Update app.py
Browse files
app.py
CHANGED
@@ -51,6 +51,7 @@ conn.close()
|
|
51 |
num_records = 30
|
52 |
num_columns = 20
|
53 |
|
|
|
54 |
data = {
|
55 |
f"column_{i}": np.random.randint(0, 100, num_records) for i in range(num_columns)
|
56 |
}
|
@@ -58,17 +59,17 @@ data = {
|
|
58 |
# Randomize the year and city columns
|
59 |
years = list(range(2000, 2023)) # Range of years
|
60 |
cities = ["New York", "Los Angeles", "Chicago", "Houston", "Miami"] # List of cities
|
61 |
-
|
62 |
#data["year"] = [random.choice(years) for _ in range(num_records)]
|
63 |
#data["city"] = [random.choice(cities) for _ in range(num_records)]
|
64 |
|
65 |
-
table = pd.DataFrame(data)
|
66 |
|
67 |
data = {
|
68 |
"year": [1896, 1900, 1904, 2004, 2008, 2012],
|
69 |
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
|
70 |
}
|
71 |
-
|
72 |
|
73 |
|
74 |
# Load the chatbot model
|
@@ -84,8 +85,8 @@ sql_model_name = "microsoft/tapex-large-finetuned-wtq"
|
|
84 |
sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name)
|
85 |
sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name)
|
86 |
|
87 |
-
max_token_limit = sql_tokenizer.max_model_input_sizes[sql_model_name]
|
88 |
-
print(f"SQL Maximum token limit for {sql_model_name}: {max_token_limit}")
|
89 |
|
90 |
#sql_response = None
|
91 |
conversation_history = []
|
|
|
51 |
num_records = 30
|
52 |
num_columns = 20
|
53 |
|
54 |
+
'''
|
55 |
data = {
|
56 |
f"column_{i}": np.random.randint(0, 100, num_records) for i in range(num_columns)
|
57 |
}
|
|
|
59 |
# Randomize the year and city columns
|
60 |
years = list(range(2000, 2023)) # Range of years
|
61 |
cities = ["New York", "Los Angeles", "Chicago", "Houston", "Miami"] # List of cities
|
62 |
+
'''
|
63 |
#data["year"] = [random.choice(years) for _ in range(num_records)]
|
64 |
#data["city"] = [random.choice(cities) for _ in range(num_records)]
|
65 |
|
66 |
+
#table = pd.DataFrame(data)
|
67 |
|
68 |
data = {
|
69 |
"year": [1896, 1900, 1904, 2004, 2008, 2012],
|
70 |
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
|
71 |
}
|
72 |
+
table = pd.DataFrame.from_dict(data)
|
73 |
|
74 |
|
75 |
# Load the chatbot model
|
|
|
85 |
sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name)
|
86 |
sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name)
|
87 |
|
88 |
+
#max_token_limit = sql_tokenizer.max_model_input_sizes[sql_model_name]
|
89 |
+
#print(f"SQL Maximum token limit for {sql_model_name}: {max_token_limit}")
|
90 |
|
91 |
#sql_response = None
|
92 |
conversation_history = []
|