teaevo commited on
Commit
4da7ef5
1 Parent(s): c6591a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -48,7 +48,7 @@ conn.close()
48
  '''
49
 
50
  # Create a sample DataFrame with 3,000 records and 20 columns
51
- num_records = 50
52
  num_columns = 20
53
 
54
  data = {
@@ -59,8 +59,8 @@ data = {
59
  years = list(range(2000, 2023)) # Range of years
60
  cities = ["New York", "Los Angeles", "Chicago", "Houston", "Miami"] # List of cities
61
 
62
- data["year"] = [random.choice(years) for _ in range(num_records)]
63
- data["city"] = [random.choice(cities) for _ in range(num_records)]
64
 
65
  table = pd.DataFrame(data)
66
 
@@ -76,11 +76,17 @@ chatbot_model_name = "microsoft/DialoGPT-medium"
76
  tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
77
  model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)
78
 
 
 
 
79
  # Load the SQL Model
80
  sql_model_name = "microsoft/tapex-large-finetuned-wtq"
81
  sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name)
82
  sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name)
83
 
 
 
 
84
  #sql_response = None
85
  conversation_history = []
86
 
 
48
  '''
49
 
50
  # Create a sample DataFrame with 3,000 records and 20 columns
51
+ num_records = 30
52
  num_columns = 20
53
 
54
  data = {
 
59
  years = list(range(2000, 2023)) # Range of years
60
  cities = ["New York", "Los Angeles", "Chicago", "Houston", "Miami"] # List of cities
61
 
62
+ #data["year"] = [random.choice(years) for _ in range(num_records)]
63
+ #data["city"] = [random.choice(cities) for _ in range(num_records)]
64
 
65
  table = pd.DataFrame(data)
66
 
 
76
  tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
77
  model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)
78
 
79
+ cmax_token_limit = tokenizer.max_model_input_sizes[chatbot_model_name]
80
+ print(f"Chat bot Maximum token limit for {chatbot_model_name}: {cmax_token_limit}")
81
+
82
  # Load the SQL Model
83
  sql_model_name = "microsoft/tapex-large-finetuned-wtq"
84
  sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name)
85
  sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name)
86
 
87
+ max_token_limit = TapexTokenizer.max_model_input_sizes[sql_model_name]
88
+ print(f"SQL Maximum token limit for {sql_model_name}: {max_token_limit}")
89
+
90
  #sql_response = None
91
  conversation_history = []
92