soni_cloned / app_rvc.py
test-rtechs's picture
Update app_rvc.py
d79952a verified
raw
history blame
115 kB
import gradio as gr
import os
os.system("pip install -q piper-tts==1.2.0")
os.system("pip install -q -r requirements_xtts.txt")
os.system("pip install -q TTS==0.21.1 --no-deps")
import spaces
import librosa
from soni_translate.logging_setup import (
logger,
set_logging_level,
configure_logging_libs,
); configure_logging_libs() # noqa
import whisperx
import torch
import os
from soni_translate.audio_segments import create_translated_audio
from soni_translate.text_to_speech import (
audio_segmentation_to_voice,
edge_tts_voices_list,
coqui_xtts_voices_list,
piper_tts_voices_list,
create_wav_file_vc,
accelerate_segments,
)
from soni_translate.translate_segments import (
translate_text,
TRANSLATION_PROCESS_OPTIONS,
DOCS_TRANSLATION_PROCESS_OPTIONS
)
from soni_translate.preprocessor import (
audio_video_preprocessor,
audio_preprocessor,
)
from soni_translate.postprocessor import (
OUTPUT_TYPE_OPTIONS,
DOCS_OUTPUT_TYPE_OPTIONS,
sound_separate,
get_no_ext_filename,
media_out,
get_subtitle_speaker,
)
from soni_translate.language_configuration import (
LANGUAGES,
UNIDIRECTIONAL_L_LIST,
LANGUAGES_LIST,
BARK_VOICES_LIST,
VITS_VOICES_LIST,
OPENAI_TTS_MODELS,
)
from soni_translate.utils import (
remove_files,
download_list,
upload_model_list,
download_manager,
run_command,
is_audio_file,
is_subtitle_file,
copy_files,
get_valid_files,
get_link_list,
remove_directory_contents,
)
from soni_translate.mdx_net import (
UVR_MODELS,
MDX_DOWNLOAD_LINK,
mdxnet_models_dir,
)
from soni_translate.speech_segmentation import (
ASR_MODEL_OPTIONS,
COMPUTE_TYPE_GPU,
COMPUTE_TYPE_CPU,
find_whisper_models,
transcribe_speech,
align_speech,
diarize_speech,
diarization_models,
)
from soni_translate.text_multiformat_processor import (
BORDER_COLORS,
srt_file_to_segments,
document_preprocessor,
determine_chunk_size,
plain_text_to_segments,
segments_to_plain_text,
process_subtitles,
linguistic_level_segments,
break_aling_segments,
doc_to_txtximg_pages,
page_data_to_segments,
update_page_data,
fix_timestamps_docs,
create_video_from_images,
merge_video_and_audio,
)
from soni_translate.languages_gui import language_data, news
import copy
import logging
import json
from pydub import AudioSegment
from voice_main import ClassVoices
import argparse
import time
import hashlib
import sys
IS_HUGGINGFACE_SPACE = os.environ.get('SPACE_ID') is not None
FORCE_PUBLIC_SHARE = os.environ.get('FORCE_PUBLIC_SHARE', 'False').lower() == 'true'
directories = [
"downloads",
"logs",
"weights",
"clean_song_output",
"_XTTS_",
f"audio2{os.sep}audio",
"audio",
"outputs",
]
[
os.makedirs(directory)
for directory in directories
if not os.path.exists(directory)
]
class TTS_Info:
def __init__(self, piper_enabled, xtts_enabled):
self.list_edge = edge_tts_voices_list()
self.list_bark = list(BARK_VOICES_LIST.keys())
self.list_vits = list(VITS_VOICES_LIST.keys())
self.list_openai_tts = OPENAI_TTS_MODELS
self.piper_enabled = piper_enabled
self.list_vits_onnx = (
piper_tts_voices_list() if self.piper_enabled else []
)
self.xtts_enabled = xtts_enabled
def tts_list(self):
self.list_coqui_xtts = (
coqui_xtts_voices_list() if self.xtts_enabled else []
)
list_tts = self.list_coqui_xtts + sorted(
self.list_edge
+ (self.list_bark if os.environ.get("ZERO_GPU") != "TRUE" else [])
+ self.list_vits
+ self.list_openai_tts
+ self.list_vits_onnx
)
return list_tts
def prog_disp(msg, percent, is_gui, progress=None):
logger.info(msg)
if is_gui:
progress(percent, desc=msg)
def warn_disp(wrn_lang, is_gui):
logger.warning(wrn_lang)
if is_gui:
gr.Warning(wrn_lang)
class SoniTrCache:
def __init__(self):
self.cache = {
'media': [[]],
'refine_vocals': [],
'transcript_align': [],
'break_align': [],
'diarize': [],
'translate': [],
'subs_and_edit': [],
'tts': [],
'acc_and_vc': [],
'mix_aud': [],
'output': []
}
self.cache_data = {
'media': [],
'refine_vocals': [],
'transcript_align': [],
'break_align': [],
'diarize': [],
'translate': [],
'subs_and_edit': [],
'tts': [],
'acc_and_vc': [],
'mix_aud': [],
'output': []
}
self.cache_keys = list(self.cache.keys())
self.first_task = self.cache_keys[0]
self.last_task = self.cache_keys[-1]
self.pre_step = None
self.pre_params = []
def set_variable(self, variable_name, value):
setattr(self, variable_name, value)
def task_in_cache(self, step: str, params: list, previous_step_data: dict):
self.pre_step_cache = None
if step == self.first_task:
self.pre_step = None
if self.pre_step:
self.cache[self.pre_step] = self.pre_params
# Fill data in cache
self.cache_data[self.pre_step] = copy.deepcopy(previous_step_data)
self.pre_params = params
# logger.debug(f"Step: {str(step)}, Cache params: {str(self.cache)}")
if params == self.cache[step]:
logger.debug(f"In cache: {str(step)}")
# Set the var needed for next step
# Recovery from cache_data the current step
for key, value in self.cache_data[step].items():
self.set_variable(key, copy.deepcopy(value))
logger.debug(
f"Chache load: {str(key)}"
)
self.pre_step = step
return True
else:
logger.debug(f"Flush next and caching {str(step)}")
selected_index = self.cache_keys.index(step)
for idx, key in enumerate(self.cache.keys()):
if idx >= selected_index:
self.cache[key] = []
self.cache_data[key] = {}
# The last is now previous
self.pre_step = step
return False
def clear_cache(self, media, force=False):
self.cache["media"] = (
self.cache["media"] if len(self.cache["media"]) else [[]]
)
if media != self.cache["media"][0] or force:
# Clear cache
self.cache = {key: [] for key in self.cache}
self.cache["media"] = [[]]
logger.info("Cache flushed")
def get_hash(filepath):
with open(filepath, 'rb') as f:
file_hash = hashlib.blake2b()
while chunk := f.read(8192):
file_hash.update(chunk)
return file_hash.hexdigest()[:18]
def check_openai_api_key():
if not os.environ.get("OPENAI_API_KEY"):
raise ValueError(
"To use GPT for translation, please set up your OpenAI API key "
"as an environment variable in Linux as follows: "
"export OPENAI_API_KEY='your-api-key-here'. Or change the "
"translation process in Advanced settings."
