import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import TapexTokenizer, BartForConditionalGeneration import pandas as pd import torch import numpy as np import time import os #import pkg_resources ''' # Get a list of installed packages and their versions installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set} # Print the list of packages for package, version in installed_packages.items(): print(f"{package}=={version}") ''' # Load the chatbot model chatbot_model_name = "microsoft/DialoGPT-medium" tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name) model = AutoModelForCausalLM.from_pretrained(chatbot_model_name) # Load the SQL Model sql_model_name = "microsoft/tapex-large-finetuned-wtq" sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name) sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name) data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) sql_response = None def predict(input, history=[]): global sql_response # Check if the user input is a question is_question = "?" in input if is_question: sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt") sql_outputs = sql_model.generate(**sql_encoding) sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True) # Append the SQL model's response to the history sql_response_ids = tokenizer.encode(sql_response + tokenizer.eos_token, return_tensors='pt') history.extend(sql_response_ids[0].tolist()) # Add SQL response token IDs to history ''' bot_input_ids = torch.cat([torch.LongTensor(history), sql_encoding], dim=-1) history = sql_model.generate(bot_input_ids, max_length=1000, pad_token_id=sql_tokenizer.eos_token_id).tolist() response = sql_tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] ''' else: # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt") sql_outputs = sql_model.generate(**sql_encoding) sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True) # Append the SQL model's response to the history sql_response_ids = tokenizer.encode(sql_response + tokenizer.eos_token, return_tensors='pt') history.extend(sql_response_ids[0].tolist()) # Add SQL response token IDs to history # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into the right format response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list return response, history import gradio as gr interface = gr.Interface( fn=predict, theme="default", css=".footer {display:none !important}", inputs=["text", "state"], outputs=["chatbot", "state"], title="ST Chatbot", description="Type your message in the box above, and the chatbot will respond.", ) if __name__ == '__main__': interface.launch()