File size: 21,841 Bytes
b152010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c69b4
 
 
 
 
b152010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c69b4
b152010
 
31c69b4
 
 
b152010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c69b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
from soni_translate.logging_setup import logger
import torch
import gc
import numpy as np
import os
import shutil
import warnings
import threading
from tqdm import tqdm
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from lib.audio import load_audio
import soundfile as sf
import edge_tts
import asyncio
from soni_translate.utils import (
    remove_directory_contents,
    create_directories,
    write_chunked,
)
from scipy import signal
from time import time as ttime
import faiss
from vci_pipeline import VC, change_rms, bh, ah
import librosa

warnings.filterwarnings("ignore")


class Config:
    def __init__(self, only_cpu=False):
        self.device = "cuda:0"
        self.is_half = True
        self.n_cpu = 0
        self.gpu_name = None
        self.gpu_mem = None
        (
            self.x_pad,
            self.x_query,
            self.x_center,
            self.x_max
        ) = self.device_config(only_cpu)

    def device_config(self, only_cpu) -> tuple:
        if torch.cuda.is_available() and not only_cpu:
            i_device = int(self.device.split(":")[-1])
            self.gpu_name = torch.cuda.get_device_name(i_device)
            if (
                ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
                or "P40" in self.gpu_name.upper()
                or "1060" in self.gpu_name
                or "1070" in self.gpu_name
                or "1080" in self.gpu_name
            ):
                logger.info(
                    "16/10 Series GPUs and P40 excel "
                    "in single-precision tasks."
                )
                self.is_half = False
            else:
                self.gpu_name = None
            self.gpu_mem = int(
                torch.cuda.get_device_properties(i_device).total_memory
                / 1024
                / 1024
                / 1024
                + 0.4
            )
        elif torch.backends.mps.is_available() and not only_cpu:
            logger.info("Supported N-card not found, using MPS for inference")
            self.device = "mps"
        else:
            logger.info("No supported N-card found, using CPU for inference")
            self.device = "cpu"
            self.is_half = False

        if self.n_cpu == 0:
            self.n_cpu = os.cpu_count()

        if self.is_half:
            # 6GB VRAM configuration
            x_pad = 3
            x_query = 10
            x_center = 60
            x_max = 65
        else:
            # 5GB VRAM configuration
            x_pad = 1
            x_query = 6
            x_center = 38
            x_max = 41

        if self.gpu_mem is not None and self.gpu_mem <= 4:
            x_pad = 1
            x_query = 5
            x_center = 30
            x_max = 32

        logger.info(
            f"Config: Device is {self.device}, "
            f"half precision is {self.is_half}"
        )

        return x_pad, x_query, x_center, x_max


BASE_DOWNLOAD_LINK = "https://huggingface.co/r3gm/sonitranslate_voice_models/resolve/main/"
BASE_MODELS = [
    "hubert_base.pt",
    "rmvpe.pt"
]
BASE_DIR = "."


def load_hu_bert(config):
    from fairseq import checkpoint_utils
    from soni_translate.utils import download_manager

    for id_model in BASE_MODELS:
        download_manager(
            os.path.join(BASE_DOWNLOAD_LINK, id_model), BASE_DIR
        )

    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

    return hubert_model


def load_trained_model(model_path, config):

    if not model_path:
        raise ValueError("No model found")

    logger.info("Loading %s" % model_path)
    cpt = torch.load(model_path, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    if if_f0 == 0:
        # protect to 0.5 need?
        pass

    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(
                *cpt["config"], is_half=config.is_half
            )
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(
                *cpt["config"], is_half=config.is_half
            )
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q

    net_g.load_state_dict(cpt["weight"], strict=False)
    net_g.eval().to(config.device)

    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()

    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]

    return n_spk, tgt_sr, net_g, vc, cpt, version


class ClassVoices:
    def __init__(self, only_cpu=False):
        self.model_config = {}
        self.config = None
        self.only_cpu = only_cpu

    def apply_conf(
        self,
        tag="base_model",
        file_model="",
        pitch_algo="pm",
        pitch_lvl=0,
        file_index="",
        index_influence=0.66,
        respiration_median_filtering=3,
        envelope_ratio=0.25,
        consonant_breath_protection=0.33,
        resample_sr=0,
        file_pitch_algo="",
    ):

        if not file_model:
            raise ValueError("Model not found")

        if file_index is None:
            file_index = ""

        if file_pitch_algo is None:
            file_pitch_algo = ""