)
class SoniTranslate(SoniTrCache):
def __init__(self, cpu_mode=False):
super().__init__()
if cpu_mode:
os.environ["SONITR_DEVICE"] = "cpu"
else:
os.environ["SONITR_DEVICE"] = (
"cuda" if torch.cuda.is_available() else "cpu"
)
self.device = os.environ.get("SONITR_DEVICE")
self.device = self.device if os.environ.get("ZERO_GPU") != "TRUE" else "cuda"
self.result_diarize = None
self.align_language = None
self.result_source_lang = None
self.edit_subs_complete = False
self.voiceless_id = None
self.burn_subs_id = None
self.vci = ClassVoices(only_cpu=cpu_mode)
self.tts_voices = self.get_tts_voice_list()
logger.info(f"Working in: {self.device}")
def get_tts_voice_list(self):
try:
from piper import PiperVoice # noqa
piper_enabled = True
logger.info("PIPER TTS enabled")
except Exception as error:
logger.debug(str(error))
piper_enabled = False
logger.info("PIPER TTS disabled")
try:
from TTS.api import TTS # noqa
xtts_enabled = True
logger.info("Coqui XTTS enabled")
logger.info(
"In this app, by using Coqui TTS (text-to-speech), you "
"acknowledge and agree to the license.\n"
"You confirm that you have read, understood, and agreed "
"to the Terms and Conditions specified at the following "
"link:\nhttps://coqui.ai/cpml.txt."
)
os.environ["COQUI_TOS_AGREED"] = "1"
except Exception as error:
logger.debug(str(error))
xtts_enabled = False
logger.info("Coqui XTTS disabled")
self.tts_info = TTS_Info(piper_enabled, xtts_enabled)
return self.tts_info.tts_list()
def batch_multilingual_media_conversion(self, *kwargs):
# logger.debug(str(kwargs))
media_file_arg = kwargs[0] if kwargs[0] is not None else []
link_media_arg = kwargs[1]
link_media_arg = [x.strip() for x in link_media_arg.split(',')]
link_media_arg = get_link_list(link_media_arg)
path_arg = kwargs[2]
path_arg = [x.strip() for x in path_arg.split(',')]
path_arg = get_valid_files(path_arg)
edit_text_arg = kwargs[31]
get_text_arg = kwargs[32]
video_acceleration_rate_regulation = kwargs[34] # Adjust the index as needed
is_gui_arg = kwargs[-1]
kwargs = kwargs[3:]
media_batch = media_file_arg + link_media_arg + path_arg
media_batch = list(filter(lambda x: x != "", media_batch))
media_batch = media_batch if media_batch else [None]
logger.debug(str(media_batch))
remove_directory_contents("outputs")
if edit_text_arg or get_text_arg:
return self.multilingual_media_conversion(
media_batch[0], "", "", *kwargs
)
if video_acceleration_rate_regulation:
logger.info("Video acceleration rate regulation is enabled.")
try:
self.accelerate_video_segments()
logger.info("Video segments accelerated successfully.")
except Exception as e:
logger.error(f"Failed to accelerate video segments: {e}")
raise
if "SET_LIMIT" == os.getenv("DEMO") or "TRUE" == os.getenv("ZERO_GPU"):
media_batch = [media_batch[0]]
result = []
for media in media_batch:
# Call the nested function with the parameters
output_file = self.multilingual_media_conversion(
media, "", "", *kwargs
)
if isinstance(output_file, str):
output_file = [output_file]
result.extend(output_file)
if is_gui_arg and len(media_batch) > 1:
gr.Info(f"Done: {os.path.basename(output_file[0])}")
return result
def multilingual_media_conversion(
self,
media_file=None,
link_media="",
directory_input="",
YOUR_HF_TOKEN="",
preview=False,
transcriber_model="large-v3",
batch_size=4,
compute_type="auto",
origin_language="Automatic detection",
target_language="English (en)",
min_speakers=1,
max_speakers=1,
tts_voice00="en-US-EmmaMultilingualNeural-Female",
tts_voice01="en-US-AndrewMultilingualNeural-Male",
tts_voice02="en-US-AvaMultilingualNeural-Female",
tts_voice03="en-US-BrianMultilingualNeural-Male",
tts_voice04="de-DE-SeraphinaMultilingualNeural-Female",
tts_voice05="de-DE-FlorianMultilingualNeural-Male",
tts_voice06="fr-FR-VivienneMultilingualNeural-Female",
tts_voice07="fr-FR-RemyMultilingualNeural-Male",
tts_voice08="en-US-EmmaMultilingualNeural-Female",
tts_voice09="en-US-AndrewMultilingualNeural-Male",
tts_voice10="en-US-EmmaMultilingualNeural-Female",
tts_voice11="en-US-AndrewMultilingualNeural-Male",
video_output_name="",
mix_method_audio="Adjusting volumes and mixing audio",
max_accelerate_audio=2.1,
acceleration_rate_regulation=False,
volume_original_audio=0.25,
volume_translated_audio=1.80,
output_format_subtitle="srt",
get_translated_text=False,
get_video_from_text_json=False,
text_json="{}",
avoid_overlap=False,
vocal_refinement=False,
literalize_numbers=True,
segment_duration_limit=15,
diarization_model="pyannote_2.1",
translate_process="google_translator_batch",
subtitle_file=None,
output_type="video (mp4)",
voiceless_track=False,
voice_imitation=False,
voice_imitation_max_segments=3,
voice_imitation_vocals_dereverb=False,
voice_imitation_remove_previous=True,
voice_imitation_method="freevc",
dereverb_automatic_xtts=True,
text_segmentation_scale="sentence",
divide_text_segments_by="",
soft_subtitles_to_video=True,
burn_subtitles_to_video=False,
enable_cache=True,
