gradio / app.py
teaevo's picture
Update app.py
da794fe
raw
history blame
3.52 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import TapexTokenizer, BartForConditionalGeneration
import pandas as pd
import torch
import numpy as np
import time
import os
#import pkg_resources
'''
# Get a list of installed packages and their versions
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}
# Print the list of packages
for package, version in installed_packages.items():
print(f"{package}=={version}")
'''
# Load the chatbot model
chatbot_model_name = "microsoft/DialoGPT-medium" #"gpt2"
chatbot_tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
chatbot_model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)
# Load the SQL Model
#wikisql take longer to process
#model_name = "microsoft/tapex-large-finetuned-wikisql" # You can change this to any other model from the list above
#model_name = "microsoft/tapex-base-finetuned-wikisql"
#model_name = "microsoft/tapex-base-finetuned-wtq"
model_name = "microsoft/tapex-large-finetuned-wtq"
#model_name = "google/tapas-base-finetuned-wtq"
sql_tokenizer = TapexTokenizer.from_pretrained(model_name)
sql_model = BartForConditionalGeneration.from_pretrained(model_name)
data = {
"year": [1896, 1900, 1904, 2004, 2008, 2012],
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)
def chatbot_response(user_message, history=[]):
# Check if the user input is a question
is_question = "?" in user_message
if is_question:
# If the user input is a question, use TAPEx for question-answering
#inputs = user_query
encoding = sql_tokenizer(table=table, query=user_message, return_tensors="pt")
outputs = sql_model.generate(**encoding)
response = sql_tokenizer.batch_decode(outputs, skip_special_tokens=True)
else:
# Generate chatbot response using the chatbot model
'''
inputs = chatbot_tokenizer.encode("User: " + user_message, return_tensors="pt")
outputs = chatbot_model.generate(inputs, max_length=100, num_return_sequences=1)
response = chatbot_tokenizer.decode(outputs[0], skip_special_tokens=True)
'''
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into the right format
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list
return response, history
# Define the chatbot and SQL execution interfaces using Gradio
chatbot_interface = gr.Interface(
fn=chatbot_response,
#inputs=gr.Textbox(prompt="You:"),
#outputs=gr.Textbox(),
inputs=["text", "state"],
outputs=["chatbot", "state"],
live=True,
capture_session=True,
title="ST Chatbot",
description="Type your message in the box above, and the chatbot will respond.",
)
# Launch the Gradio interface
if __name__ == "__main__":
chatbot_interface.launch()