telmo000's picture
add app and requirements
c95100d
raw
history blame
1.46 kB
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = f"telmo000/bloom-positive-reframing"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
load_in_8bit=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def make_inference(original_text):
batch = tokenizer(
f"### Negative sentence:\n{original_text}\n\n### Reframing strategy: ['optimism']\n\n### Reframing sentence:\n",
return_tensors="pt",
)
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=50)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
gr.Interface(
make_inference,
[
gr.inputs.Textbox(lines=3, label="Original Text"),
],
gr.outputs.Textbox(label="Ad"),
title="Bloom positive reframing",
description="Bloom positive reframing is a BLOOM-base generative model adjusted to the sentiment transfer task, where the objective is to reverse the sentiment polarity of a text without contradicting the original meaning. ",
).launch()