Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shutil | |
import time | |
from glob import glob | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
import uvicorn | |
from fastapi import FastAPI | |
from fastapi.staticfiles import StaticFiles | |
def get_example_img_list(): | |
print('Loading example img list ...') | |
return sorted(glob('./assets/example_images/*.png')) | |
def get_example_txt_list(): | |
print('Loading example txt list ...') | |
txt_list = list() | |
for line in open('./assets/example_prompts.txt'): | |
txt_list.append(line.strip()) | |
return txt_list | |
def gen_save_folder(max_size=60): | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
exists = set(int(_) for _ in os.listdir(SAVE_DIR) if not _.startswith(".")) | |
cur_id = min(set(range(max_size)) - exists) if len(exists) < max_size else -1 | |
if os.path.exists(f"{SAVE_DIR}/{(cur_id + 1) % max_size}"): | |
shutil.rmtree(f"{SAVE_DIR}/{(cur_id + 1) % max_size}") | |
print(f"remove {SAVE_DIR}/{(cur_id + 1) % max_size} success !!!") | |
save_folder = f"{SAVE_DIR}/{max(0, cur_id)}" | |
os.makedirs(save_folder, exist_ok=True) | |
print(f"mkdir {save_folder} suceess !!!") | |
return save_folder | |
def export_mesh(mesh, save_folder, textured=False): | |
if textured: | |
path = os.path.join(save_folder, f'textured_mesh.glb') | |
else: | |
path = os.path.join(save_folder, f'white_mesh.glb') | |
mesh.export(path, include_normals=textured) | |
return path | |
def build_model_viewer_html(save_folder, height=660, width=790, textured=False): | |
if textured: | |
related_path = f"./textured_mesh.glb" | |
template_name = './assets/modelviewer-textured-template.html' | |
output_html_path = os.path.join(save_folder, f'textured_mesh.html') | |
else: | |
related_path = f"./white_mesh.glb" | |
template_name = './assets/modelviewer-template.html' | |
output_html_path = os.path.join(save_folder, f'white_mesh.html') | |
with open(os.path.join(CURRENT_DIR, template_name), 'r') as f: | |
template_html = f.read() | |
obj_html = f""" | |
<div class="column is-mobile is-centered"> | |
<model-viewer style="height: {height - 10}px; width: {width}px;" rotation-per-second="10deg" id="modelViewer" | |
src="{related_path}/" disable-tap | |
environment-image="neutral" auto-rotate camera-target="0m 0m 0m" orientation="0deg 0deg 170deg" shadow-intensity=".9" | |
ar auto-rotate camera-controls> | |
</model-viewer> | |
</div> | |
""" | |
with open(output_html_path, 'w') as f: | |
f.write(template_html.replace('<model-viewer>', obj_html)) | |
output_html_path = output_html_path.replace(SAVE_DIR + '/', '') | |
iframe_tag = f'<iframe src="/static/{output_html_path}" height="{height}" width="100%" frameborder="0"></iframe>' | |
print(f'Find html {output_html_path}, {os.path.exists(output_html_path)}') | |
return f""" | |
<div style='height: {height}; width: 100%;'> | |
{iframe_tag} | |
</div> | |
""" | |
def _gen_shape( | |
caption, | |
image, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False, | |
): | |
if caption: print('prompt is', caption) | |
save_folder = gen_save_folder() | |
stats = {} | |
time_meta = {} | |
start_time_0 = time.time() | |
if image is None: | |
start_time = time.time() | |
try: | |
image = t2i_worker(caption) | |
except Exception as e: | |
raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.") | |
time_meta['text2image'] = time.time() - start_time | |
image.save(os.path.join(save_folder, 'input.png')) | |
print(image.mode) | |
if check_box_rembg or image.mode == "RGB": | |
start_time = time.time() | |
image = rmbg_worker(image.convert('RGB')) | |
time_meta['rembg'] = time.time() - start_time | |
image.save(os.path.join(save_folder, 'rembg.png')) | |
# image to white model | |
start_time = time.time() | |
generator = torch.Generator() | |
generator = generator.manual_seed(int(seed)) | |
mesh = i23d_worker( | |
image=image, | |
num_inference_steps=steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
