Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from marker.markdown_extractor import MarkdownExtractorConfig, MarkdownExtractor | |
from pdf.pdf_extractor import PDFExtractorConfig, PDFExtractor | |
from unstructuredio.unstructured_pdf import UnstructuredIOConfig, UnstructuredIOExtractor | |
from indexify_extractor_sdk import Content | |
markdown_extractor = MarkdownExtractor() | |
pdf_extractor = PDFExtractor() | |
unstructured_extractor = UnstructuredIOExtractor() | |
def use_marker(pdf_filepath): | |
if pdf_filepath is None: | |
raise gr.Error("Please provide some input PDF: upload a PDF file") | |
with open(pdf_filepath, "rb") as f: | |
pdf_data = f.read() | |
content = Content(content_type="application/pdf", data=pdf_data) | |
config = MarkdownExtractorConfig(batch_multiplier=2) | |
result = markdown_extractor.extract(content, config) | |
return result | |
def use_pdf_extractor(pdf_filepath): | |
if pdf_filepath is None: | |
raise gr.Error("Please provide some input PDF: upload a PDF file") | |
with open(pdf_filepath, "rb") as f: | |
pdf_data = f.read() | |
content = Content(content_type="application/pdf", data=pdf_data) | |
config = PDFExtractorConfig(output_types=["text", "table"]) | |
result = pdf_extractor.extract(content, config) | |
return result | |
def use_unstructured(pdf_filepath): | |
if pdf_filepath is None: | |
raise gr.Error("Please provide some input PDF: upload a PDF file") | |
with open(pdf_filepath, "rb") as f: | |
pdf_data = f.read() | |
content = Content(content_type="application/pdf", data=pdf_data) | |
config = UnstructuredIOConfig(strategy="hi_res") | |
result = unstructured_extractor.extract(content, config) | |
return result | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
with gr.Tab("PDF data extraction with Marker & Indexify"): | |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Marker & <a href='https://getindexify.ai/'>Indexify</a></h1>") | |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>") | |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>") | |
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/efficient_rag.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>") | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>" | |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. " | |
"You can extract from PDF files continuously and try various other extractors locally with " | |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>" | |
) | |
pdf_file_1 = gr.File(type="filepath") | |
with gr.Column(): | |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>") | |
go_button_1 = gr.Button(value="Run Marker extractor", variant="primary") | |
model_output_text_box_1 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_1") | |
with gr.Row(): | |
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>") | |
go_button_1.click(fn=use_marker, inputs=[pdf_file_1], outputs=[model_output_text_box_1]) | |
with gr.Tab("PDF data extraction with PDF Extractor & Indexify"): | |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with PDF Extractor & <a href='https://getindexify.ai/'>Indexify</a></h1>") | |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>") | |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>") | |
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/SEC_10_K_docs.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>") | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>" | |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. " | |
"You can extract from PDF files continuously and try various other extractors locally with " | |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>" | |
) | |
pdf_file_2 = gr.File(type="filepath") | |
with gr.Column(): | |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>") | |
go_button_2 = gr.Button(value="Run PDF extractor", variant="primary") | |
model_output_text_box_2 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_2") | |
with gr.Row(): | |
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>") | |
go_button_2.click(fn=use_pdf_extractor, inputs=[pdf_file_2], outputs=[model_output_text_box_2]) | |
with gr.Tab("PDF data extraction with Unstructured IO & Indexify"): | |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Unstructured IO & <a href='https://getindexify.ai/'>Indexify</a></h1>") | |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>") | |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>") | |
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/efficient_rag.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>") | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>" | |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. " | |
"You can extract from PDF files continuously and try various other extractors locally with " | |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>" | |
) | |
pdf_file_3 = gr.File(type="filepath") | |
with gr.Column(): | |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>") | |
go_button_3 = gr.Button(value="Run Unstructured extractor", variant="primary") | |
model_output_text_box_3 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_3") | |
with gr.Row(): | |
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>") | |
go_button_3.click(fn=use_unstructured, inputs=[pdf_file_3], outputs=[model_output_text_box_3]) | |
demo.queue() | |
demo.launch() |