Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import requests | |
import os | |
from io import StringIO | |
import datetime | |
# Set page configuration | |
st.set_page_config(page_title="Predict", page_icon="🔮", layout="wide") | |
st.title("Predict Sepsis") | |
def select_model(): | |
col1, col2 = st.columns(2) | |
with col1: | |
choice = st.selectbox('Select a model', options=['xgboost', 'random_forest'], key='select_model') | |
with col2: | |
pass | |
# if st.session_state['selected_model'] == 'Xgboost': | |
# pipeline = xgboost_pipeline() | |
# else: | |
# pipeline = load_random_forest_pipeline() | |
# encoder = joblib.load('models/encoder.joblib') | |
return choice | |
def make_prediction(): | |
selected_model = st.session_state['select_model'] | |
age = st.session_state['age'] | |
insurance = 1 if st.session_state['insurance'] == 'Yes' else 0 | |
m11 = st.session_state['m11'] | |
pr = st.session_state['pr'] | |
prg = st.session_state['prg'] | |
ts = st.session_state['ts'] | |
pl = st.session_state['pl'] | |
sk = st.session_state['sk'] | |
bd2 = st.session_state['bd2'] | |
base_url = 'https://gabcares-team-curium.hf.space/' | |
url = base_url + f"{ 'xgboost_prediction' if selected_model=='xgboost' else 'random_forest_prediction'}" | |
data = {'PRG': prg, 'PL': pl, 'PR': pr,'SK': sk, 'TS': ts, 'M11': m11, 'BD2': bd2, 'Age': age, 'Insurance': insurance} | |
# Send POST request with JSON data using the json parameter | |
response_status = requests.get(base_url) | |
if (response_status.status_code == 200): | |
response = requests.post(url, json=data,timeout=30) | |
pred_prob = (response.json()['result']) | |
prediction = pred_prob['prediction'] | |
probability = pred_prob['probability'] | |
st.session_state['prediction'] = prediction | |
st.session_state['probability'] = probability | |
else: | |
st.write('Unable to connect to the server.') | |
# Creating the form | |
def display_form(): | |
select_model() | |
with st.form('input_features'): | |
col1, col2 = st.columns(2) | |
with col1: | |
st.write('### Patient Demographics') | |
age = st.number_input('Age', min_value=0, max_value=100, step=1, key = 'age') | |
insurance = st.selectbox('Insurance', options = ['Yes', 'No'], key = 'insurance') | |
st.write('### Vital Signs') | |
m11 = st.number_input('BMI', min_value=10.0, format="%.2f",step = 1.00, key = 'm11') | |
pr = st.number_input('Blood Pressure', min_value=10.0, format="%.2f",step = 1.00, key = 'pr') | |
prg = st.number_input('PRG(plasma glucose)', min_value=10.0, format="%.2f",step = 1.00, key = 'prg') | |
with col2: | |
st.write('### Blood Work') | |
pl = st.number_input('PL(Blood Work Result 1)', min_value=10.0, format="%.2f",step = 1.00, key = 'pl') | |
sk = st.number_input('SK(Blood Work Result 2)', min_value=10.0, format="%.2f",step = 1.00, key = 'sk') | |
ts = st.number_input('TS(Blood Work Result 3)', min_value=10.0, format="%.2f",step = 1.00, key = 'ts') | |
bd2 = st.number_input('BD2(Blood Work Result 4)', min_value=10.0, format="%.2f",step = 1.00, key = 'bd2') | |
st.form_submit_button('Submit', on_click=make_prediction) | |
if __name__ == '__main__': | |
display_form() | |
final_prediction = st.session_state.get('prediction') | |
final_probability = st.session_state.get('probability') | |
if final_prediction is None: | |
st.write('Predictions show here!') | |
st.divider() | |
else: | |
if final_prediction.lower() == 'positive': | |
st.markdown(f'### Patient is likely to develop sepsis😞.') | |
st.markdown(f'## Probability: {final_probability:.2f}%') | |
else: | |
# st.markdown(f'## Sepsis: {final_prediction}') | |
st.markdown(f'### Patient is unlikely to develop sepsis😊.') | |
st.markdown(f'## Probability: {final_probability:.2f}%') |