        if not self.config:
            self.config = Config(self.only_cpu)
            self.hu_bert_model = None
            self.model_pitch_estimator = None

        self.model_config[tag] = {
            "file_model": file_model,
            "pitch_algo": pitch_algo,
            "pitch_lvl": pitch_lvl,  # no decimal
            "file_index": file_index,
            "index_influence": index_influence,
            "respiration_median_filtering": respiration_median_filtering,
            "envelope_ratio": envelope_ratio,
            "consonant_breath_protection": consonant_breath_protection,
            "resample_sr": resample_sr,
            "file_pitch_algo": file_pitch_algo,
        }
        return f"CONFIGURATION APPLIED FOR {tag}: {file_model}"

    def infer(
        self,
        task_id,
        params,
        # load model
        n_spk,
        tgt_sr,
        net_g,
        pipe,
        cpt,
        version,
        if_f0,
        # load index
        index_rate,
        index,
        big_npy,
        # load f0 file
        inp_f0,
        # audio file
        input_audio_path,
        overwrite,
    ):

        f0_method = params["pitch_algo"]
        f0_up_key = params["pitch_lvl"]
        filter_radius = params["respiration_median_filtering"]
        resample_sr = params["resample_sr"]
        rms_mix_rate = params["envelope_ratio"]
        protect = params["consonant_breath_protection"]

        if not os.path.exists(input_audio_path):
            raise ValueError(
                "The audio file was not found or is not "
                f"a valid file: {input_audio_path}"
            )

        f0_up_key = int(f0_up_key)

        audio = load_audio(input_audio_path, 16000)

        # Normalize audio
        audio_max = np.abs(audio).max() / 0.95
        if audio_max > 1:
            audio /= audio_max

        times = [0, 0, 0]

        # filters audio signal, pads it, computes sliding window sums,
        # and extracts optimized time indices
        audio = signal.filtfilt(bh, ah, audio)
        audio_pad = np.pad(
            audio, (pipe.window // 2, pipe.window // 2), mode="reflect"
        )
        opt_ts = []
        if audio_pad.shape[0] > pipe.t_max:
            audio_sum = np.zeros_like(audio)
            for i in range(pipe.window):
                audio_sum += audio_pad[i:i - pipe.window]
            for t in range(pipe.t_center, audio.shape[0], pipe.t_center):
                opt_ts.append(
                    t
                    - pipe.t_query
                    + np.where(
                        np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query])
                        == np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query]).min()
                    )[0][0]
                )

        s = 0
        audio_opt = []
        t = None
        t1 = ttime()

        sid_value = 0
        sid = torch.tensor(sid_value, device=pipe.device).unsqueeze(0).long()

        # Pads audio symmetrically, calculates length divided by window size.
        audio_pad = np.pad(audio, (pipe.t_pad, pipe.t_pad), mode="reflect")
        p_len = audio_pad.shape[0] // pipe.window

        # Estimates pitch from audio signal
        pitch, pitchf = None, None
        if if_f0 == 1:
            pitch, pitchf = pipe.get_f0(
                input_audio_path,
                audio_pad,
                p_len,
                f0_up_key,
                f0_method,
                filter_radius,
                inp_f0,
            )
            pitch = pitch[:p_len]
            pitchf = pitchf[:p_len]
            if pipe.device == "mps":
                pitchf = pitchf.astype(np.float32)
            pitch = torch.tensor(
                pitch, device=pipe.device
            ).unsqueeze(0).long()
            pitchf = torch.tensor(
                pitchf, device=pipe.device
            ).unsqueeze(0).float()

        t2 = ttime()
        times[1] += t2 - t1
        for t in opt_ts:
            t = t // pipe.window * pipe.window
            if if_f0 == 1:
                pitch_slice = pitch[
                    :, s // pipe.window: (t + pipe.t_pad2) // pipe.window
                ]
                pitchf_slice = pitchf[
                    :, s // pipe.window: (t + pipe.t_pad2) // pipe.window
                ]
            else:
                pitch_slice = None
                pitchf_slice = None

            audio_slice = audio_pad[s:t + pipe.t_pad2 + pipe.window]
            audio_opt.append(
                pipe.vc(
                    self.hu_bert_model,
                    net_g,
                    sid,
                    audio_slice,
                    pitch_slice,
                    pitchf_slice,
                    times,
                    index,
                    big_npy,
                    index_rate,
                    version,
                    protect,
                )[pipe.t_pad_tgt:-pipe.t_pad_tgt]
            )
            s = t

