import gradio as gr from transformers import BertTokenizer, BertForSequenceClassification import torch # Load the tokenizer and model model_path = "laptop_data.pkl" # Replace with the actual path tokenizer = BertTokenizer.from_pretrained(model_path) model = BertForSequenceClassification.from_pretrained(model_path) # Set the model to evaluation mode model.eval() def classify_text(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=1) return probabilities[0].tolist() iface = gr.Interface( fn=classify_text, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Label(num_top_classes=2), live=True, interpretation="default" ) iface.launch()