tdnathmlenthusiast commited on
Commit
a5f5982
1 Parent(s): 026868a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -11
app.py CHANGED
@@ -1,28 +1,33 @@
1
  # Import necessary libraries
 
2
  import gradio as gr
3
  from pathlib import Path
4
  from fastai.text.all import *
5
  from blurr.text.data.all import *
6
  from blurr.text.modeling.all import *
7
 
8
- # Load the learner with trust_remote_code=True
 
 
 
 
9
  inf_learn = load_learner(fname=Path("laptop_summarizer_1.pkl"), trust_remote_code=True)
10
 
11
  # Define a function to generate summaries using your model
12
  def generate_summary(input_text):
13
- prediction = inf_learn.blurr_generate(input_text)
14
- generated_text = prediction[0]['generated_texts']
15
- return generated_text
16
 
17
  # Create an interface for the model
18
  interface = gr.Interface(
19
- fn=generate_summary, # The function to generate summaries
20
- inputs=gr.inputs.Textbox(), # Input field for text
21
- outputs=gr.outputs.Textbox(), # Output field for generated text
22
- live=True, # Whether to update results in real-time
23
- title="Laptop Guru", # Title of the interface
24
- description="Enter your requirements & get valuable insight from Guru." # Description of the interface
25
  )
26
 
27
  # Start the Gradio app
28
- interface.launch(inline=True)
 
1
  # Import necessary libraries
2
+ import blurr
3
  import gradio as gr
4
  from pathlib import Path
5
  from fastai.text.all import *
6
  from blurr.text.data.all import *
7
  from blurr.text.modeling.all import *
8
 
9
+ # Manually download and prepare SQuAD dataset
10
+ from datasets import load_dataset
11
+ squad = load_dataset("squad")
12
+
13
+ # Load the learner without using SQuAD
14
  inf_learn = load_learner(fname=Path("laptop_summarizer_1.pkl"), trust_remote_code=True)
15
 
16
  # Define a function to generate summaries using your model
17
  def generate_summary(input_text):
18
+ prediction = inf_learn.blurr_generate(input_text)
19
+ generated_text = prediction[0]['generated_texts']
20
+ return generated_text
21
 
22
  # Create an interface for the model
23
  interface = gr.Interface(
24
+ fn=generate_summary, # The function to generate summaries
25
+ inputs=gr.inputs.Textbox(), # Input field for text
26
+ outputs=gr.outputs.Textbox(), # Output field for generated text
27
+ live=True, # Whether to update results in real-time
28
+ title="Laptop Guru", # Title of the interface
29
+ description="Enter your requirements & get valuable insight from Guru." # Description of the interface
30
  )
31
 
32
  # Start the Gradio app
33
+ interface.launch(inline=True, trust_remote_code=True)