Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
-
#from transformers import pipeline
|
3 |
-
|
4 |
-
"""
|
5 |
-
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
6 |
-
|
7 |
-
def predict(image):
|
8 |
-
predictions = pipeline(image)
|
9 |
-
return {p["label"]: p["score"] for p in predictions}
|
10 |
-
|
11 |
-
gr.Interface(
|
12 |
-
predict,
|
13 |
-
inputs=gr.inputs.Image(label="Upload hot dog candidate", type="filepath"),
|
14 |
-
outputs=gr.outputs.Label(num_top_classes=2),
|
15 |
-
title="Hot Dog? Or Not?",
|
16 |
-
).launch()
|
17 |
-
"""
|
18 |
-
|
19 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
20 |
|
21 |
def chatbot_response(user_message):
|
22 |
-
#
|
23 |
-
model_name = "gpt2" # Replace with the name of the pre-trained model you want to use
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
26 |
|
27 |
-
# Tokenize the user's message and generate the response
|
28 |
inputs = tokenizer.encode("User: " + user_message, return_tensors="pt")
|
29 |
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
|
30 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
|
32 |
return response
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
user_input = input("You: ")
|
49 |
-
|
50 |
-
if user_input.lower() == 'exit':
|
51 |
-
break
|
52 |
-
|
53 |
-
response = chatbot_response(user_input)
|
54 |
-
print("Chatbot:", response)
|
55 |
-
|
56 |
-
"""
|
57 |
-
|
58 |
-
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
def chatbot_response(user_message):
|
5 |
+
model_name = "gpt2" # You can change this to any other model from the list above
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
|
|
9 |
inputs = tokenizer.encode("User: " + user_message, return_tensors="pt")
|
10 |
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
|
11 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
12 |
|
13 |
return response
|
14 |
|
15 |
+
# Define the chatbot interface using Gradio
|
16 |
+
iface = gr.Interface(
|
17 |
+
fn=chatbot_response,
|
18 |
+
inputs=gr.Textbox(prompt="You:"),
|
19 |
+
outputs=gr.Textbox(),
|
20 |
+
live=True,
|
21 |
+
capture_session=True,
|
22 |
+
title="Chatbot",
|
23 |
+
description="Type your message in the box above, and the chatbot will respond.",
|
24 |
+
)
|
25 |
+
|
26 |
+
# Launch the Gradio interface
|
27 |
+
if __name__ == "__main__":
|
28 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|