custom_voices=False,
custom_voices_workers=1,
is_gui=False,
progress=gr.Progress(),
):
if not YOUR_HF_TOKEN:
YOUR_HF_TOKEN = os.getenv("YOUR_HF_TOKEN")
if diarization_model == "disable" or max_speakers == 1:
if YOUR_HF_TOKEN is None:
YOUR_HF_TOKEN = ""
elif not YOUR_HF_TOKEN:
raise ValueError("No valid Hugging Face token")
else:
os.environ["YOUR_HF_TOKEN"] = YOUR_HF_TOKEN
if (
"gpt" in translate_process
or transcriber_model == "OpenAI_API_Whisper"
or "OpenAI-TTS" in tts_voice00
):
check_openai_api_key()
if media_file is None:
media_file = (
directory_input
if os.path.exists(directory_input)
else link_media
)
media_file = (
media_file if isinstance(media_file, str) else media_file.name
)
if is_subtitle_file(media_file):
subtitle_file = media_file
media_file = ""
if media_file is None:
media_file = ""
if not origin_language:
origin_language = "Automatic detection"
if origin_language in UNIDIRECTIONAL_L_LIST and not subtitle_file:
raise ValueError(
f"The language '{origin_language}' "
"is not supported for transcription (ASR)."
)
if get_translated_text:
self.edit_subs_complete = False
if get_video_from_text_json:
if not self.edit_subs_complete:
raise ValueError("Generate the transcription first.")
if (
("sound" in output_type or output_type == "raw media")
and (get_translated_text or get_video_from_text_json)
):
raise ValueError(
"Please disable 'edit generate subtitles' "
f"first to acquire the {output_type}."
)
TRANSLATE_AUDIO_TO = LANGUAGES[target_language]
SOURCE_LANGUAGE = LANGUAGES[origin_language]
if (
transcriber_model == "OpenAI_API_Whisper"
and SOURCE_LANGUAGE == "zh-TW"
):
logger.warning(
"OpenAI API Whisper only supports Chinese (Simplified)."
)
SOURCE_LANGUAGE = "zh"
if (
text_segmentation_scale in ["word", "character"]
and "subtitle" not in output_type
):
wrn_lang = (
"Text segmentation by words or characters is typically"
" used for generating subtitles. If subtitles are not the"
" intended output, consider selecting 'sentence' "
"segmentation method to ensure optimal results."
)
warn_disp(wrn_lang, is_gui)
if tts_voice00[:2].lower() != TRANSLATE_AUDIO_TO[:2].lower():
wrn_lang = (
"Make sure to select a 'TTS Speaker' suitable for"
" the translation language to avoid errors with the TTS."
)
warn_disp(wrn_lang, is_gui)
if "_XTTS_" in tts_voice00 and voice_imitation:
wrn_lang = (
"When you select XTTS, it is advisable "
"to disable Voice Imitation."
)
warn_disp(wrn_lang, is_gui)
if custom_voices and voice_imitation:
wrn_lang = (
"When you use R.V.C. models, it is advisable"
" to disable Voice Imitation."
)
warn_disp(wrn_lang, is_gui)
if not media_file and not subtitle_file:
raise ValueError(
"Specifify a media or SRT file in advanced settings"
)
if subtitle_file:
subtitle_file = (
subtitle_file
if isinstance(subtitle_file, str)
else subtitle_file.name
)
if subtitle_file and SOURCE_LANGUAGE == "Automatic detection":
raise Exception(
"To use an SRT file, you need to specify its "
"original language (Source language)"
)
if not media_file and subtitle_file:
diarization_model = "disable"
media_file = "audio_support.wav"
if not get_video_from_text_json:
remove_files(media_file)
srt_data = srt_file_to_segments(subtitle_file)
total_duration = srt_data["segments"][-1]["end"] + 30.
support_audio = AudioSegment.silent(
duration=int(total_duration * 1000)
)
support_audio.export(
media_file, format="wav"
)
logger.info("Supporting audio for the SRT file, created.")
if "SET_LIMIT" == os.getenv("DEMO"):
preview = True
mix_method_audio = "Adjusting volumes and mixing audio"
transcriber_model = "medium"
logger.info(
"DEMO; set preview=True; Generation is limited to "
"10 seconds to prevent CPU errors. No limitations with GPU.\n"
"DEMO; set Adjusting volumes and mixing audio\n"
"DEMO; set whisper model to medium"
)
# Check GPU
if self.device == "cpu" and compute_type not in COMPUTE_TYPE_CPU:
logger.info("Compute type changed to float32")
compute_type = "float32"
base_video_file = "Video.mp4"
base_audio_wav = "audio.wav"
dub_audio_file = "audio_dub_solo.ogg"
vocals_audio_file = "audio_Vocals_DeReverb.wav"
voiceless_audio_file = "audio_Voiceless.wav"
mix_audio_file = "audio_mix.mp3"
vid_subs = "video_subs_file.mp4"
video_output_file = "video_dub.mp4"
if os.path.exists(media_file):
media_base_hash = get_hash(media_file)
else:
media_base_hash = media_file
self.clear_cache(media_base_hash, force=(not enable_cache))
if not get_video_from_text_json:
self.result_diarize = (
self.align_language
) = self.result_source_lang = None
if not self.task_in_cache("media", [media_base_hash, preview], {}):
if is_audio_file(media_file):
prog_disp(
"Processing audio...", 0.15, is_gui, progress=progress
)
audio_preprocessor(preview, media_file, base_audio_wav)
else:
prog_disp(
"Processing video...", 0.15, is_gui, progress=progress
)
audio_video_preprocessor(
preview, media_file, base_video_file, base_audio_wav
)
logger.debug("Set file complete.")