octree_resolution=octree_resolution | |
)[0] | |
mesh = FloaterRemover()(mesh) | |
mesh = DegenerateFaceRemover()(mesh) | |
mesh = FaceReducer()(mesh) | |
stats['number_of_faces'] = mesh.faces.shape[0] | |
stats['number_of_vertices'] = mesh.vertices.shape[0] | |
time_meta['image_to_textured_3d'] = {'total': time.time() - start_time} | |
time_meta['total'] = time.time() - start_time_0 | |
stats['time'] = time_meta | |
return mesh, save_folder | |
def generation_all( | |
caption, | |
image, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False | |
): | |
mesh, save_folder = _gen_shape( | |
caption, | |
image, | |
steps=steps, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
octree_resolution=octree_resolution, | |
check_box_rembg=check_box_rembg | |
) | |
path = export_mesh(mesh, save_folder, textured=False) | |
model_viewer_html = build_model_viewer_html(save_folder, height=596, width=700) | |
textured_mesh = texgen_worker(mesh, image) | |
path_textured = export_mesh(textured_mesh, save_folder, textured=True) | |
model_viewer_html_textured = build_model_viewer_html(save_folder, height=596, width=700, textured=True) | |
return ( | |
gr.update(value=path, visible=True), | |
gr.update(value=path_textured, visible=True), | |
model_viewer_html, | |
model_viewer_html_textured, | |
) | |
def shape_generation( | |
caption, | |
image, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False, | |
): | |
mesh, save_folder = _gen_shape( | |
caption, | |
image, | |
steps=steps, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
octree_resolution=octree_resolution, | |
check_box_rembg=check_box_rembg | |
) | |
path = export_mesh(mesh, save_folder, textured=False) | |
model_viewer_html = build_model_viewer_html(save_folder, height=596, width=700) | |
return ( | |
gr.update(value=path, visible=True), | |
model_viewer_html, | |
) | |
def build_app(): | |
title_html = """ | |
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px"> | |
Hunyuan3D-2: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation | |
</div> | |
<div align="center"> | |
Tencent Hunyuan3D Team | |
</div> | |
<div align="center"> | |
<a href="https://github.com/tencent/Hunyuan3D-2">Github Page</a>   | |
<a href="http://3d-models.hunyuan.tencent.com">Homepage</a>   | |
<a href="#">Technical Report</a>   | |
<a href="https://huggingface.co/Tencent/Hunyuan3D-2"> Models</a>   | |
</div> | |
""" | |
with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.0') as demo: | |
gr.HTML(title_html) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Tabs() as tabs_prompt: | |
with gr.Tab('Image Prompt', id='tab_img_prompt') as tab_ip: | |
image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290) | |
with gr.Row(): | |
check_box_rembg = gr.Checkbox(value=True, label='Remove Background') | |
with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I) as tab_tp: | |
caption = gr.Textbox(label='Text Prompt', | |
placeholder='HunyuanDiT will be used to generate image.', | |
info='Example: A 3D model of a cute cat, white background') | |
with gr.Accordion('Advanced Options', open=False): | |
num_steps = gr.Slider(maximum=50, minimum=20, value=30, step=1, label='Inference Steps') | |
octree_resolution = gr.Dropdown([256, 384, 512], value=256, label='Octree Resolution') | |
cfg_scale = gr.Number(value=5.5, label='Guidance Scale') | |
seed = gr.Slider(maximum=1e7, minimum=0, value=1234, label='Seed') | |
with gr.Group(): | |
btn = gr.Button(value='Generate Shape Only', variant='primary') | |
btn_all = gr.Button(value='Generate Shape and Texture', variant='primary', visible=HAS_TEXTUREGEN) | |
with gr.Group(): | |
file_out = gr.File(label="File", visible=False) | |
file_out2 = gr.File(label="File", visible=False) | |
with gr.Column(scale=5): | |
with gr.Tabs(): | |
with gr.Tab('Generated Mesh') as mesh1: | |
html_output1 = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
with gr.Tab('Generated Textured Mesh') as mesh2: | |
html_output2 = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
