# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. from typing import Tuple, List, Union, Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from skimage import measure from tqdm import tqdm class FourierEmbedder(nn.Module): """The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts each feature dimension of `x[..., i]` into: [ sin(x[..., i]), sin(f_1*x[..., i]), sin(f_2*x[..., i]), ... sin(f_N * x[..., i]), cos(x[..., i]), cos(f_1*x[..., i]), cos(f_2*x[..., i]), ... cos(f_N * x[..., i]), x[..., i] # only present if include_input is True. ], here f_i is the frequency. Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs]. If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...]; Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]. Args: num_freqs (int): the number of frequencies, default is 6; logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]; input_dim (int): the input dimension, default is 3; include_input (bool): include the input tensor or not, default is True. Attributes: frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1); out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1), otherwise, it is input_dim * num_freqs * 2. """ def __init__(self, num_freqs: int = 6, logspace: bool = True, input_dim: int = 3, include_input: bool = True, include_pi: bool = True) -> None: """The initialization""" super().__init__() if logspace: frequencies = 2.0 ** torch.arange( num_freqs, dtype=torch.float32 ) else: frequencies = torch.linspace( 1.0, 2.0 ** (num_freqs - 1), num_freqs, dtype=torch.float32 ) if include_pi: frequencies *= torch.pi self.register_buffer("frequencies", frequencies, persistent=False) self.include_input = include_input self.num_freqs = num_freqs self.out_dim = self.get_dims(input_dim) def get_dims(self, input_dim): temp = 1 if self.include_input or self.num_freqs == 0 else 0 out_dim = input_dim * (self.num_freqs * 2 + temp) return out_dim def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward process. Args: x: tensor of shape [..., dim] Returns: embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)] where temp is 1 if include_input is True and 0 otherwise. """ if self.num_freqs > 0: embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1) if self.include_input: return torch.cat((x, embed.sin(), embed.cos()), dim=-1) else: return torch.cat((embed.sin(), embed.cos()), dim=-1) else: return x class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if self.drop_prob == 0. or not self.training: return x keep_prob = 1 - self.drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and self.scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor def extra_repr(self): return f'drop_prob={round(self.drop_prob, 3):0.3f}' class MLP(nn.Module): def __init__( self, *, width: int, output_width: int = None, drop_path_rate: float = 0.0 ): super().__init__() self.width = width self.c_fc = nn.Linear(width, width * 4) self.c_proj = nn.Linear(width * 4, output_width if output_width is not None else width) self.gelu = nn.GELU() self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() def forward(self, x): return self.drop_path(self.c_proj(self.gelu(self.c_fc(x)))) class QKVMultiheadCrossAttention(nn.Module): def __init__( self, *, heads: int, n_data: Optional[int] = None, width=None, qk_norm=False, norm_layer=nn.LayerNorm ): super().__init__() self.heads = heads self.n_data = n_data self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() def forward(self, q, kv): _, n_ctx, _ = q.shape bs, n_data, width = kv.shape attn_ch = width // self.heads // 2 q = q.view(bs, n_ctx, self.heads, -1) kv = kv.view(bs, n_data, self.heads, -1) k, v = torch.split(kv, attn_ch, dim=-1) q = self.q_norm(q) k = self.k_norm(k) q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v)) out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1) return out class MultiheadCrossAttention(nn.Module): def __init__( self, *, width: int, heads: int, qkv_bias: bool = True, n_data: Optional[int] = None, data_width: Optional[int] = None, norm_layer=nn.LayerNorm, qk_norm: bool = False ): super().