        pitch_end_slice = pitch[
            :, t // pipe.window:
        ] if t is not None else pitch
        pitchf_end_slice = pitchf[
            :, t // pipe.window:
        ] if t is not None else pitchf

        audio_opt.append(
            pipe.vc(
                self.hu_bert_model,
                net_g,
                sid,
                audio_pad[t:],
                pitch_end_slice,
                pitchf_end_slice,
                times,
                index,
                big_npy,
                index_rate,
                version,
                protect,
            )[pipe.t_pad_tgt:-pipe.t_pad_tgt]
        )

        audio_opt = np.concatenate(audio_opt)
        if rms_mix_rate != 1:
            audio_opt = change_rms(
                audio, 16000, audio_opt, tgt_sr, rms_mix_rate
            )
        if resample_sr >= 16000 and tgt_sr != resample_sr:
            audio_opt = librosa.resample(
                audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
            )
        audio_max = np.abs(audio_opt).max() / 0.99
        max_int16 = 32768
        if audio_max > 1:
            max_int16 /= audio_max
        audio_opt = (audio_opt * max_int16).astype(np.int16)
        del pitch, pitchf, sid
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        if tgt_sr != resample_sr >= 16000:
            final_sr = resample_sr
        else:
            final_sr = tgt_sr

        """
        "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
            times[0],
            times[1],
            times[2],
        ), (final_sr, audio_opt)

        """

        if overwrite:
            output_audio_path = input_audio_path  # Overwrite
        else:
            basename = os.path.basename(input_audio_path)
            dirname = os.path.dirname(input_audio_path)

            new_basename = basename.split(
                '.')[0] + "_edited." + basename.split('.')[-1]
            new_path = os.path.join(dirname, new_basename)
            logger.info(str(new_path))

            output_audio_path = new_path

        # Save file
        write_chunked(
            file=output_audio_path,
            samplerate=final_sr,
            data=audio_opt,
            format="ogg",
            subtype="vorbis",
        )

        self.model_config[task_id]["result"].append(output_audio_path)
        self.output_list.append(output_audio_path)

    def make_test(
        self,
        tts_text,
        tts_voice,
        model_path,
        index_path,
        transpose,
        f0_method,
    ):

        folder_test = "test"
        tag = "test_edge"
        tts_file = "test/test.wav"
        tts_edited = "test/test_edited.wav"

        create_directories(folder_test)
        remove_directory_contents(folder_test)

        if "SET_LIMIT" == os.getenv("DEMO"):
            if len(tts_text) > 60:
                tts_text = tts_text[:60]
                logger.warning("DEMO; limit to 60 characters")

        try:
            asyncio.run(edge_tts.Communicate(
                tts_text, "-".join(tts_voice.split('-')[:-1])
            ).save(tts_file))
        except Exception as e:
            raise ValueError(
                "No audio was received. Please change the "
                f"tts voice for {tts_voice}. Error: {str(e)}"
            )

        shutil.copy(tts_file, tts_edited)

        self.apply_conf(
            tag=tag,
            file_model=model_path,
            pitch_algo=f0_method,
            pitch_lvl=transpose,
            file_index=index_path,
            index_influence=0.66,
            respiration_median_filtering=3,
            envelope_ratio=0.25,
            consonant_breath_protection=0.33,
        )

        self(
            audio_files=tts_edited,
            tag_list=tag,
            overwrite=True
        )

        return tts_edited, tts_file

    def run_threads(self, threads):
        # Start threads
        for thread in threads:
            thread.start()

        # Wait for all threads to finish
        for thread in threads:
            thread.join()

        gc.collect()
        torch.cuda.empty_cache()

    def unload_models(self):
        self.hu_bert_model = None
        self.model_pitch_estimator = None
        gc.collect()
        torch.cuda.empty_cache()

    def __call__(
        self,
        audio_files=[],
        tag_list=[],
        overwrite=False,
        parallel_workers=1,
    ):
        logger.info(f"Parallel workers: {str(parallel_workers)}")

        self.output_list = []

        if not self.model_config:
            raise ValueError("No model has been configured for inference")

        if isinstance(audio_files, str):
            audio_files = [audio_files]
        if isinstance(tag_list, str):
            tag_list = [tag_list]

        if not audio_files:
            raise ValueError("No audio found to convert")
        if not tag_list:
            tag_list = [list(self.model_config.keys())[-1]] * len(audio_files)

        if len(audio_files) > len(tag_list):
            logger.info("Extend tag list to match audio files")
            extend_number = len(audio_files) - len(tag_list)
            tag_list.extend([tag_list[0]] * extend_number)

        if len(audio_files) < len(tag_list):
            logger.info("Cut list tags")
            tag_list = tag_list[:len(audio_files)]

        tag_file_pairs = list(zip(tag_list, audio_files))
        sorted_tag_file = sorted(tag_file_pairs, key=lambda x: x[0])

