Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,35 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from transformers import TapexTokenizer, BartForConditionalGeneration
|
4 |
-
import pandas as pd
|
5 |
import torch
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
import os
|
10 |
-
#import pkg_resources
|
11 |
-
|
12 |
-
'''
|
13 |
-
# Get a list of installed packages and their versions
|
14 |
-
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}
|
15 |
-
|
16 |
-
# Print the list of packages
|
17 |
-
for package, version in installed_packages.items():
|
18 |
-
print(f"{package}=={version}")
|
19 |
-
'''
|
20 |
-
|
21 |
-
# Load the chatbot model
|
22 |
-
chatbot_model_name = "microsoft/DialoGPT-medium" #"gpt2"
|
23 |
-
chatbot_tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
|
24 |
-
chatbot_model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)
|
25 |
|
26 |
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
#model_name = "microsoft/tapex-base-finetuned-wikisql"
|
31 |
-
#model_name = "microsoft/tapex-base-finetuned-wtq"
|
32 |
-
model_name = "microsoft/tapex-large-finetuned-wtq"
|
33 |
-
#model_name = "google/tapas-base-finetuned-wtq"
|
34 |
-
sql_tokenizer = TapexTokenizer.from_pretrained(model_name)
|
35 |
-
sql_model = BartForConditionalGeneration.from_pretrained(model_name)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
|
40 |
-
}
|
41 |
-
table = pd.DataFrame.from_dict(data)
|
42 |
|
43 |
-
|
|
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
if is_question:
|
49 |
-
# If the user input is a question, use TAPEx for question-answering
|
50 |
-
#inputs = user_query
|
51 |
-
encoding = sql_tokenizer(table=table, query=user_message, return_tensors="pt")
|
52 |
-
#outputs = sql_model.generate(**encoding)
|
53 |
-
#response = sql_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
54 |
|
55 |
-
|
56 |
-
bot_input_ids = torch.cat([torch.LongTensor(history), encoding], dim=-1)
|
57 |
-
|
58 |
-
# generate a response
|
59 |
-
history = sql_model.generate(bot_input_ids, max_length=1000, pad_token_id=sql_tokenizer.eos_token_id).tolist()
|
60 |
-
|
61 |
-
# convert the tokens to text, and then split the responses into the right format
|
62 |
-
response = sql_tokenizer.decode(history[0]).split("<|endoftext|>")
|
63 |
-
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list
|
64 |
-
|
65 |
-
|
66 |
-
else:
|
67 |
-
# Generate chatbot response using the chatbot model
|
68 |
-
'''
|
69 |
-
inputs = chatbot_tokenizer.encode("User: " + user_message, return_tensors="pt")
|
70 |
-
outputs = chatbot_model.generate(inputs, max_length=100, num_return_sequences=1)
|
71 |
-
response = chatbot_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
72 |
-
'''
|
73 |
-
# tokenize the new input sentence
|
74 |
-
new_user_input_ids = chatbot_tokenizer.encode(user_message + chatbot_tokenizer.eos_token, return_tensors='pt')
|
75 |
-
|
76 |
-
# append the new user input tokens to the chat history
|
77 |
-
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
78 |
-
|
79 |
-
# generate a response
|
80 |
-
history = chatbot_model.generate(bot_input_ids, max_length=1000, pad_token_id=chatbot_tokenizer.eos_token_id).tolist()
|
81 |
-
|
82 |
-
# convert the tokens to text, and then split the responses into the right format
|
83 |
-
response = chatbot_tokenizer.decode(history[0]).split("<|endoftext|>")
|
84 |
-
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list
|
85 |
-
|
86 |
-
return response, history
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
#outputs=gr.Textbox(),
|
93 |
inputs=["text", "state"],
|
94 |
outputs=["chatbot", "state"],
|
95 |
-
live=True,
|
96 |
-
capture_session=True,
|
97 |
-
title="ST Chatbot",
|
98 |
-
description="Type your message in the box above, and the chatbot will respond.",
|
99 |
)
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
chatbot_interface.launch()
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
5 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
+
def predict(input, history=[]):
|
9 |
+
# tokenize the new input sentence
|
10 |
+
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# append the new user input tokens to the chat history
|
13 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
|
|
|
|
|
|
14 |
|
15 |
+
# generate a response
|
16 |
+
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
|
17 |
|
18 |
+
# convert the tokens to text, and then split the responses into the right format
|
19 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
20 |
+
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list
|
21 |
+
return response, history
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
interface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
theme="default",
|
29 |
+
css=".footer {display:none !important}",
|
|
|
30 |
inputs=["text", "state"],
|
31 |
outputs=["chatbot", "state"],
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
|
34 |
+
if __name__ == '__main__':
|
35 |
+
interface.launch()
|
|
|
|
|
|