import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import TapexTokenizer, BartForConditionalGeneration import pandas as pd import gradio as gr import numpy as np import time import os import pyodbc #import pkg_resources ''' # Get a list of installed packages and their versions installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set} # Print the list of packages for package, version in installed_packages.items(): print(f"{package}=={version}") ''' ''' # Replace the connection parameters with your SQL Server information server = 'your_server' database = 'your_database' username = 'your_username' password = 'your_password' driver = 'SQL Server' # This depends on the ODBC driver installed on your system # Create the connection string connection_string = f'DRIVER={{{driver}}};SERVER={server};DATABASE={database};UID={username};PWD={password}' # Connect to the SQL Server conn = pyodbc.connect(connection_string) #============================================================================ # Replace "your_query" with your SQL query to fetch data from the database query = 'SELECT * FROM your_table_name' # Use pandas to read data from the SQL Server and store it in a DataFrame df = pd.read_sql_query(query, conn) # Close the SQL connection conn.close() ''' data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) # Load the chatbot model chatbot_model_name = "microsoft/DialoGPT-medium" tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name) model = AutoModelForCausalLM.from_pretrained(chatbot_model_name) # Load the SQL Model sql_model_name = "microsoft/tapex-large-finetuned-wtq" sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name) sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name) #sql_response = None def predict(input, history=[]): #global sql_response # Check if the user input is a question #is_question = "?" in input ''' if is_question: sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt") sql_outputs = sql_model.generate(**sql_encoding) sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True) else: ''' # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into the right format response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list return response, history def sqlquery(input): sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt") sql_outputs = sql_model.generate(**sql_encoding) sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True) return sql_response chat_interface = gr.Interface( fn=predict, theme="default", css=".footer {display:none !important}", inputs=["text", "state"], outputs=["chatbot", "state"], title="ST Chatbot", description="Type your message in the box above, and the chatbot will respond.", ) sql_interface = gr.Interface( fn=sqlquery, theme="default", inputs=gr.Textbox(prompt="You:"), outputs=gr.Textbox(), live=True, capture_session=True, title="ST SQL Chat", description="Type your message in the box above, and the chatbot will respond.", ) combine_interface = gr.TabbedInterface( interface_list=[ chat_interface, sql_interface ], tab_names=['Chatbot' ,'SQL Chat'], ) if __name__ == '__main__': combine_interface.launch()