File size: 7,603 Bytes
7a7b4e7
805c3e0
2523ce2
7a7b4e7
2523ce2
b861d01
d4de117
7a7b4e7
36ad45e
2523ce2
 
68773aa
2523ce2
78edbdd
7a7b4e7
 
 
 
2523ce2
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7b4e7
 
 
 
 
 
2523ce2
0a19f94
7a7b4e7
 
 
 
 
 
 
 
1ef8a31
 
7a7b4e7
 
0f33e7d
 
7a7b4e7
4516c53
0f33e7d
 
 
4516c53
0f33e7d
7a7b4e7
 
 
 
 
 
 
 
 
 
 
 
af40048
7a7b4e7
 
 
 
2523ce2
 
 
 
 
 
 
 
7a7b4e7
2523ce2
7a7b4e7
2523ce2
 
7a7b4e7
2523ce2
 
7a7b4e7
2523ce2
7a7b4e7
 
 
2523ce2
 
 
7a7b4e7
2523ce2
 
 
 
7a7b4e7
 
2523ce2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7b4e7
 
2523ce2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7b4e7
 
 
2523ce2
 
7a7b4e7
 
2523ce2
e1104cd
 
 
16d556e
7a7b4e7
 
 
 
 
2523ce2
 
7a7b4e7
b861d01
 
 
 
7a7b4e7
16d556e
b861d01
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import logging
import os
import re
import time
import traceback
from threading import Thread
from pathlib import Path

import openai
import pandas as pd
import requests
import tweepy
from huggingface_hub import upload_file
import gradio as gr
logger = logging.getLogger()
logging.basicConfig(level=logging.INFO)
logger.setLevel(logging.INFO)

bot_user_id = 1612106815096999936
bot_user_name = "RoastOrToastGPT"

persistent_storage_repo_id = "team6/roast-history"
persistent_storage_file_name = "history.csv"
persistent_storage_file_url = (
    f"https://huggingface.co/datasets/{persistent_storage_repo_id}/resolve/main/{persistent_storage_file_name}"
)

# will be used to remove the @roastortoastgpt from the tweet text (case insensitive)
pattern_at_mention = re.compile(re.escape("@roastortoastgpt"), re.IGNORECASE)

print(persistent_storage_file_url)

openai_key = os.environ.get("openai_api_key")
consumer_key = os.environ.get("consumer_key")
consumer_secret_key = os.environ.get("consumer_secret_key")
access_token = os.environ.get("access_token")
access_token_secret = os.environ.get("access_token_secret")
bearer_token = os.environ.get("bearer_token")
hf_token = os.environ.get("hf_token")

client = tweepy.Client(
    bearer_token=bearer_token,
    consumer_key=consumer_key,
    consumer_secret=consumer_secret_key,
    access_token=access_token,
    access_token_secret=access_token_secret,
    wait_on_rate_limit=True,
)


def response(text):
    openai.api_key = openai_key
    response = openai.Completion.create(
        engine="text-davinci-002",
        prompt=text,
        temperature=0.9,
        max_tokens=60,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=1.0,
    )

    return response.choices[0].text.strip()


def roast(text):
    return response(
        f"Humorously mock, humiliate and hurt the user's feelings with a well-timed joke, diss or comeback based on the info.\n\nInfo: {text}\n\nResponse:"
    )


def toast(text):
    return response(
        f"Give the user a genuine and unique compliment to make them feel good about themselves based on the info in a good style manner.\n\nInfo: {text}\n\nResponse:"
    )


def reply_to_mentions():
    df = pd.read_csv(persistent_storage_file_url)
    last_tweet_id = df.iloc[-1]["id"]

    # List of unique conversation ids that we've already responded to.
    # This is to prevent us from responding to the same conversation twice.
    all_convo_ids = df["conversation_id"].unique().tolist()

    # get the mentions. These are both direct mentions and replies to our tweets
    mentions = client.get_users_mentions(
        id=bot_user_id,
        expansions=["author_id", "in_reply_to_user_id", "referenced_tweets.id"],
        tweet_fields=["conversation_id"],
        since_id=last_tweet_id,
    )