if "sound" in output_type:
prog_disp(
"Separating sounds in the file...",
0.50,
is_gui,
progress=progress
)
separate_out = sound_separate(base_audio_wav, output_type)
final_outputs = []
for out in separate_out:
final_name = media_out(
media_file,
f"{get_no_ext_filename(out)}",
video_output_name,
"wav",
file_obj=out,
)
final_outputs.append(final_name)
logger.info(f"Done: {str(final_outputs)}")
return final_outputs
if output_type == "raw media":
output = media_out(
media_file,
"raw_media",
video_output_name,
"wav" if is_audio_file(media_file) else "mp4",
file_obj=base_audio_wav if is_audio_file(media_file) else base_video_file,
)
logger.info(f"Done: {output}")
return output
if os.environ.get("IS_DEMO") == "TRUE":
duration_verify = librosa.get_duration(filename=base_audio_wav)
logger.info(f"Duration: {duration_verify} seconds")
if duration_verify > 1500:
raise RuntimeError(
"The audio is too long to process in this demo. Alternatively, you"
" can install the app locally or use the Colab notebook available "
"in the ALEPH-WEBETA repository."
)
elif duration_verify > 300:
tts_voices_list = [
tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04,
tts_voice05, tts_voice06, tts_voice07, tts_voice08, tts_voice09,
tts_voice10, tts_voice11
]
for tts_voice_ in tts_voices_list:
if "_XTTS_" in tts_voice_:
raise RuntimeError(
"XTTS is too slow to be used for audio longer than 5 "
"minutes in this demo. Alternatively, you can install "
"the app locally or use the Colab notebook available in"
" the aleph-webeta repository."
)
if not self.task_in_cache("refine_vocals", [vocal_refinement], {}):
self.vocals = None
if vocal_refinement:
try:
from soni_translate.mdx_net import process_uvr_task
_, _, _, _, file_vocals = process_uvr_task(
orig_song_path=base_audio_wav,
main_vocals=False,
dereverb=True,
remove_files_output_dir=True,
)
remove_files(vocals_audio_file)
copy_files(file_vocals, ".")
self.vocals = vocals_audio_file
except Exception as error:
logger.error(str(error))
if not self.task_in_cache("transcript_align", [
subtitle_file,
SOURCE_LANGUAGE,
transcriber_model,
compute_type,
batch_size,
literalize_numbers,
segment_duration_limit,
(
"l_unit"
if text_segmentation_scale in ["word", "character"]
and subtitle_file
else "sentence"
)
], {"vocals": self.vocals}):
if subtitle_file:
prog_disp(
"From SRT file...", 0.30, is_gui, progress=progress
)
audio = whisperx.load_audio(
base_audio_wav if not self.vocals else self.vocals
)
self.result = srt_file_to_segments(subtitle_file)
self.result["language"] = SOURCE_LANGUAGE
else:
prog_disp(
"Transcribing...", 0.30, is_gui, progress=progress
)
SOURCE_LANGUAGE = (
None
if SOURCE_LANGUAGE == "Automatic detection"
else SOURCE_LANGUAGE
)
audio, self.result = transcribe_speech(
base_audio_wav if not self.vocals else self.vocals,
transcriber_model,
compute_type,
batch_size,
SOURCE_LANGUAGE,
literalize_numbers,
segment_duration_limit,
)
logger.debug(
"Transcript complete, "
f"segments count {len(self.result['segments'])}"
)
self.align_language = self.result["language"]
if (
not subtitle_file
or text_segmentation_scale in ["word", "character"]
):
prog_disp("Aligning...", 0.45, is_gui, progress=progress)
try:
if self.align_language in ["vi"]:
logger.info(
"Deficient alignment for the "
f"{self.align_language} language, skipping the"
" process. It is suggested to reduce the "
"duration of the segments as an alternative."
)
else:
self.result = align_speech(audio, self.result)
logger.debug(
"Align complete, "
f"segments count {len(self.result['segments'])}"
)
except Exception as error:
logger.error(str(error))
if self.result["segments"] == []:
raise ValueError("No active speech found in audio")
if not self.task_in_cache("break_align", [
divide_text_segments_by,
text_segmentation_scale,
self.align_language
], {
"result": self.result,
"align_language": self.align_language
}):
if self.align_language in ["ja", "zh", "zh-TW"]:
divide_text_segments_by += "|!|?|...|。"
if text_segmentation_scale in ["word", "character"]:
self.result = linguistic_level_segments(
self.result,
text_segmentation_scale,
)
elif divide_text_segments_by:
try:
self.result = break_aling_segments(
self.result,
break_characters=divide_text_segments_by,
)
except Exception as error:
logger.error(str(error))
if not self.task_in_cache("diarize", [
min_speakers,
max_speakers,
YOUR_HF_TOKEN[:len(YOUR_HF_TOKEN)//2],
diarization_model
], {
"result": self.result
}):
prog_disp("Diarizing...", 0.60, is_gui, progress=progress)
diarize_model_select = diarization_models[diarization_model]
self.result_diarize = diarize_speech(
base_audio_wav if not self.vocals else self.vocals,
self.result,
min_speakers,
max_speakers,
YOUR_HF_TOKEN,
diarize_model_select,
)
logger.debug("Diarize complete")
self.result_source_lang = copy.deepcopy(self.result_diarize)
if not self.task_in_cache("translate", [
TRANSLATE_AUDIO_TO,
translate_process
], {
"result_diarize": self.result_diarize
}):
prog_disp("Translating...", 0.70, is_gui, progress=progress)
lang_source = (
self.align_language
if self.align_language
else SOURCE_LANGUAGE
)
self.result_diarize["segments"] = translate_text(
self.result_diarize["segments"],
TRANSLATE_AUDIO_TO,
translate_process,
chunk_size=1800,
source=lang_source,
)
logger.debug("Translation complete")
logger.debug(self.result_diarize)
if get_translated_text:
json_data = []
for segment in self.result_diarize["segments"]:
start = segment["start"]
text = segment["text"]
speaker = int(segment.get("speaker", "SPEAKER_00")[-2:]) + 1
json_data.append(
{"start": start, "text": text, "speaker": speaker}
)
# Convert list of dictionaries to a JSON string with indentation
json_string = json.dumps(json_data, indent=2)
logger.info("Done")
self.edit_subs_complete = True
return json_string.encode().decode("unicode_escape")
if get_video_from_text_json:
if self.result_diarize is None:
raise ValueError("Generate the transcription first.")