with gr.Column(scale=2): | |
with gr.Tabs() as gallery: | |
with gr.Tab('Image to 3D Gallery', id='tab_img_gallery') as tab_gi: | |
with gr.Row(): | |
gr.Examples(examples=example_is, inputs=[image], | |
label="Image Prompts", examples_per_page=18) | |
with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery', visible=HAS_T2I) as tab_gt: | |
with gr.Row(): | |
gr.Examples(examples=example_ts, inputs=[caption], | |
label="Text Prompts", examples_per_page=18) | |
if not HAS_TEXTUREGEN: | |
gr.HTML(""") | |
<div style="margin-top: 20px;"> | |
<b>Warning: </b> | |
Texture synthesis is disable due to missing requirements, | |
please install requirements following README.md to activate it. | |
</div> | |
""") | |
if not args.enable_t23d: | |
gr.HTML(""" | |
<div style="margin-top: 20px;"> | |
<b>Warning: </b> | |
Text to 3D is disable. To activate it, please run `python gradio_app.py --enable_t23d`. | |
</div> | |
""") | |
tab_gi.select(fn=lambda: gr.update(selected='tab_img_prompt'), outputs=tabs_prompt) | |
if HAS_T2I: | |
tab_gt.select(fn=lambda: gr.update(selected='tab_txt_prompt'), outputs=tabs_prompt) | |
btn.click( | |
shape_generation, | |
inputs=[ | |
caption, | |
image, | |
num_steps, | |
cfg_scale, | |
seed, | |
octree_resolution, | |
check_box_rembg, | |
], | |
outputs=[file_out, html_output1] | |
).then( | |
lambda: gr.update(visible=True), | |
outputs=[file_out], | |
) | |
btn_all.click( | |
generation_all, | |
inputs=[ | |
caption, | |
image, | |
num_steps, | |
cfg_scale, | |
seed, | |
octree_resolution, | |
check_box_rembg, | |
], | |
outputs=[file_out, file_out2, html_output1, html_output2] | |
).then( | |
lambda: (gr.update(visible=True), gr.update(visible=True)), | |
outputs=[file_out, file_out2], | |
) | |
return demo | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--port', type=int, default=8080) | |
parser.add_argument('--cache-path', type=str, default='gradio_cache') | |
parser.add_argument('--enable_t23d', action='store_true') | |
args = parser.parse_args() | |
SAVE_DIR = args.cache_path | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
HTML_OUTPUT_PLACEHOLDER = """ | |
<div style='height: 596px; width: 100%; border-radius: 8px; border-color: #e5e7eb; order-style: solid; border-width: 1px;'></div> | |
""" | |
INPUT_MESH_HTML = """ | |
<div style='height: 490px; width: 100%; border-radius: 8px; | |
border-color: #e5e7eb; order-style: solid; border-width: 1px;'> | |
</div> | |
""" | |
example_is = get_example_img_list() | |
example_ts = get_example_txt_list() | |
try: | |
from hy3dgen.texgen import Hunyuan3DPaintPipeline | |
texgen_worker = Hunyuan3DPaintPipeline.from_pretrained('tencent/Hunyuan3D-2') | |
HAS_TEXTUREGEN = True | |
except Exception as e: | |
print(e) | |
print("Failed to load texture generator.") | |
print('Please try to install requirements by following README.md') | |
HAS_TEXTUREGEN = False | |
HAS_T2I = False | |
if args.enable_t23d: | |
from hy3dgen.text2image import HunyuanDiTPipeline | |
t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled') | |
HAS_T2I = True | |
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, \ | |
Hunyuan3DDiTFlowMatchingPipeline | |
from hy3dgen.rembg import BackgroundRemover | |
rmbg_worker = BackgroundRemover() | |
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained('tencent/Hunyuan3D-2') | |
floater_remove_worker = FloaterRemover() | |
degenerate_face_remove_worker = DegenerateFaceRemover() | |
face_reduce_worker = FaceReducer() | |
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2 | |
# create a FastAPI app | |
app = FastAPI() | |
# create a static directory to store the static files | |
static_dir = Path('./gradio_cache') | |
static_dir.mkdir(parents=True, exist_ok=True) | |
app.mount("/static", StaticFiles(directory=static_dir), name="static") | |
demo = build_app() | |
app = gr.mount_gradio_app(app, demo, path="/") | |
uvicorn.run(app, host="0.0.0.0", port=args.port) | |