# Import necessary libraries import blurr import gradio as gr from pathlib import Path from fastai.text.all import * from blurr.text.data.all import * from blurr.text.modeling.all import * # Manually download and prepare SQuAD dataset from datasets import load_dataset squad = load_dataset("squad") # Load the learner without using SQuAD inf_learn = load_learner(fname=Path("laptop_summarizer_1.pkl"), trust_remote_code=True) # Define a function to generate summaries using your model def generate_summary(input_text): prediction = inf_learn.blurr_generate(input_text) generated_text = prediction[0]['generated_texts'] return generated_text # Create an interface for the model interface = gr.Interface( fn=generate_summary, # The function to generate summaries inputs=gr.inputs.Textbox(), # Input field for text outputs=gr.outputs.Textbox(), # Output field for generated text live=True, # Whether to update results in real-time title="Laptop Guru", # Title of the interface description="Enter your requirements & get valuable insight from Guru." # Description of the interface ) # Start the Gradio app interface.launch(inline=True, trust_remote_code=True)