# with open('text_json.json', 'r') as file:
text_json_loaded = json.loads(text_json)
for i, segment in enumerate(self.result_diarize["segments"]):
segment["text"] = text_json_loaded[i]["text"]
segment["speaker"] = "SPEAKER_{:02d}".format(
int(text_json_loaded[i]["speaker"]) - 1
)
# Write subtitle
if not self.task_in_cache("subs_and_edit", [
copy.deepcopy(self.result_diarize),
output_format_subtitle,
TRANSLATE_AUDIO_TO
], {
"result_diarize": self.result_diarize
}):
if output_format_subtitle == "disable":
self.sub_file = "sub_tra.srt"
elif output_format_subtitle != "ass":
self.sub_file = process_subtitles(
self.result_source_lang,
self.align_language,
self.result_diarize,
output_format_subtitle,
TRANSLATE_AUDIO_TO,
)
# Need task
if output_format_subtitle != "srt":
_ = process_subtitles(
self.result_source_lang,
self.align_language,
self.result_diarize,
"srt",
TRANSLATE_AUDIO_TO,
)
if output_format_subtitle == "ass":
convert_ori = "ffmpeg -i sub_ori.srt sub_ori.ass -y"
convert_tra = "ffmpeg -i sub_tra.srt sub_tra.ass -y"
self.sub_file = "sub_tra.ass"
run_command(convert_ori)
run_command(convert_tra)
format_sub = (
output_format_subtitle
if output_format_subtitle != "disable"
else "srt"
)
if output_type == "subtitle":
out_subs = []
tra_subs = media_out(
media_file,
TRANSLATE_AUDIO_TO,
video_output_name,
format_sub,
file_obj=self.sub_file,
)
out_subs.append(tra_subs)
ori_subs = media_out(
media_file,
self.align_language,
video_output_name,
format_sub,
file_obj=f"sub_ori.{format_sub}",
)
out_subs.append(ori_subs)
logger.info(f"Done: {out_subs}")
return out_subs
if output_type == "subtitle [by speaker]":
output = get_subtitle_speaker(
media_file,
result=self.result_diarize,
language=TRANSLATE_AUDIO_TO,
extension=format_sub,
base_name=video_output_name,
)
logger.info(f"Done: {str(output)}")
return output
if "video [subtitled]" in output_type:
output = media_out(
media_file,
TRANSLATE_AUDIO_TO + "_subtitled",
video_output_name,
"wav" if is_audio_file(media_file) else (
"mkv" if "mkv" in output_type else "mp4"
),
file_obj=base_audio_wav if is_audio_file(media_file) else base_video_file,
soft_subtitles=False if is_audio_file(media_file) else True,
subtitle_files=output_format_subtitle,
)
msg_out = output[0] if isinstance(output, list) else output
logger.info(f"Done: {msg_out}")
return output
if not self.task_in_cache("tts", [
TRANSLATE_AUDIO_TO,
tts_voice00,
tts_voice01,
tts_voice02,
tts_voice03,
tts_voice04,
tts_voice05,
tts_voice06,
tts_voice07,
tts_voice08,
tts_voice09,
tts_voice10,
tts_voice11,
dereverb_automatic_xtts
], {
"sub_file": self.sub_file
}):
prog_disp("Text to speech...", 0.80, is_gui, progress=progress)
self.valid_speakers = audio_segmentation_to_voice(
self.result_diarize,
TRANSLATE_AUDIO_TO,
is_gui,
tts_voice00,
tts_voice01,
tts_voice02,
tts_voice03,
tts_voice04,
tts_voice05,
tts_voice06,
tts_voice07,
tts_voice08,
tts_voice09,
tts_voice10,
tts_voice11,
dereverb_automatic_xtts,
)
if not self.task_in_cache("acc_and_vc", [
max_accelerate_audio,
acceleration_rate_regulation,
voice_imitation,
voice_imitation_max_segments,
voice_imitation_remove_previous,
voice_imitation_vocals_dereverb,
voice_imitation_method,
custom_voices,
custom_voices_workers,
copy.deepcopy(self.vci.model_config),
avoid_overlap
], {
"valid_speakers": self.valid_speakers
}):
audio_files, speakers_list = accelerate_segments(
self.result_diarize,
max_accelerate_audio,
self.valid_speakers,
acceleration_rate_regulation,
)
# Voice Imitation (Tone color converter)
if voice_imitation:
prog_disp(
"Voice Imitation...", 0.85, is_gui, progress=progress
)
from soni_translate.text_to_speech import toneconverter
try:
toneconverter(
copy.deepcopy(self.result_diarize),
voice_imitation_max_segments,
voice_imitation_remove_previous,
voice_imitation_vocals_dereverb,
voice_imitation_method,
)
except Exception as error:
logger.error(str(error))
# custom voice
if custom_voices:
prog_disp(
"Applying customized voices...",
0.90,
is_gui,
progress=progress,
)
try:
self.vci(
audio_files,
speakers_list,
overwrite=True,
parallel_workers=custom_voices_workers,
)
self.vci.unload_models()
except Exception as error:
logger.error(str(error))
prog_disp(
"Creating final translated video...",
0.95,
is_gui,
progress=progress,
)
remove_files(dub_audio_file)
create_translated_audio(
self.result_diarize,
audio_files,
dub_audio_file,
False,
avoid_overlap,
)
# Voiceless track, change with file
hash_base_audio_wav = get_hash(base_audio_wav)
if voiceless_track:
if self.voiceless_id != hash_base_audio_wav:
from soni_translate.mdx_net import process_uvr_task
try:
# voiceless_audio_file_dir = "clean_song_output/voiceless"
remove_files(voiceless_audio_file)
uvr_voiceless_audio_wav, _ = process_uvr_task(
orig_song_path=base_audio_wav,
song_id="voiceless",
only_voiceless=True,
remove_files_output_dir=False,
)
copy_files(uvr_voiceless_audio_wav, ".")
