import gradio as gr from transformers import TapexTokenizer, BartForConditionalGeneration import pandas as pd import pkg_resources # Get a list of installed packages and their versions installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set} # Print the list of packages for package, version in installed_packages.items(): print(f"{package}=={version}") #wikisql take longer to process #model_name = "microsoft/tapex-large-finetuned-wikisql" # You can change this to any other model from the list above #model_name = "microsoft/tapex-base-finetuned-wikisql" model_name = "microsoft/tapex-large-finetuned-wtq" #model_name = "microsoft/tapex-base-finetuned-wtq" tokenizer = TapexTokenizer.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) def chatbot_response(user_message): #inputs = tokenizer.encode("User: " + user_message, return_tensors="pt") inputs = user_message encoding = tokenizer(table=table, query=inputs, return_tensors="pt") outputs = model.generate(**encoding) response = tokenizer.batch_decode(outputs, skip_special_tokens=True) return response # Define the chatbot interface using Gradio iface = gr.Interface( fn=chatbot_response, inputs=gr.Textbox(prompt="You:"), outputs=gr.Textbox(), live=True, capture_session=True, title="ST SQL Chatbot", description="Type your message in the box above, and the chatbot will respond.", ) # Launch the Gradio interface if __name__ == "__main__": iface.launch()