File size: 7,817 Bytes
6654f6a
 
 
83d4b6c
7c1a14b
6654f6a
 
 
 
 
 
 
 
 
 
 
7c1a14b
 
 
 
 
 
6654f6a
 
 
 
 
 
 
 
 
 
 
 
 
 
202e81a
6654f6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173e979
6654f6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1a14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36d01c8
7c1a14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6654f6a
7c1a14b
 
 
 
6654f6a
7c1a14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f5a7c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os

import numpy as np
import spaces
import gradio as gr
import torch
from diffusers.training_utils import set_seed

from depthcrafter.depth_crafter_ppl import DepthCrafterPipeline
from depthcrafter.unet import DiffusersUNetSpatioTemporalConditionModelDepthCrafter

import uuid
import random
from huggingface_hub import hf_hub_download

from depthcrafter.utils import read_video_frames, vis_sequence_depth, save_video

examples = [
    ["examples/example_01.mp4", 25, 1.2, 1024, 195],
]


unet = DiffusersUNetSpatioTemporalConditionModelDepthCrafter.from_pretrained(
    "tencent/DepthCrafter",
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
)
pipe = DepthCrafterPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid-xt",
    unet=unet,
    torch_dtype=torch.float16,
    variant="fp16",
)
pipe.to("cuda")


@spaces.GPU(duration=120)
def infer_depth(
    video: str,
    num_denoising_steps: int,
    guidance_scale: float,
    max_res: int = 1024,
    process_length: int = 195,
    #
    save_folder: str = "./demo_output",
    window_size: int = 110,
    overlap: int = 25,
    target_fps: int = 15,
    seed: int = 42,
    track_time: bool = True,
    save_npz: bool = False,
):
    set_seed(seed)
    pipe.enable_xformers_memory_efficient_attention()

    frames, target_fps = read_video_frames(video, process_length, target_fps, max_res)
    print(f"==> video name: {video}, frames shape: {frames.shape}")

    # inference the depth map using the DepthCrafter pipeline
    with torch.inference_mode():
        res = pipe(
            frames,
            height=frames.shape[1],
            width=frames.shape[2],
            output_type="np",
            guidance_scale=guidance_scale,
            num_inference_steps=num_denoising_steps,
            window_size=window_size,
            overlap=overlap,
            track_time=track_time,
        ).frames[0]
    # convert the three-channel output to a single channel depth map
    res = res.sum(-1) / res.shape[-1]
    # normalize the depth map to [0, 1] across the whole video
    res = (res - res.min()) / (res.max() - res.min())
    # visualize the depth map and save the results
    vis = vis_sequence_depth(res)
    # save the depth map and visualization with the target FPS
    save_path = os.path.join(save_folder, os.path.splitext(os.path.basename(video))[0])
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    if save_npz:
        np.savez_compressed(save_path + ".npz", depth=res)
    save_video(res, save_path + "_depth.mp4", fps=target_fps)
    save_video(vis, save_path + "_vis.mp4", fps=target_fps)
    save_video(frames, save_path + "_input.mp4", fps=target_fps)
    return [
        save_path + "_input.mp4",
        save_path + "_vis.mp4",
        # save_path + "_depth.mp4",
    ]


def construct_demo():
    with gr.Blocks(analytics_enabled=False) as depthcrafter_iface:
        gr.Markdown(
            """
            <div align='center'> <h1> DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos </span> </h1> \
                        <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
                        <a href='https://wbhu.github.io'>Wenbo Hu</a>, \
                        <a href='https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en'>Xiangjun Gao</a>, \
                        <a href='https://xiaoyu258.github.io/'>Xiaoyu Li</a>, \
                        <a href='https://scholar.google.com/citations?user=tZ3dS3MAAAAJ&hl=en'>Sijie Zhao</a>, \
                        <a href='https://vinthony.github.io/academic'> Xiaodong Cun</a>, \
                        <a href='https://yzhang2016.github.io'>Yong Zhang</a>, \
                        <a href='https://home.cse.ust.hk/~quan'>Long Quan</a>, \
                        <a href='https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en'>Ying Shan</a>\
                    </h2> \
                    <a style='font-size:18px;color: #000000'>If you find DepthCrafter useful, please help ⭐ the </a>\
                    <a style='font-size:18px;color: #FF5DB0' href='https://github.com/wbhu/DepthCrafter'>[Github Repo]</a>\
                    <a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
                        <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2409.02095'> [ArXiv] </a>\
                        <a style='font-size:18px;color: #000000' href='https://depthcrafter.github.io/'> [Project Page] </a> </div>
            """
        )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_video = gr.Video(label="Input Video")

            # with gr.Tab(label="Output"):
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    output_video_1 = gr.Video(
                        label="Preprocessed video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )
                    output_video_2 = gr.Video(
                        label="Generated Depth Video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Row(equal_height=False):
                    with gr.Accordion("Advanced Settings", open=False):
                        num_denoising_steps = gr.Slider(
                            label="num denoising steps",
                            minimum=1,
                            maximum=25,
                            value=25,
                            step=1,
                        )
                        guidance_scale = gr.Slider(
                            label="cfg scale",
                            minimum=1.0,
                            maximum=1.2,
                            value=1.2,
                            step=0.1,
                        )
                        max_res = gr.Slider(
                            label="max resolution",
                            minimum=512,
                            maximum=2048,
                            value=1024,
                            step=64,
                        )
                        process_length = gr.Slider(
                            label="process length",
                            minimum=1,
                            maximum=280,
                            value=195,
                            step=1,
                        )
                    generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass

        gr.Examples(
            examples=examples,
            inputs=[
                input_video,
                num_denoising_steps,
                guidance_scale,
                max_res,
                process_length,
            ],
            outputs=[output_video_1, output_video_2],
            fn=infer_depth,
            cache_examples=False,
        )

        generate_btn.click(
            fn=infer_depth,
            inputs=[
                input_video,
                num_denoising_steps,
                guidance_scale,
                max_res,
                process_length,
            ],
            outputs=[output_video_1, output_video_2],
        )

    return depthcrafter_iface


demo = construct_demo()

if __name__ == "__main__":
    demo.queue()
    # demo.launch(server_name="0.0.0.0", server_port=80, debug=True)
    demo.launch(share=True)