base_audio_wav = voiceless_audio_file
self.voiceless_id = hash_base_audio_wav
except Exception as error:
logger.error(str(error))
else:
base_audio_wav = voiceless_audio_file
if not self.task_in_cache("mix_aud", [
mix_method_audio,
volume_original_audio,
volume_translated_audio,
voiceless_track
], {}):
# TYPE MIX AUDIO
remove_files(mix_audio_file)
command_volume_mix = f'ffmpeg -y -i {base_audio_wav} -i {dub_audio_file} -filter_complex "[0:0]volume={volume_original_audio}[a];[1:0]volume={volume_translated_audio}[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio_file}'
command_background_mix = f'ffmpeg -i {base_audio_wav} -i {dub_audio_file} -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio_file}'
if mix_method_audio == "Adjusting volumes and mixing audio":
# volume mix
run_command(command_volume_mix)
else:
try:
# background mix
run_command(command_background_mix)
except Exception as error_mix:
# volume mix except
logger.error(str(error_mix))
run_command(command_volume_mix)
if "audio" in output_type or is_audio_file(media_file):
output = media_out(
media_file,
TRANSLATE_AUDIO_TO,
video_output_name,
"wav" if "wav" in output_type else (
"ogg" if "ogg" in output_type else "mp3"
),
file_obj=mix_audio_file,
subtitle_files=output_format_subtitle,
)
msg_out = output[0] if isinstance(output, list) else output
logger.info(f"Done: {msg_out}")
return output
hash_base_video_file = get_hash(base_video_file)
if burn_subtitles_to_video:
hashvideo_text = [
hash_base_video_file,
[seg["text"] for seg in self.result_diarize["segments"]]
]
if self.burn_subs_id != hashvideo_text:
try:
logger.info("Burn subtitles")
remove_files(vid_subs)
command = f"ffmpeg -i {base_video_file} -y -vf subtitles=sub_tra.srt -max_muxing_queue_size 9999 {vid_subs}"
run_command(command)
base_video_file = vid_subs
self.burn_subs_id = hashvideo_text
except Exception as error:
logger.error(str(error))
else:
base_video_file = vid_subs
if not self.task_in_cache("output", [
hash_base_video_file,
hash_base_audio_wav,
burn_subtitles_to_video
], {}):
# Merge new audio + video
remove_files(video_output_file)
run_command(
f"ffmpeg -i {base_video_file} -i {mix_audio_file} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output_file}"
)
output = media_out(
media_file,
TRANSLATE_AUDIO_TO,
video_output_name,
"mkv" if "mkv" in output_type else "mp4",
file_obj=video_output_file,
soft_subtitles=soft_subtitles_to_video,
subtitle_files=output_format_subtitle,
)
msg_out = output[0] if isinstance(output, list) else output
logger.info(f"Done: {msg_out}")
return output
def hook_beta_processor(
self,
document,
tgt_lang,
translate_process,
ori_lang,
tts,
name_final_file,
custom_voices,
custom_voices_workers,
output_type,
chunk_size,
width,
height,
start_page,
end_page,
bcolor,
is_gui,
progress
):
prog_disp("Processing pages...", 0.10, is_gui, progress=progress)
doc_data = doc_to_txtximg_pages(document, width, height, start_page, end_page, bcolor)
result_diarize = page_data_to_segments(doc_data, 1700)
prog_disp("Translating...", 0.20, is_gui, progress=progress)
result_diarize["segments"] = translate_text(
result_diarize["segments"],
tgt_lang,
translate_process,
chunk_size=0,
source=ori_lang,
)
chunk_size = (
chunk_size if chunk_size else determine_chunk_size(tts)
)
doc_data = update_page_data(result_diarize, doc_data)
prog_disp("Text to speech...", 0.30, is_gui, progress=progress)
result_diarize = page_data_to_segments(doc_data, chunk_size)
valid_speakers = audio_segmentation_to_voice(
result_diarize,
tgt_lang,
is_gui,
tts,
)
# fix format and set folder output
audio_files, speakers_list = accelerate_segments(
result_diarize,
1.0,
valid_speakers,
)
# custom voice
if custom_voices:
prog_disp(
"Applying customized voices...",
0.60,
is_gui,
progress=progress,
)
self.vci(
audio_files,
speakers_list,
overwrite=True,
parallel_workers=custom_voices_workers,
)
self.vci.unload_models()
# Update time segments and not concat
result_diarize = fix_timestamps_docs(result_diarize, audio_files)
final_wav_file = "audio_book.wav"
remove_files(final_wav_file)
prog_disp("Creating audio file...", 0.70, is_gui, progress=progress)
create_translated_audio(
result_diarize, audio_files, final_wav_file, False
)
prog_disp("Creating video file...", 0.80, is_gui, progress=progress)
video_doc = create_video_from_images(
doc_data,
result_diarize
)
# Merge video and audio
prog_disp("Merging...", 0.90, is_gui, progress=progress)
vid_out = merge_video_and_audio(video_doc, final_wav_file)
# End
output = media_out(
document,
tgt_lang,
name_final_file,
"mkv" if "mkv" in output_type else "mp4",
file_obj=vid_out,
)
logger.info(f"Done: {output}")
return output
def multilingual_docs_conversion(
self,
string_text="", # string
document=None, # doc path gui
directory_input="", # doc path
origin_language="English (en)",
target_language="English (en)",
tts_voice00="en-US-EmmaMultilingualNeural-Female",
name_final_file="",
translate_process="google_translator",
output_type="audio",
chunk_size=None,
custom_voices=False,
custom_voices_workers=1,
start_page=1,
end_page=99999,
width=1280,
height=720,
bcolor="dynamic",
is_gui=False,
progress=gr.Progress(),
):
if "gpt" in translate_process:
check_openai_api_key()
SOURCE_LANGUAGE = LANGUAGES[origin_language]
if translate_process != "disable_translation":
TRANSLATE_AUDIO_TO = LANGUAGES[target_language]
else:
TRANSLATE_AUDIO_TO = SOURCE_LANGUAGE
logger.info("No translation")
if tts_voice00[:2].lower() != TRANSLATE_AUDIO_TO[:2].lower():
logger.debug(
"Make sure to select a 'TTS Speaker' suitable for the "
"translation language to avoid errors with the TTS."
