File size: 1,024 Bytes
715b816
07d4213
29b1ee9
715b816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a83e8
715b816
 
 
 
 
11a83e8
29b1ee9
 
715b816
11a83e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Import necessary libraries
import blurr
import gradio as gr
from pathlib import Path
from fastai.text.all import *
from blurr.text.data.all import *
from blurr.text.modeling.all import *

# Load the learner
inf_learn = load_learner(fname=Path("laptop_summarizer_1.pkl"))

# Define a function to generate summaries using your model
def generate_summary(input_text):
    prediction = inf_learn.blurr_generate(input_text)
    generated_text = prediction[0]['generated_texts']
    return generated_text

# Create an interface for the model
interface = gr.Interface(
    fn=generate_summary,  # The function to generate summaries
    inputs=gr.inputs.Textbox(),  # Input field for text
    outputs=gr.outputs.Textbox(),  # Output field for generated text
    live=True,  # Whether to update results in real-time
    title="Laptop Guru",  # Title of the interface
    description="Enter your requirements & get valuable insight from Guru."  # Description of the interface
)

# Start the Gradio app
interface.launch(inline=True)