    # if there are no new mentions, return
    if mentions.data is None:
        # log it
        logger.info("No new mentions found")
        return

    data_to_add = {"id": [], "conversation_id": []}
    # otherwise, iterate through the mentions and respond to them
    # we iterate through the mentions in reverse order so that we respond to the oldest mentions first
    for mention in reversed(mentions.data):

        if mention.author_id == bot_user_id:
            # don't respond to our own tweets
            logger.info(f"Skipping {mention.id} as it is from the bot")
            continue

        if mention.in_reply_to_user_id == bot_user_id:
            # don't respond to our own tweets
            logger.info(f"Skipping {mention.id} as the tweet to roast is from the bot")
            continue

        if not mention.referenced_tweets:
            logger.info(f"Skipping {mention.id} as it is not a reply")
            continue

        # if we've already responded to this conversation, skip it
        # also should catch the case where we've already responded to this tweet (though that shouldn't happen)
        if mention.conversation_id in all_convo_ids:
            logger.info(f"Skipping {mention.id} as we've already responded to this conversation")
            continue

        logger.info(f"Responding to {mention.id}, which said {mention.text}")

        tweet_to_roast_id = mention.referenced_tweets[0].id
        tweet_to_roast = client.get_tweet(tweet_to_roast_id)
        text_to_roast = tweet_to_roast.data.text

        mention_text = mention.text
        mention_text = pattern_at_mention.sub("", mention_text)
        logger.info(f"Mention Text: {mention_text}")

        if "roast" in mention_text.lower():
            logger.info(f"Roasting {mention.id}")
            text_out = roast(text_to_roast)
        elif "toast" in mention_text.lower():
            logger.info(f"Toasting {mention.id}")
            text_out = toast(text_to_roast)
        else:
            logger.info(f"Skipping {mention.id} as it is not a roast or toast")
            continue

        # Quote tweet the tweet to roast
        logger.info(f"Quote tweeting {tweet_to_roast_id} with response: {text_out}")
        quote_tweet_response = client.create_tweet(
            text=text_out,
            quote_tweet_id=tweet_to_roast_id,
        )
        print("QUOTE TWEET RESPONSE", quote_tweet_response.data)
        response_quote_tweet_id = quote_tweet_response.data.get("id")
        logger.info(f"Response Quote Tweet ID: {response_quote_tweet_id}")
        response_quote_tweet_url = f"https://twitter.com/{bot_user_name}/status/{response_quote_tweet_id}"
        logger.info(f"Response Quote Tweet URL: {response_quote_tweet_url}")

        # reply to the mention with the link to the response tweet
        logger.info(f"Responding to: {mention.id}")
        response_reply = client.create_tweet(
            text=f"Here's my response: {response_quote_tweet_url}",
            in_reply_to_tweet_id=mention.id,
        )
        response_reply_id = response_reply.data.get("id")
        logger.info(f"Response Reply ID: {response_reply_id}")

        # add the mention to the history
        data_to_add["id"].append(mention.id)
        data_to_add["conversation_id"].append(mention.conversation_id)

        # add a line break to the log
        logger.info("-" * 100)

    # update the history df and upload it to the persistent storage repo
    if len(data_to_add["id"]) == 0:
        logger.info("No new mentions to add to the history")
        return

    logger.info(f"Adding {len(data_to_add['id'])} new mentions to the history")

    df_to_add = pd.DataFrame(data_to_add)
    df = pd.concat([df, df_to_add], ignore_index=True)
    df.to_csv(persistent_storage_file_name, index=False)
    upload_file(
        repo_id=persistent_storage_repo_id,
        path_or_fileobj=persistent_storage_file_name,
        path_in_repo=persistent_storage_file_name,
        repo_type="dataset",
        token=hf_token,
    )


def main():
    logger.info("Starting up...")

    while True:
        try:
            # Dummy request to keep the Hugging Face Space awake
            # Not really working as far as I can tell
            # logger.info("Pinging Hugging Face Space...")
            # requests.get("https://team6-roast.hf.space/", timeout=5)
            logger.info("Replying to mentions...")
            reply_to_mentions()
        except Exception as e:
            logger.error(e)
            traceback.print_exc()

        logger.info("Sleeping for 30 seconds...")
        time.sleep(30)

with gr.Blocks() as demo:
    gr.Markdown(Path('README.md').read_text())

thread = Thread(target=main, daemon=True)

if __name__ == "__main__":
    thread.start()
    demo.launch()