# coding=utf-8 import os import librosa import base64 import io import gradio as gr import re import numpy as np import torch import torchaudio from funasr import AutoModel model = "FunAudioLLM/SenseVoiceSmall" model = AutoModel(model=model, vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch", vad_kwargs={"max_single_segment_time": 30000}, hub="hf", ) import re emo_dict = { "<|HAPPY|>": "😊", "<|SAD|>": "😔", "<|ANGRY|>": "😡", "<|NEUTRAL|>": "", "<|FEARFUL|>": "😰", "<|DISGUSTED|>": "🤢", "<|SURPRISED|>": "😮", } event_dict = { "<|BGM|>": "🎼", "<|Speech|>": "", "<|Applause|>": "👏", "<|Laughter|>": "😀", "<|Cry|>": "😭", "<|Sneeze|>": "🤧", "<|Breath|>": "", "<|Cough|>": "🤧", } emoji_dict = { "<|nospeech|><|Event_UNK|>": "❓", "<|zh|>": "", "<|en|>": "", "<|yue|>": "", "<|ja|>": "", "<|ko|>": "", "<|nospeech|>": "", "<|HAPPY|>": "😊", "<|SAD|>": "😔", "<|ANGRY|>": "😡", "<|NEUTRAL|>": "", "<|BGM|>": "🎼", "<|Speech|>": "", "<|Applause|>": "👏", "<|Laughter|>": "😀", "<|FEARFUL|>": "😰", "<|DISGUSTED|>": "🤢", "<|SURPRISED|>": "😮", "<|Cry|>": "😭", "<|EMO_UNKNOWN|>": "", "<|Sneeze|>": "🤧", "<|Breath|>": "", "<|Cough|>": "😷", "<|Sing|>": "", "<|Speech_Noise|>": "", "<|withitn|>": "", "<|woitn|>": "", "<|GBG|>": "", "<|Event_UNK|>": "", } lang_dict = { "<|zh|>": "<|lang|>", "<|en|>": "<|lang|>", "<|yue|>": "<|lang|>", "<|ja|>": "<|lang|>", "<|ko|>": "<|lang|>", "<|nospeech|>": "<|lang|>", } emo_set = {"😊", "😔", "😡", "😰", "🤢", "😮"} event_set = {"🎼", "👏", "😀", "😭", "🤧", "😷",} def format_str(s): for sptk in emoji_dict: s = s.replace(sptk, emoji_dict[sptk]) return s def format_str_v2(s): sptk_dict = {} for sptk in emoji_dict: sptk_dict[sptk] = s.count(sptk) s = s.replace(sptk, "") emo = "<|NEUTRAL|>" for e in emo_dict: if sptk_dict[e] > sptk_dict[emo]: emo = e for e in event_dict: if sptk_dict[e] > 0: s = event_dict[e] + s s = s + emo_dict[emo] for emoji in emo_set.union(event_set): s = s.replace(" " + emoji, emoji) s = s.replace(emoji + " ", emoji) return s.strip() def format_str_v3(s): def get_emo(s): return s[-1] if s[-1] in emo_set else None def get_event(s): return s[0] if s[0] in event_set else None s = s.replace("<|nospeech|><|Event_UNK|>", "❓") for lang in lang_dict: s = s.replace(lang, "<|lang|>") s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")] new_s = " " + s_list[0] cur_ent_event = get_event(new_s) for i in range(1, len(s_list)): if len(s_list[i]) == 0: continue if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None: s_list[i] = s_list[i][1:] #else: cur_ent_event = get_event(s_list[i]) if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s): new_s = new_s[:-1] new_s += s_list[i].strip().lstrip() new_s = new_s.replace("The.", " ") return new_s.strip() def model_inference(input_wav, language, fs=16000): # task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")} language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko", "nospeech": "nospeech"} # task = "Speech Recognition" if task is None else task language = "auto" if len(language) < 1 else language selected_language = language_abbr[language] # selected_task = task_abbr.get(task) # print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}") if isinstance(input_wav, tuple): fs, input_wav = input_wav input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max if len(input_wav.shape) > 1: input_wav = input_wav.mean(-1) if fs != 16000: print(f"audio_fs: {fs}") resampler = torchaudio.transforms.Resample(fs, 16000) input_wav_t = torch.from_numpy(input_wav).to(torch.float32) input_wav = resampler(input_wav_t[None, :])[0, :].numpy() merge_vad = True #False if selected_task == "ASR" else True print(f"language: {language}, merge_vad: {merge_vad}") text = model.generate(input=input_wav, cache={}, language=language, use_itn=True, batch_size_s=500, merge_vad=merge_vad) print(text) text = text[0]["text"] text = format_str_v3(text) print(text) return text audio_examples = [ ["example/zh.mp3", "zh"], ["example/yue.mp3", "yue"], ["example/en.mp3", "en"], ["example/ja.mp3", "ja"], ["example/ko.mp3", "ko"], ["example/emo_1.wav", "auto"], ["example/emo_2.wav", "auto"], ["example/emo_3.wav", "auto"], ["example/rich_1.wav", "auto"], ["example/rich_2.wav", "auto"], ["example/longwav_1.wav", "auto"], ["example/longwav_2.wav", "auto"], ["example/longwav_3.wav", "auto"], ] html_content = """ <div> <h2 style="font-size: 22px;margin-left: 0px;">Voice Understanding Model: SenseVoice-Small</h2> <p style="font-size: 18px;margin-left: 20px;">SenseVoice-Small is an encoder-only speech foundation model designed for rapid voice understanding. It encompasses a variety of features including automatic speech recognition (ASR), spoken language identification (LID), speech emotion recognition (SER), and acoustic event detection (AED). SenseVoice-Small supports multilingual recognition for Chinese, English, Cantonese, Japanese, and Korean. Additionally, it offers exceptionally low inference latency, performing 7 times faster than Whisper-small and 17 times faster than Whisper-large.</p> <h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Upload an audio file or input through a microphone, then select the task and language. the audio is transcribed into corresponding text along with associated emotions (😊 happy, 😡 angry/exicting, 😔 sad) and types of sound events (😀 laughter, 🎼 music, 👏 applause, 🤧 cough&sneeze, 😭 cry). The event labels are placed in the front of the text and the emotion are in the back of the text.</p> <p style="font-size: 18px;margin-left: 20px;">Recommended audio input duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p> <h2 style="font-size: 22px;margin-left: 0px;">Repo</h2> <p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/SenseVoice" target="_blank">SenseVoice</a>: multilingual speech understanding model</p> <p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/modelscope/FunASR" target="_blank">FunASR</a>: fundamental speech recognition toolkit</p> <p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/CosyVoice" target="_blank">CosyVoice</a>: high-quality multilingual TTS model</p> </div> """ def launch(): with gr.Blocks(theme=gr.themes.Soft()) as demo: # gr.Markdown(description) gr.HTML(html_content) with gr.Row(): with gr.Column(): audio_inputs = gr.Audio(label="Upload audio or use the microphone") with gr.Accordion("Configuration"): language_inputs = gr.Dropdown(choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"], value="auto", label="Language") fn_button = gr.Button("Start", variant="primary") text_outputs = gr.Textbox(label="Results") gr.Examples(examples=audio_examples, inputs=[audio_inputs, language_inputs], examples_per_page=20) fn_button.click(model_inference, inputs=[audio_inputs, language_inputs], outputs=text_outputs) demo.launch() if __name__ == "__main__": # iface.launch() launch()