# Import necessary libraries pip install blurr import blurr import gradio as gr from pathlib import Path from fastai.text.all import * from blurr.text.data.all import * from blurr.text.modeling.all import * import pathlib # Load the learner inf_learn = load_learner(fname=Path("laptop_summarizer_1.pkl")) # Define a function to generate summaries using your model def generate_summary(input_text): prediction = inf_learn.blurr_generate(input_text) generated_text = prediction[0]['generated_texts'] return generated_text # Create an interface for the model iface = gr.Interface( fn=generate_summary, # The function to generate summaries inputs=gr.inputs.Textbox(), # Input field for text outputs=gr.outputs.Textbox(), # Output field for generated text live=True, # Whether to update results in real-time title="Laptop Guru", # Title of the interface # Description of the interface description="Enter your requirements & get valuable insight from Guru." ) # Start the Gradio app iface.launch(inline=False)