any.whl (437 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m437.6/437.6 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.4-py3-none-any.whl (437 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m437.6/437.6 kB\u001b[0m \u001b[31m20.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.3-py3-none-any.whl (437 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m437.1/437.1 kB\u001b[0m \u001b[31m20.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.2-py3-none-any.whl (437 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m437.0/437.0 kB\u001b[0m \u001b[31m20.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.1-py3-none-any.whl (436 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m436.9/436.9 kB\u001b[0m \u001b[31m27.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.13.0-py3-none-any.whl (436 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m436.7/436.7 kB\u001b[0m \u001b[31m18.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.12.2-py3-none-any.whl (414 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m414.8/414.8 kB\u001b[0m \u001b[31m24.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.12.1-py3-none-any.whl (413 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m413.7/413.7 kB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.12.0-py3-none-any.whl (413 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m413.8/413.8 kB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.11.1-py3-none-any.whl (392 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m392.1/392.1 kB\u001b[0m \u001b[31m16.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.11.0-py3-none-any.whl (391 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m391.7/391.7 kB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.10.2-py3-none-any.whl (392 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m392.6/392.6 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.10.1-py3-none-any.whl (392 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m392.5/392.5 kB\u001b[0m \u001b[31m22.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: appdirs>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from pylint>=2.5.2->notebook2script) (1.4.4)\n", " Downloading pylint-2.10.0-py3-none-any.whl (392 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m392.4/392.4 kB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.9.6-py3-none-any.whl (375 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m375.2/375.2 kB\u001b[0m \u001b[31m21.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.9.5-py3-none-any.whl (375 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m375.2/375.2 kB\u001b[0m \u001b[31m25.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.9.4-py3-none-any.whl (375 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m375.1/375.1 kB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.9.3-py3-none-any.whl (372 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m372.4/372.4 kB\u001b[0m \u001b[31m18.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.9.2-py3-none-any.whl (371 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m371.3/371.3 kB\u001b[0m \u001b[31m21.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.9.1-py3-none-any.whl (371 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m371.2/371.2 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.9.0-py3-none-any.whl (371 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m371.2/371.2 kB\u001b[0m \u001b[31m26.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.8.3-py3-none-any.whl (357 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m357.8/357.8 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.8.2-py3-none-any.whl (357 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m357.8/357.8 kB\u001b[0m \u001b[31m19.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.8.1-py3-none-any.whl (357 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m357.6/357.6 kB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.8.0-py3-none-any.whl (357 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m357.5/357.5 kB\u001b[0m \u001b[31m25.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.7.4-py3-none-any.whl (346 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m346.2/346.2 kB\u001b[0m \u001b[31m19.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.7.3-py3-none-any.whl (346 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m346.2/346.2 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.7.2-py3-none-any.whl (342 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m342.9/342.9 kB\u001b[0m \u001b[31m18.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Downloading pylint-2.7.1-py3-none-any.whl (343 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m343.0/343.0 kB\u001b[0m \u001b[31m16.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting mccabe<0.7,>=0.6 (from pylint>=2.5.2->notebook2script)\n", " Downloading mccabe-0.6.1-py2.py3-none-any.whl (8.6 kB)\n", "Requirement already satisfied: toml>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from pylint>=2.5.2->notebook2script) (0.10.2)\n", "Requirement already satisfied: asttokens>=2.0.4 in /usr/local/lib/python3.10/dist-packages (from yapf-isort>=0.5.5->notebook2script) (2.2.1)\n", "Collecting formate>=0.4.5 (from yapf-isort>=0.5.5->notebook2script)\n", " Downloading formate-0.5.0-py3-none-any.whl (70 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.7/70.7 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting isort>=5.5.2 (from notebook2script)\n", " Downloading isort-5.6.4-py3-none-any.whl (98 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.9/98.9 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting