Update app.py
Browse files
app.py
CHANGED
@@ -44,13 +44,18 @@ def predict(input, history=[]):
|
|
44 |
|
45 |
if is_question:
|
46 |
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt")
|
47 |
-
sql_outputs = sql_model.generate(**sql_encoding)
|
48 |
-
sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True)
|
49 |
-
|
50 |
-
# Append the SQL model's response to the history
|
51 |
-
sql_response_ids = tokenizer.encode(sql_response + tokenizer.eos_token, return_tensors='pt')
|
52 |
-
history.extend(sql_response_ids[0].tolist()) # Add SQL response token IDs to history
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
'''
|
56 |
bot_input_ids = torch.cat([torch.LongTensor(history), sql_encoding], dim=-1)
|
@@ -61,15 +66,6 @@ def predict(input, history=[]):
|
|
61 |
else:
|
62 |
# tokenize the new input sentence
|
63 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
64 |
-
|
65 |
-
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt")
|
66 |
-
sql_outputs = sql_model.generate(**sql_encoding)
|
67 |
-
sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True)
|
68 |
-
|
69 |
-
# Append the SQL model's response to the history
|
70 |
-
sql_response_ids = tokenizer.encode(sql_response + tokenizer.eos_token, return_tensors='pt')
|
71 |
-
history.extend(sql_response_ids[0].tolist()) # Add SQL response token IDs to history
|
72 |
-
|
73 |
|
74 |
# append the new user input tokens to the chat history
|
75 |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
|
|
44 |
|
45 |
if is_question:
|
46 |
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt")
|
47 |
+
#sql_outputs = sql_model.generate(**sql_encoding)
|
48 |
+
#sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# append the new user input tokens to the chat history
|
51 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), sql_encoding], dim=-1)
|
52 |
+
|
53 |
+
# generate a response
|
54 |
+
history = sql_model.generate(bot_input_ids, max_length=1000, pad_token_id=sql_tokenizer.eos_token_id).tolist()
|
55 |
+
|
56 |
+
# convert the tokens to text, and then split the responses into the right format
|
57 |
+
response = sql_tokenizer.decode(history[0]).split("<|endoftext|>")
|
58 |
+
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list
|
59 |
|
60 |
'''
|
61 |
bot_input_ids = torch.cat([torch.LongTensor(history), sql_encoding], dim=-1)
|
|
|
66 |
else:
|
67 |
# tokenize the new input sentence
|
68 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# append the new user input tokens to the chat history
|
71 |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|