__init__() self.n_data = n_data self.width = width self.heads = heads self.data_width = width if data_width is None else data_width self.c_q = nn.Linear(width, width, bias=qkv_bias) self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias) self.c_proj = nn.Linear(width, width) self.attention = QKVMultiheadCrossAttention( heads=heads, n_data=n_data, width=width, norm_layer=norm_layer, qk_norm=qk_norm ) def forward(self, x, data): x = self.c_q(x) data = self.c_kv(data) x = self.attention(x, data) x = self.c_proj(x) return x class ResidualCrossAttentionBlock(nn.Module): def __init__( self, *, n_data: Optional[int] = None, width: int, heads: int, data_width: Optional[int] = None, qkv_bias: bool = True, norm_layer=nn.LayerNorm, qk_norm: bool = False ): super().__init__() if data_width is None: data_width = width self.attn = MultiheadCrossAttention( n_data=n_data, width=width, heads=heads, data_width=data_width, qkv_bias=qkv_bias, norm_layer=norm_layer, qk_norm=qk_norm ) self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6) self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6) self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6) self.mlp = MLP(width=width) def forward(self, x: torch.Tensor, data: torch.Tensor): x = x + self.attn(self.ln_1(x), self.ln_2(data)) x = x + self.mlp(self.ln_3(x)) return x class QKVMultiheadAttention(nn.Module): def __init__( self, *, heads: int, n_ctx: int, width=None, qk_norm=False, norm_layer=nn.LayerNorm ): super().__init__() self.heads = heads self.n_ctx = n_ctx self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() def forward(self, qkv): bs, n_ctx, width = qkv.shape attn_ch = width // self.heads // 3 qkv = qkv.view(bs, n_ctx, self.heads, -1) q, k, v = torch.split(qkv, attn_ch, dim=-1) q = self.q_norm(q) k = self.k_norm(k) q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v)) out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1) return out class MultiheadAttention(nn.Module): def __init__( self, *, n_ctx: int, width: int, heads: int, qkv_bias: bool, norm_layer=nn.LayerNorm, qk_norm: bool = False, drop_path_rate: float = 0.0 ): super().__init__() self.n_ctx = n_ctx self.width = width self.heads = heads self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias) self.c_proj = nn.Linear(width, width) self.attention = QKVMultiheadAttention( heads=heads, n_ctx=n_ctx, width=width, norm_layer=norm_layer, qk_norm=qk_norm ) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() def forward(self, x): x = self.c_qkv(x) x = self.attention(x) x = self.drop_path(self.c_proj(x)) return x class ResidualAttentionBlock(nn.Module): def __init__( self, *, n_ctx: int, width: int, heads: int, qkv_bias: bool = True, norm_layer=nn.LayerNorm, qk_norm: bool = False, drop_path_rate: float = 0.0, ): super().__init__() self.attn = MultiheadAttention( n_ctx=n_ctx, width=width, heads=heads, qkv_bias=qkv_bias, norm_layer=norm_layer, qk_norm=qk_norm, drop_path_rate=drop_path_rate ) self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6) self.mlp = MLP(width=width, drop_path_rate=drop_path_rate) self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6) def forward(self, x: torch.Tensor): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__( self, *, n_ctx: int, width: int, layers: int, heads: int, qkv_bias: bool = True, norm_layer=nn.LayerNorm, qk_norm: bool = False, drop_path_rate: float = 0.0 ): super().__init__() self.n_ctx = n_ctx self.width = width self.layers = layers self.resblocks = nn.ModuleList( [ ResidualAttentionBlock( n_ctx=n_ctx, width=width, heads=heads, qkv_bias=qkv_bias, norm_layer=norm_layer, qk_norm=qk_norm, drop_path_rate=drop_path_rate ) for _ in range(layers) ] ) def forward(self, x: torch.Tensor): for block in self.resblocks: x = block(x) return x class CrossAttentionDecoder(nn.Module): def __init__( self, *, num_latents: int, out_channels: int, fourier_embedder: FourierEmbedder, width: int, heads: int, qkv_bias: bool = True, qk_norm: bool = False, label_type: str = "binary" ): super().__init__() self.fourier_embedder = fourier_embedder self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width) self.cross_attn_decoder = ResidualCrossAttentionBlock( n_data=num_latents, width=width, heads=heads, qkv_bias=qkv_bias, qk_norm=qk_norm ) self.ln_post = nn.LayerNorm(width) self.output_proj = nn.Linear(width, out_channels) self.label_type = label_type def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor): queries = self.query_proj(self.fourier_embedder(queries).to(latents.dtype)) x = self.cross_attn_decoder(queries, latents) x = self.ln_post(x) occ = self.output_proj(x) return occ def generate_dense_grid_points(bbox_min: np.ndarray, bbox_max: np.ndarray, octree_depth: int, indexing: str = "ij", octree_resolution: int = None, ): length = bbox_max - bbox_min num_cells = np.exp2(octree_depth) if octree_resolution is not None: num_cells = octree_resolution x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32) y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32) z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32) [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) xyz = np.stack((xs, ys, zs), axis=-1) xyz = xyz.reshape(-1, 3) grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1] return xyz, grid_size, length def center_vertices(vertices): """Translate the vertices so that bounding box is centered at zero.""" vert_min = vertices.min(dim=0)[0] vert_max = vertices.max(dim=0)[0] vert_center = 0.5 * (vert_min + vert_max) return vertices - vert_center class Latent2MeshOutput: def __init__(self, mesh_v=None, mesh_f=None): self.mesh_v = mesh_v self.mesh_f = mesh_f class ShapeVAE(nn.Module): def __init__( self, *, num_latents: int, embed_dim: int, width: int, heads: int, num_decoder_layers: int, num_freqs: int = 8, include_pi: bool = True, qkv_bias: bool = True, qk_norm: bool = False, label_type: str = "binary", drop_path_rate: float = 0.0, scale_factor: float = 1.0, ): super().__init__() self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi) self.post_kl = nn.Linear(embed_dim, width) self.transformer = Transformer( n_ctx=num_latents, width=width, layers=num_decoder_layers, heads=heads, qkv_bias=qkv_bias, qk_norm=qk_norm, drop_path_rate=drop_path_rate ) self.geo_decoder = CrossAttentionDecoder( fourier_embedder=self.fourier_embedder, out_channels=1, num_latents=num_latents, width=width, heads=heads, qkv_bias=qkv_bias, qk_norm=qk_norm, label_type=label_type, ) self.scale_factor = scale_factor self.latent_shape = (num_latents, embed_dim) def forward(self, latents): latents = self.post_kl(latents) latents = self.transformer(latents) return latents @torch.no_grad() def latents2mesh( self, latents: torch.FloatTensor, bounds: Union[Tuple[float], List[float], float] = 1.1, octree_depth: int = 7, num_chunks: int = 10000, mc_level: float = -1 / 512, octree_resolution: int = None, mc_algo: str = 'dmc', ): device = latents.device # 1. generate query points if isinstance(bounds, float): bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] bbox_min = np.array(bounds[0:3]) bbox_max = np.array(bounds[3:6]) bbox_size = bbox_max - bbox_min xyz_samples, grid_size, length = generate_dense_grid_points( bbox_min=bbox_min, bbox_max=bbox_max, octree_depth=octree_depth, octree_resolution=octree_resolution, indexing="ij" ) xyz_samples = torch.FloatTensor(xyz_samples) # 2. latents to 3d volume batch_logits = [] batch_size = latents.shape[0] for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc=f"MC Level {mc_level} Implicit Function:"): queries = xyz_samples[start: start + num_chunks, :].to(device) queries = queries.half() batch_queries = repeat(queries, "p c -> b p c", b=batch_size) logits = self.geo_decoder(batch_queries.to(latents.dtype), latents) if mc_level == -1: mc_level = 0 logits = torch.sigmoid(logits) * 2 - 1 print(f'Training with soft labels, inference with sigmoid and marching cubes level 0.') batch_logits.append(logits) grid_logits = torch.cat(batch_logits, dim=1) grid_logits = grid_logits.view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float() # 3. extract surface outputs = [] for i in range(batch_size): try: if mc_algo == 'mc': vertices, faces, normals, _ = measure.marching_cubes( grid_logits[i].cpu().numpy(), mc_level, method="lewiner" ) vertices = vertices / grid_size * bbox_size + bbox_min elif mc_algo == 'dmc': if not hasattr(self, 'dmc'): try: from diso import DiffDMC except: raise ImportError("Please install diso via `pip install diso`, or set mc_algo to 'mc'") self.dmc = DiffDMC(dtype=torch.float32).to(device) octree_resolution = 2 ** octree_depth if octree_resolution is None else octree_resolution sdf = -grid_logits[i] / octree_resolution verts, faces = self.dmc(sdf, deform=None, return_quads=False, normalize=True) verts = center_vertices(verts) vertices = verts.detach().cpu().numpy() faces = faces.detach().cpu().numpy()[:, ::-1] else: raise ValueError(f"mc_algo {mc_algo} not supported.") outputs.append( Latent2MeshOutput( mesh_v=vertices.astype(np.float32), mesh_f=np.ascontiguousarray(faces) ) ) except ValueError: outputs.append(None) except RuntimeError: outputs.append(None) return outputs