yapf<0.32.0,>=0.30.0 (from yapf-isort>=0.5.5->notebook2script)\n", " Downloading yapf-0.31.0-py2.py3-none-any.whl (185 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m185.7/185.7 kB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from asttokens>=2.0.4->yapf-isort>=0.5.5->notebook2script) (1.16.0)\n", "Collecting deprecation>=2.1.0 (from deprecation-alias>=0.1.1->consolekit>=0.6.0->notebook2script)\n", " Downloading deprecation-2.1.0-py2.py3-none-any.whl (11 kB)\n", "Collecting astatine>=0.3.1 (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n", " Downloading astatine-0.3.2-py3-none-any.whl (16 kB)\n", "Collecting attr-utils>=0.5.5 (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n", " Downloading attr_utils-0.8.1-py3-none-any.whl (60 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.7/60.7 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: attrs>=20.3.0 in /usr/local/lib/python3.10/dist-packages (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script) (23.1.0)\n", "Collecting dom-toml>=0.4.0 (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n", " Downloading dom_toml-0.6.1-py3-none-any.whl (12 kB)\n", "Collecting prettyprinter>=0.18.0 (from formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n", " Downloading prettyprinter-0.18.0-py2.py3-none-any.whl (48 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m48.0/48.0 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=7.14.0->notebook2script) (0.8.3)\n", "Requirement already satisfied: jupyter-client>=6.1.12 in /usr/local/lib/python3.10/dist-packages (from nbclient>=0.5.0->nbconvert>=5.6.1->notebook2script) (6.1.12)\n", "Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.10/dist-packages (from nbformat>=5.1->nbconvert>=5.6.1->notebook2script) (2.17.1)\n", "Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat>=5.1->nbconvert>=5.6.1->notebook2script) (4.3.3)\n", "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=7.14.0->notebook2script) (0.7.0)\n", "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=7.14.0->notebook2script) (0.2.6)\n", "Collecting ruamel.yaml.clib>=0.2.7 (from ruamel.yaml>=0.15->pre-commit-hooks>=3.3.0->notebook2script)\n", " Downloading ruamel.yaml.clib-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (485 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m485.6/485.6 kB\u001b[0m \u001b[31m30.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert>=5.6.1->notebook2script) (2.4.1)\n", "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert>=5.6.1->notebook2script) (0.5.1)\n", "Requirement already satisfied: toolz>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from attr-utils>=0.5.5->formate>=0.4.5->yapf-isort>=0.5.5->notebook2script) (0.12.0)\n", "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=5.1->nbconvert>=5.6.1->notebook2script) (0.19.3)\n", "Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.10/dist-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=5.6.1->notebook2script) (23.2.1)\n", "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.10/dist-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=5.6.1->notebook2script) (2.8.2)\n", "Requirement already satisfied: tornado>=4.1 in /usr/local/lib/python3.10/dist-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=5.6.1->notebook2script) (6.3.1)\n", "Collecting colorful>=0.4.0 (from prettyprinter>=0.18.0->formate>=0.4.5->yapf-isort>=0.5.5->notebook2script)\n", " Downloading colorful-0.5.5-py2.py3-none-any.whl (201 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m201.4/201.4 kB\u001b[0m \u001b[31m20.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hBuilding wheels for collected packages: wrapt\n", " Building wheel for wrapt (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for wrapt: filename=wrapt-1.12.1-cp310-cp310-linux_x86_64.whl size=71468 sha256=52451a728e183405e579d6bcf9836f2f576a5cd4ee814218a6853425ad549fa1\n", " Stored in directory: /root/.cache/pip/wheels/8e/61/d3/d9e7053100177668fa43216a8082868c55015f8706abd974f2\n", "Successfully built wrapt\n", "Installing collected packages: yapf, wrapt, mccabe, colorful, ruamel.yaml.clib, prettyprinter, mistletoe, lazy-object-proxy, isort, domdf-python-tools, deprecation, ruamel.yaml, dom-toml, deprecation-alias, attr-utils, astroid, astatine, pylint, pre-commit-hooks, consolekit, formate, yapf-isort, notebook2script\n", " Attempting uninstall: wrapt\n", " Found existing installation: wrapt 1.14.1\n", " Uninstalling wrapt-1.14.1:\n", " Successfully uninstalled wrapt-1.14.1\n", "Successfully installed astatine-0.3.2 astroid-2.5 attr-utils-0.8.1 colorful-0.5.5 consolekit-1.5.1 deprecation-2.1.0 deprecation-alias-0.3.2 dom-toml-0.6.1 domdf-python-tools-3.6.1 formate-0.5.0 isort-5.6.4 lazy-object-proxy-1.9.0 mccabe-0.6.1 mistletoe-1.1.0 notebook2script-0.2.1 pre-commit-hooks-4.4.0 prettyprinter-0.18.0 pylint-2.7.1 ruamel.yaml-0.17.32 ruamel.yaml.clib-0.2.7 wrapt-1.12.1 yapf-0.31.0 yapf-isort-0.6.0\n" ] } ] }, { "cell_type": "code", "source": [ "import notebook2script" ], "metadata": { "id": "fWRIR89nHTFR" }, "execution_count": 12, "outputs": [] }, { "cell_type": "code", "source": [ "notebook2script('app.ipynb')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 166 }, "id": "izdHKJuMHye7", "outputId": "87b58be4-d2be-4db5-8e0f-58fb7448605f" }, "execution_count": 13, "outputs": [ { "output_type": "error", "ename": "TypeError", "evalue": "ignored", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnotebook2script\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'app.ipynb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: 'module' object is not callable" ] } ] } ] }