Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,30 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import TapexTokenizer, BartForConditionalGeneration
|
3 |
import pandas as pd
|
4 |
-
import pkg_resources
|
5 |
|
|
|
6 |
# Get a list of installed packages and their versions
|
7 |
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}
|
8 |
|
9 |
# Print the list of packages
|
10 |
for package, version in installed_packages.items():
|
11 |
print(f"{package}=={version}")
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
#wikisql take longer to process
|
14 |
#model_name = "microsoft/tapex-large-finetuned-wikisql" # You can change this to any other model from the list above
|
15 |
#model_name = "microsoft/tapex-base-finetuned-wikisql"
|
16 |
-
|
17 |
model_name = "microsoft/tapex-large-finetuned-wtq"
|
18 |
#model_name = "microsoft/tapex-base-finetuned-wtq"
|
19 |
-
|
20 |
tokenizer = TapexTokenizer.from_pretrained(model_name)
|
21 |
model = BartForConditionalGeneration.from_pretrained(model_name)
|
22 |
|
@@ -27,26 +35,48 @@ data = {
|
|
27 |
table = pd.DataFrame.from_dict(data)
|
28 |
|
29 |
def chatbot_response(user_message):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
#inputs = tokenizer.encode("User: " +
|
32 |
-
inputs =
|
33 |
encoding = tokenizer(table=table, query=inputs, return_tensors="pt")
|
34 |
outputs = model.generate(**encoding)
|
35 |
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
36 |
|
37 |
return response
|
38 |
|
39 |
-
# Define the chatbot
|
40 |
-
|
41 |
fn=chatbot_response,
|
42 |
inputs=gr.Textbox(prompt="You:"),
|
43 |
outputs=gr.Textbox(),
|
44 |
live=True,
|
45 |
capture_session=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
title="ST SQL Chatbot",
|
47 |
description="Type your message in the box above, and the chatbot will respond.",
|
48 |
)
|
49 |
|
|
|
|
|
|
|
50 |
# Launch the Gradio interface
|
51 |
if __name__ == "__main__":
|
52 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from transformers import TapexTokenizer, BartForConditionalGeneration
|
4 |
import pandas as pd
|
5 |
+
#import pkg_resources
|
6 |
|
7 |
+
'''
|
8 |
# Get a list of installed packages and their versions
|
9 |
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}
|
10 |
|
11 |
# Print the list of packages
|
12 |
for package, version in installed_packages.items():
|
13 |
print(f"{package}=={version}")
|
14 |
+
'''
|
15 |
|
16 |
+
# Load the chatbot model
|
17 |
+
chatbot_model_name = "gpt2"
|
18 |
+
chatbot_tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
|
19 |
+
chatbot_model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)
|
20 |
+
|
21 |
+
|
22 |
+
# Load the SQL Model
|
23 |
#wikisql take longer to process
|
24 |
#model_name = "microsoft/tapex-large-finetuned-wikisql" # You can change this to any other model from the list above
|
25 |
#model_name = "microsoft/tapex-base-finetuned-wikisql"
|
|
|
26 |
model_name = "microsoft/tapex-large-finetuned-wtq"
|
27 |
#model_name = "microsoft/tapex-base-finetuned-wtq"
|
|
|
28 |
tokenizer = TapexTokenizer.from_pretrained(model_name)
|
29 |
model = BartForConditionalGeneration.from_pretrained(model_name)
|
30 |
|
|
|
35 |
table = pd.DataFrame.from_dict(data)
|
36 |
|
37 |
def chatbot_response(user_message):
|
38 |
+
# Generate chatbot response using the chatbot model
|
39 |
+
inputs = chatbot_tokenizer.encode("User: " + user_message, return_tensors="pt")
|
40 |
+
outputs = chatbot_model.generate(inputs, max_length=100, num_return_sequences=1)
|
41 |
+
response = chatbot_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
return response
|
44 |
+
|
45 |
+
def sql_response(user_query):
|
46 |
|
47 |
+
#inputs = tokenizer.encode("User: " + user_query, return_tensors="pt")
|
48 |
+
inputs = user_query
|
49 |
encoding = tokenizer(table=table, query=inputs, return_tensors="pt")
|
50 |
outputs = model.generate(**encoding)
|
51 |
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
52 |
|
53 |
return response
|
54 |
|
55 |
+
# Define the chatbot and SQL execution interfaces using Gradio
|
56 |
+
chatbot_interface = gr.Interface(
|
57 |
fn=chatbot_response,
|
58 |
inputs=gr.Textbox(prompt="You:"),
|
59 |
outputs=gr.Textbox(),
|
60 |
live=True,
|
61 |
capture_session=True,
|
62 |
+
title="Chatbot",
|
63 |
+
description="Type your message in the box above, and the chatbot will respond.",
|
64 |
+
)
|
65 |
+
|
66 |
+
# Define the chatbot interface using Gradio
|
67 |
+
sql_interface = gr.Interface(
|
68 |
+
fn=sql_response,
|
69 |
+
inputs=gr.Textbox(prompt="You:"),
|
70 |
+
outputs=gr.Textbox(),
|
71 |
+
live=True,
|
72 |
+
capture_session=True,
|
73 |
title="ST SQL Chatbot",
|
74 |
description="Type your message in the box above, and the chatbot will respond.",
|
75 |
)
|
76 |
|
77 |
+
# Combine the chatbot and SQL execution interfaces
|
78 |
+
combined_interface = gr.Interface([chatbot_interface, sql_interface], layout="horizontal")
|
79 |
+
|
80 |
# Launch the Gradio interface
|
81 |
if __name__ == "__main__":
|
82 |
+
combined_interface.launch()
|