)
self.clear_cache(string_text, force=True)
is_string = False
if document is None:
if os.path.exists(directory_input):
document = directory_input
else:
document = string_text
is_string = True
document = document if isinstance(document, str) else document.name
if not document:
raise Exception("No data found")
if os.environ.get("IS_DEMO") == "TRUE" and not is_string:
raise RuntimeError(
"This option is disabled in this demo. "
"Alternatively, you can install "
"the app locally or use the Colab notebook available in"
" the ALEPH-WEBETA repository."
)
if "videobook" in output_type:
if not document.lower().endswith(".pdf"):
raise ValueError(
"Videobooks are only compatible with PDF files."
)
return self.hook_beta_processor(
document,
TRANSLATE_AUDIO_TO,
translate_process,
SOURCE_LANGUAGE,
tts_voice00,
name_final_file,
custom_voices,
custom_voices_workers,
output_type,
chunk_size,
width,
height,
start_page,
end_page,
bcolor,
is_gui,
progress
)
# audio_wav = "audio.wav"
final_wav_file = "audio_book.wav"
prog_disp("Processing text...", 0.15, is_gui, progress=progress)
result_file_path, result_text = document_preprocessor(
document, is_string, start_page, end_page
)
if (
output_type == "book (txt)"
and translate_process == "disable_translation"
):
return result_file_path
if "SET_LIMIT" == os.getenv("DEMO"):
result_text = result_text[:50]
logger.info(
"DEMO; Generation is limited to 50 characters to prevent "
"CPU errors. No limitations with GPU.\n"
)
if translate_process != "disable_translation":
# chunks text for translation
result_diarize = plain_text_to_segments(result_text, 1700)
prog_disp("Translating...", 0.30, is_gui, progress=progress)
# not or iterative with 1700 chars
result_diarize["segments"] = translate_text(
result_diarize["segments"],
TRANSLATE_AUDIO_TO,
translate_process,
chunk_size=0,
source=SOURCE_LANGUAGE,
)
txt_file_path, result_text = segments_to_plain_text(result_diarize)
if output_type == "book (txt)":
return media_out(
result_file_path if is_string else document,
TRANSLATE_AUDIO_TO,
name_final_file,
"txt",
file_obj=txt_file_path,
)
# (TTS limits) plain text to result_diarize
chunk_size = (
chunk_size if chunk_size else determine_chunk_size(tts_voice00)
)
result_diarize = plain_text_to_segments(result_text, chunk_size)
logger.debug(result_diarize)
prog_disp("Text to speech...", 0.45, is_gui, progress=progress)
valid_speakers = audio_segmentation_to_voice(
result_diarize,
TRANSLATE_AUDIO_TO,
is_gui,
tts_voice00,
)
# fix format and set folder output
audio_files, speakers_list = accelerate_segments(
result_diarize,
1.0,
valid_speakers,
)
# custom voice
if custom_voices:
prog_disp(
"Applying customized voices...",
0.80,
is_gui,
progress=progress,
)
self.vci(
audio_files,
speakers_list,
overwrite=True,
parallel_workers=custom_voices_workers,
)
self.vci.unload_models()
prog_disp(
"Creating final audio file...", 0.90, is_gui, progress=progress
)
remove_files(final_wav_file)
create_translated_audio(
result_diarize, audio_files, final_wav_file, True
)
output = media_out(
result_file_path if is_string else document,
TRANSLATE_AUDIO_TO,
name_final_file,
"mp3" if "mp3" in output_type else (
"ogg" if "ogg" in output_type else "wav"
),
file_obj=final_wav_file,
)
logger.info(f"Done: {output}")
return output
title = "<center><strong><font size='7'>📽️ ALEPH-WEO-WEBETA 🈷️</font></strong></center>"
def create_gui(theme, logs_in_gui=False):
with gr.Blocks(theme=theme) as app:
gr.Markdown(title)
gr.Markdown(lg_conf["description"])
if os.environ.get("ZERO_GPU") == "TRUE":
gr.Markdown(
"""
<details>
<summary style="font-size: 1.5em;">⚠️ Important ⚠️</summary>
<ul>
<li>🚀 This demo uses a zero GPU setup only for the transcription and diarization process. Everything else runs on the CPU. It is recommended to use videos no longer than 15 minutes. ⏳</li>
<li>❗ If you see `queue` when using this, it means another user is currently using it, and you need to wait until they are finished.</li>
<li>🔒 Some functions are disabled, but if you duplicate this with a GPU and set the value in secrets "ZERO_GPU" to FALSE, you can use the app with full GPU acceleration. ⚡</li>
</ul>
</details>
"""
)
with gr.Tab(lg_conf["tab_translate"]):
with gr.Row():
with gr.Column():
input_data_type = gr.Dropdown(
["SUBMIT VIDEO", "URL", "Find Video Path"],
value="SUBMIT VIDEO",
label=lg_conf["video_source"],
)
def swap_visibility(data_type):
if data_type == "URL":
return (
gr.update(visible=False, value=None),
gr.update(visible=True, value=""),
gr.update(visible=False, value=""),
)
elif data_type == "SUBMIT VIDEO":
return (
gr.update(visible=True, value=None),
gr.update(visible=False, value=""),
gr.update(visible=False, value=""),
)
elif data_type == "Find Video Path":
return (
gr.update(visible=False, value=None),
gr.update(visible=False, value=""),
gr.update(visible=True, value=""),
)
video_input = gr.File(
label="VIDEO",
file_count="multiple",
