import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import TapexTokenizer, BartForConditionalGeneration import pandas as pd import torch #import pkg_resources ''' # Get a list of installed packages and their versions installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set} # Print the list of packages for package, version in installed_packages.items(): print(f"{package}=={version}") ''' # Load the chatbot model chatbot_model_name = "microsoft/DialoGPT-medium" #"gpt2" chatbot_tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name) chatbot_model = AutoModelForCausalLM.from_pretrained(chatbot_model_name) # Load the SQL Model #wikisql take longer to process #model_name = "microsoft/tapex-large-finetuned-wikisql" # You can change this to any other model from the list above #model_name = "microsoft/tapex-base-finetuned-wikisql" #model_name = "microsoft/tapex-base-finetuned-wtq" #model_name = "microsoft/tapex-large-finetuned-wtq" model_name = "google/tapas-base-finetuned-wtq" sql_tokenizer = TapexTokenizer.from_pretrained(model_name) sql_model = BartForConditionalGeneration.from_pretrained(model_name) data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) new_chat = True def chatbot_response(user_message): global new_chat # Check if the user input is a question is_question = "?" in user_message if is_question: # If the user input is a question, use TAPEx for question-answering #inputs = user_query encoding = sql_tokenizer(table=table, query=user_message, return_tensors="pt") outputs = sql_model.generate(**encoding) response = sql_tokenizer.batch_decode(outputs, skip_special_tokens=True) else: # Generate chatbot response using the chatbot model ''' inputs = chatbot_tokenizer.encode("User: " + user_message, return_tensors="pt") outputs = chatbot_model.generate(inputs, max_length=100, num_return_sequences=1) response = chatbot_tokenizer.decode(outputs[0], skip_special_tokens=True) ''' # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = chatbot_tokenizer.encode(input(">> User:") + chatbot_tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if new_chat is False else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = chatbot_model.generate(bot_input_ids, max_length=1000, pad_token_id=chatbot_tokenizer.eos_token_id) response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) new_chat = False return response # Define the chatbot and SQL execution interfaces using Gradio chatbot_interface = gr.Interface( fn=chatbot_response, inputs=gr.Textbox(prompt="You:"), outputs=gr.Textbox(), live=True, capture_session=True, title="ST Chatbot", description="Type your message in the box above, and the chatbot will respond.", ) # Launch the Gradio interface if __name__ == "__main__": chatbot_interface.launch()