|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers import TapexTokenizer, BartForConditionalGeneration |
|
import pandas as pd |
|
import gradio as gr |
|
|
|
import numpy as np |
|
import time |
|
import os |
|
|
|
import pyodbc |
|
|
|
|
|
|
|
''' |
|
# Get a list of installed packages and their versions |
|
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set} |
|
|
|
# Print the list of packages |
|
for package, version in installed_packages.items(): |
|
print(f"{package}=={version}") |
|
''' |
|
|
|
''' |
|
# Replace the connection parameters with your SQL Server information |
|
server = 'your_server' |
|
database = 'your_database' |
|
username = 'your_username' |
|
password = 'your_password' |
|
driver = 'SQL Server' # This depends on the ODBC driver installed on your system |
|
|
|
# Create the connection string |
|
connection_string = f'DRIVER={{{driver}}};SERVER={server};DATABASE={database};UID={username};PWD={password}' |
|
|
|
# Connect to the SQL Server |
|
conn = pyodbc.connect(connection_string) |
|
|
|
#============================================================================ |
|
# Replace "your_query" with your SQL query to fetch data from the database |
|
query = 'SELECT * FROM your_table_name' |
|
|
|
# Use pandas to read data from the SQL Server and store it in a DataFrame |
|
df = pd.read_sql_query(query, conn) |
|
|
|
# Close the SQL connection |
|
conn.close() |
|
''' |
|
|
|
data = { |
|
"year": [1896, 1900, 1904, 2004, 2008, 2012], |
|
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] |
|
} |
|
table = pd.DataFrame.from_dict(data) |
|
|
|
|
|
|
|
chatbot_model_name = "microsoft/DialoGPT-medium" |
|
tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name) |
|
model = AutoModelForCausalLM.from_pretrained(chatbot_model_name) |
|
|
|
|
|
sql_model_name = "microsoft/tapex-large-finetuned-wtq" |
|
sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name) |
|
sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name) |
|
|
|
|
|
|
|
def predict(input, history=[]): |
|
|
|
|
|
|
|
|
|
|
|
''' |
|
if is_question: |
|
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt") |
|
sql_outputs = sql_model.generate(**sql_encoding) |
|
sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True) |
|
|
|
else: |
|
''' |
|
|
|
|
|
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') |
|
|
|
|
|
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) |
|
|
|
|
|
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() |
|
|
|
|
|
response = tokenizer.decode(history[0]).split("<|endoftext|>") |
|
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] |
|
|
|
return response, history |
|
|
|
|
|
def sqlquery(input): |
|
|
|
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt") |
|
sql_outputs = sql_model.generate(**sql_encoding) |
|
sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True) |
|
|
|
return sql_response |
|
|
|
|
|
chat_interface = gr.Interface( |
|
fn=predict, |
|
theme="default", |
|
css=".footer {display:none !important}", |
|
inputs=["text", "state"], |
|
outputs=["chatbot", "state"], |
|
title="ST Chatbot", |
|
description="Type your message in the box above, and the chatbot will respond.", |
|
) |
|
|
|
sql_interface = gr.Interface( |
|
fn=sqlquery, |
|
theme="default", |
|
inputs=gr.Textbox(prompt="You:"), |
|
outputs=gr.Textbox(), |
|
live=True, |
|
capture_session=True, |
|
title="ST SQL Chat", |
|
description="Type your message in the box above, and the chatbot will respond.", |
|
) |
|
|
|
combine_interface = gr.TabbedInterface( |
|
interface_list=[ |
|
chat_interface, |
|
sql_interface |
|
], |
|
tab_names=['Chatbot' ,'SQL Chat'], |
|
) |
|
|
|
if __name__ == '__main__': |
|
combine_interface.launch() |