Spaces:
Runtime error
Runtime error
import transformers | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from gradio import Interface as gr | |
from pathlib import Path | |
from fastai.text.all import * | |
from datasets import load_dataset | |
# Download and prepare SQuAD dataset (not used directly here) | |
squad = load_dataset("squad") | |
# Load the pre-trained summarization model (adjust model name as needed) | |
model_name = "facebook/bart-base" # Choose a suitable summarization model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Define a function to generate summaries using the model | |
def generate_summary(input_text): | |
# Tokenize the input text | |
inputs = tokenizer(input_text, return_tensors="pt") | |
# Generate summary using the pre-trained model | |
output = model.generate(**inputs) | |
# Decode the generated tokens back to text | |
summary_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0] | |
return summary_text | |
# Create an interface for the model | |
interface = gr.Interface( | |
fn=generate_summary, # The function to generate summaries | |
inputs=gr.inputs.Textbox(), # Input field for text | |
outputs=gr.outputs.Textbox(), # Output field for generated text | |
live=True, # Whether to update results in real-time | |
title="Laptop Guru", # Title of the interface | |
description="Enter your requirements & get valuable insight from Guru." # Description of the interface | |
) | |
# Start the Gradio app | |
interface.launch(inline=True) | |