import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"telmo000/bloom-positive-reframing" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def make_inference(original_text): str_strategy_prompt = f"### Negative sentence:\n{original_text}\n\n### Reframing strategy:\n" batch_1 = tokenizer( str_strategy_prompt, return_tensors="pt", ) with torch.cuda.amp.autocast(): output_tokens_1 = model.generate(**batch_1, max_new_tokens=50) output_1 = tokenizer.decode(output_tokens_1[0], skip_special_tokens=True) reframing_strategy = output_1[len(str_strategy_prompt):].partition('\n')[0] str_reframing_prompt = f"### Negative sentence:\n{original_text}\n\n### Reframing strategy:\n{reframing_strategy}\n\n### Reframing sentence:\n" batch_2 = tokenizer( str_reframing_prompt, return_tensors="pt", ) with torch.cuda.amp.autocast(): output_tokens_2 = model.generate(**batch_2, max_new_tokens=100) output_2 = tokenizer.decode(output_tokens_2[0], skip_special_tokens=True) reframing_sentence = output_2[len(str_reframing_prompt):] return reframing_sentence if __name__ == "__main__": # make a gradio interface import gradio as gr gr.Interface( make_inference, [ gr.inputs.Textbox(lines=3, label="Original Text"), ], gr.outputs.Textbox(label="Reframed Text"), title="Bloom positive reframing", description="Bloom positive reframing is a BLOOM-base generative model adjusted to the sentiment transfer task, where the objective is to reverse the sentiment polarity of a text without contradicting the original meaning. ", ).launch()