teaevo commited on
Commit
4050efc
1 Parent(s): 5eca98b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -18
app.py CHANGED
@@ -11,16 +11,16 @@ import random
11
 
12
  #import pyodbc
13
 
 
14
  import pkg_resources
15
 
16
-
17
  # Get a list of installed packages and their versions
18
  installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}
19
 
20
  # Print the list of packages
21
  for package, version in installed_packages.items():
22
  print(f"{package}=={version}")
23
-
24
 
25
  '''
26
  # Replace the connection parameters with your SQL Server information
@@ -47,8 +47,8 @@ df = pd.read_sql_query(query, conn)
47
  conn.close()
48
  '''
49
 
50
- # Create a sample DataFrame with 3,000 records and 20 columns
51
  '''
 
52
  num_records = 100
53
  num_columns = 20
54
 
@@ -133,17 +133,6 @@ def sqlquery(input): #, history=[]):
133
  sql_outputs = sql_model.generate(**sql_encoding)
134
  sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True)
135
 
136
-
137
- #global conversation_history
138
- '''
139
- # Maintain the conversation history
140
- conversation_history.append("User: " + input + "\n")
141
- conversation_history.append("Bot: " + " ".join(sql_response) + "\n" )
142
-
143
- output = " ".join(conversation_history)
144
- return output
145
- '''
146
-
147
  #history.append((input, sql_response))
148
  conversation_history.append(("User", input))
149
  conversation_history.append(("Bot", sql_response))
@@ -153,7 +142,7 @@ def sqlquery(input): #, history=[]):
153
  conversation = "\n".join([f"{sender}: {msg}" for sender, msg in conversation_history])
154
 
155
  return conversation
156
-
157
  #return sql_response, history
158
 
159
  '''
@@ -164,8 +153,6 @@ def sqlquery(input): #, history=[]):
164
  html += "</div>"
165
  return html
166
  '''
167
- #return sql_response
168
-
169
 
170
  chat_interface = gr.Interface(
171
  fn=chat,
@@ -211,4 +198,37 @@ combine_interface = gr.TabbedInterface(
211
 
212
  if __name__ == '__main__':
213
  combine_interface.launch()
214
- #iface.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  #import pyodbc
13
 
14
+ '''
15
  import pkg_resources
16
 
 
17
  # Get a list of installed packages and their versions
18
  installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}
19
 
20
  # Print the list of packages
21
  for package, version in installed_packages.items():
22
  print(f"{package}=={version}")
23
+ '''
24
 
25
  '''
26
  # Replace the connection parameters with your SQL Server information
 
47
  conn.close()
48
  '''
49
 
 
50
  '''
51
+ # Create a sample DataFrame with 3,000 records and 20 columns
52
  num_records = 100
53
  num_columns = 20
54
 
 
133
  sql_outputs = sql_model.generate(**sql_encoding)
134
  sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True)
135
 
 
 
 
 
 
 
 
 
 
 
 
136
  #history.append((input, sql_response))
137
  conversation_history.append(("User", input))
138
  conversation_history.append(("Bot", sql_response))
 
142
  conversation = "\n".join([f"{sender}: {msg}" for sender, msg in conversation_history])
143
 
144
  return conversation
145
+ #return sql_response
146
  #return sql_response, history
147
 
148
  '''
 
153
  html += "</div>"
154
  return html
155
  '''
 
 
156
 
157
  chat_interface = gr.Interface(
158
  fn=chat,
 
198
 
199
  if __name__ == '__main__':
200
  combine_interface.launch()
201
+ #iface.launch(debug=True)
202
+
203
+
204
+ '''
205
+ batch_size = 10 # Number of records in each batch
206
+ num_records = 3000 # Total number of records in the dataset
207
+
208
+ for start_idx in range(0, num_records, batch_size):
209
+ end_idx = min(start_idx + batch_size, num_records)
210
+
211
+ # Get a batch of records
212
+ batch_data = dataset[start_idx:end_idx] # Replace with your dataset
213
+
214
+ # Tokenize the batch
215
+ tokenized_batch = tokenizer.batch_encode_plus(
216
+ batch_data, padding=True, truncation=True, return_tensors="pt"
217
+ )
218
+
219
+ # Perform inference
220
+ with torch.no_grad():
221
+ output = model.generate(
222
+ input_ids=tokenized_batch["input_ids"],
223
+ max_length=1024,
224
+ pad_token_id=tokenizer.eos_token_id,
225
+ )
226
+
227
+ # Decode the output and process the responses
228
+ responses = [tokenizer.decode(ids, skip_special_tokens=True) for ids in output]
229
+
230
+ # Process responses and maintain conversation context
231
+ # ...
232
+
233
+
234
+ '''