teaevo commited on
Commit
5758bb4
1 Parent(s): 9b6d8c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -25
app.py CHANGED
@@ -64,9 +64,8 @@ sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name)
64
  sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name)
65
 
66
  #sql_response = None
67
- conversation_history = []
68
 
69
- def predict(input): #history=[]):
70
 
71
  #global sql_response
72
  # Check if the user input is a question
@@ -80,13 +79,7 @@ def predict(input): #history=[]):
80
 
81
  else:
82
  '''
83
-
84
- bot_input = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
85
- chat_history_ids = model.generate(bot_input, max_length=1000, pad_token_id=tokenizer.eos_token_id)
86
- response = tokenizer.decode(chat_history_ids[:, bot_input.shape[-1]:][0], skip_special_tokens=True)
87
- #return response
88
-
89
- '''
90
  # tokenize the new input sentence
91
  new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
92
 
@@ -99,20 +92,10 @@ def predict(input): #history=[]):
99
  # convert the tokens to text, and then split the responses into the right format
100
  response = tokenizer.decode(history[0]).split("<|endoftext|>")
101
  response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list
102
- '''
103
 
104
- return response #, history
105
 
106
- def chatbot_interface(user_input):
107
- global conversation_history
108
-
109
- conversation_history.append(user_input)
110
 
111
- dialog_prompt = "User: " + " ".join(conversation_history) + "\nBot:"
112
- response = predict(dialog_prompt)
113
- conversation_history.append(response)
114
- return response
115
-
116
  def sqlquery(input):
117
 
118
  sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt")
@@ -123,11 +106,13 @@ def sqlquery(input):
123
 
124
 
125
  chat_interface = gr.Interface(
126
- fn=chatbot_interface,
127
- inputs=gr.Textbox(prompt="You:"),
128
- outputs=gr.Textbox(),
129
- live=True,
130
-
 
 
131
  )
132
 
133
  sql_interface = gr.Interface(
 
64
  sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name)
65
 
66
  #sql_response = None
 
67
 
68
+ def predict(input, history=[]):
69
 
70
  #global sql_response
71
  # Check if the user input is a question
 
79
 
80
  else:
81
  '''
82
+
 
 
 
 
 
 
83
  # tokenize the new input sentence
84
  new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
85
 
 
92
  # convert the tokens to text, and then split the responses into the right format
93
  response = tokenizer.decode(history[0]).split("<|endoftext|>")
94
  response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list
 
95
 
96
+ return response, history
97
 
 
 
 
 
98
 
 
 
 
 
 
99
  def sqlquery(input):
100
 
101
  sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt")
 
106
 
107
 
108
  chat_interface = gr.Interface(
109
+ fn=predict,
110
+ theme="default",
111
+ css=".footer {display:none !important}",
112
+ inputs=["text", "state"],
113
+ outputs=["chatbot", "state"],
114
+ title="ST Chatbot",
115
+ description="Type your message in the box above, and the chatbot will respond.",
116
  )
117
 
118
  sql_interface = gr.Interface(