        # Base params
        if not self.hu_bert_model:
            self.hu_bert_model = load_hu_bert(self.config)

        cache_params = None
        threads = []
        progress_bar = tqdm(total=len(tag_list), desc="Progress")
        for i, (id_tag, input_audio_path) in enumerate(sorted_tag_file):

            if id_tag not in self.model_config.keys():
                logger.info(
                    f"No configured model for {id_tag} with {input_audio_path}"
                )
                continue

            if (
                len(threads) >= parallel_workers
                or cache_params != id_tag
                and cache_params is not None
            ):

                self.run_threads(threads)
                progress_bar.update(len(threads))

                threads = []

            if cache_params != id_tag:

                self.model_config[id_tag]["result"] = []

                # Unload previous
                (
                    n_spk,
                    tgt_sr,
                    net_g,
                    pipe,
                    cpt,
                    version,
                    if_f0,
                    index_rate,
                    index,
                    big_npy,
                    inp_f0,
                ) = [None] * 11
                gc.collect()
                torch.cuda.empty_cache()

                # Model params
                params = self.model_config[id_tag]

                model_path = params["file_model"]
                f0_method = params["pitch_algo"]
                file_index = params["file_index"]
                index_rate = params["index_influence"]
                f0_file = params["file_pitch_algo"]

                # Load model
                (
                    n_spk,
                    tgt_sr,
                    net_g,
                    pipe,
                    cpt,
                    version
                ) = load_trained_model(model_path, self.config)
                if_f0 = cpt.get("f0", 1)  # pitch data

                # Load index
                if os.path.exists(file_index) and index_rate != 0:
                    try:
                        index = faiss.read_index(file_index)
                        big_npy = index.reconstruct_n(0, index.ntotal)
                    except Exception as error:
                        logger.error(f"Index: {str(error)}")
                        index_rate = 0
                        index = big_npy = None
                else:
                    logger.warning("File index not found")
                    index_rate = 0
                    index = big_npy = None

                # Load f0 file
                inp_f0 = None
                if os.path.exists(f0_file):
                    try:
                        with open(f0_file, "r") as f:
                            lines = f.read().strip("\n").split("\n")
                        inp_f0 = []
                        for line in lines:
                            inp_f0.append([float(i) for i in line.split(",")])
                        inp_f0 = np.array(inp_f0, dtype="float32")
                    except Exception as error:
                        logger.error(f"f0 file: {str(error)}")

                if "rmvpe" in f0_method:
                    if not self.model_pitch_estimator:
                        from lib.rmvpe import RMVPE

                        logger.info("Loading vocal pitch estimator model")
                        self.model_pitch_estimator = RMVPE(
                            "rmvpe.pt",
                            is_half=self.config.is_half,
                            device=self.config.device
                        )

                    pipe.model_rmvpe = self.model_pitch_estimator

                cache_params = id_tag

            # self.infer(
            #     id_tag,
            #     params,
            #     # load model
            #     n_spk,
            #     tgt_sr,
            #     net_g,
            #     pipe,
            #     cpt,
            #     version,
            #     if_f0,
            #     # load index
            #     index_rate,
            #     index,
            #     big_npy,
            #     # load f0 file
            #     inp_f0,
            #     # output file
            #     input_audio_path,
            #     overwrite,
            # )

            thread = threading.Thread(
                target=self.infer,
                args=(
                    id_tag,
                    params,
                    # loaded model
                    n_spk,
                    tgt_sr,
                    net_g,
                    pipe,
                    cpt,
                    version,
                    if_f0,
                    # loaded index
                    index_rate,
                    index,
                    big_npy,
                    # loaded f0 file
                    inp_f0,
                    # audio file
                    input_audio_path,
                    overwrite,
                )
            )

            threads.append(thread)

        # Run last
        if threads:
            self.run_threads(threads)

        progress_bar.update(len(threads))
        progress_bar.close()

        final_result = []
        valid_tags = set(tag_list)
        for tag in valid_tags:
            if (
                tag in self.model_config.keys()
                and "result" in self.model_config[tag].keys()
            ):
                final_result.extend(self.model_config[tag]["result"])

        return final_result