type="filepath",
)
blink_input = gr.Textbox(
visible=False,
label=lg_conf["link_label"],
info=lg_conf["link_info"],
placeholder=lg_conf["link_ph"],
)
directory_input = gr.Textbox(
visible=False,
label=lg_conf["dir_label"],
info=lg_conf["dir_info"],
placeholder=lg_conf["dir_ph"],
)
input_data_type.change(
fn=swap_visibility,
inputs=input_data_type,
outputs=[video_input, blink_input, directory_input],
)
gr.HTML()
SOURCE_LANGUAGE = gr.Dropdown(
LANGUAGES_LIST,
value=LANGUAGES_LIST[0],
label=lg_conf["sl_label"],
info=lg_conf["sl_info"],
)
TRANSLATE_AUDIO_TO = gr.Dropdown(
LANGUAGES_LIST[1:],
value="English (en)",
label=lg_conf["tat_label"],
info=lg_conf["tat_info"],
)
gr.HTML("<hr></h2>")
gr.Markdown(lg_conf["num_speakers"])
MAX_TTS = 12
min_speakers = gr.Slider(
1,
MAX_TTS,
value=1,
label=lg_conf["min_sk"],
step=1,
visible=False,
)
max_speakers = gr.Slider(
1,
MAX_TTS,
value=2,
step=1,
label=lg_conf["max_sk"],
)
gr.Markdown(lg_conf["tts_select"])
def submit(value):
visibility_dict = {
f"tts_voice{i:02d}": gr.update(visible=i < value)
for i in range(MAX_TTS)
}
return [value for value in visibility_dict.values()]
tts_voice00 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="en-US-EmmaMultilingualNeural-Female",
label=lg_conf["sk1"],
visible=True,
interactive=True,
)
tts_voice01 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="en-US-AndrewMultilingualNeural-Male",
label=lg_conf["sk2"],
visible=True,
interactive=True,
)
tts_voice02 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="en-US-AvaMultilingualNeural-Female",
label=lg_conf["sk3"],
visible=False,
interactive=True,
)
tts_voice03 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="en-US-BrianMultilingualNeural-Male",
label=lg_conf["sk4"],
visible=False,
interactive=True,
)
tts_voice04 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="de-DE-SeraphinaMultilingualNeural-Female",
label=lg_conf["sk4"],
visible=False,
interactive=True,
)
tts_voice05 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="de-DE-FlorianMultilingualNeural-Male",
label=lg_conf["sk6"],
visible=False,
interactive=True,
)
tts_voice06 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="fr-FR-VivienneMultilingualNeural-Female",
label=lg_conf["sk7"],
visible=False,
interactive=True,
)
tts_voice07 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="fr-FR-RemyMultilingualNeural-Male",
label=lg_conf["sk8"],
visible=False,
interactive=True,
)
tts_voice08 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="en-US-EmmaMultilingualNeural-Female",
label=lg_conf["sk9"],
visible=False,
interactive=True,
)
tts_voice09 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="en-US-AndrewMultilingualNeural-Male",
label=lg_conf["sk10"],
visible=False,
interactive=True,
)
tts_voice10 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="en-US-EmmaMultilingualNeural-Female",
label=lg_conf["sk11"],
visible=False,
interactive=True,
)
tts_voice11 = gr.Dropdown(
SoniTr.tts_info.tts_list(),
value="en-US-AndrewMultilingualNeural-Male",
label=lg_conf["sk12"],
visible=False,
interactive=True,
)
max_speakers.change(
submit,
max_speakers,
[
tts_voice00,
tts_voice01,
tts_voice02,
tts_voice03,
tts_voice04,
tts_voice05,
tts_voice06,
tts_voice07,
tts_voice08,
tts_voice09,
tts_voice10,
tts_voice11,
],
)
with gr.Column():
with gr.Accordion(
lg_conf["vc_title"],
open=False,
):
gr.Markdown(lg_conf["vc_subtitle"])
voice_imitation_gui = gr.Checkbox(
False,
label=lg_conf["vc_active_label"],
info=lg_conf["vc_active_info"],
)
openvoice_models = ["openvoice", "openvoice_v2"]
voice_imitation_method_options = (
["freevc"] + openvoice_models
if SoniTr.tts_info.xtts_enabled
else openvoice_models
)
voice_imitation_method_gui = gr.Dropdown(
voice_imitation_method_options,
value=voice_imitation_method_options[-1],
label=lg_conf["vc_method_label"],
info=lg_conf["vc_method_info"],
)
voice_imitation_max_segments_gui = gr.Slider(
label=lg_conf["vc_segments_label"],
info=lg_conf["vc_segments_info"],
value=3,
step=1,
minimum=1,
maximum=10,
visible=True,
interactive=True,
)
voice_imitation_vocals_dereverb_gui = gr.Checkbox(
False,
label=lg_conf["vc_dereverb_label"],
info=lg_conf["vc_dereverb_info"],
)
voice_imitation_remove_previous_gui = gr.Checkbox(
True,
label=lg_conf["vc_remove_label"],
info=lg_conf["vc_remove_info"],
)
if SoniTr.tts_info.xtts_enabled:
with gr.Column():
with gr.Accordion(
lg_conf["xtts_title"],
open=False,
):
gr.Markdown(lg_conf["xtts_subtitle"])
wav_speaker_file = gr.File(
label=lg_conf["xtts_file_label"]
)
wav_speaker_name = gr.Textbox(
label=lg_conf["xtts_name_label"],
value="",
info=lg_conf["xtts_name_info"],
placeholder="default_name",
lines=1,
)
wav_speaker_start = gr.Number(
label="Time audio start",
value=0,
visible=False,
)
wav_speaker_end = gr.Number(
label="Time audio end",
value=0,
visible=False,
)
wav_speaker_dir = gr.Textbox(
label="Directory save",
value="_XTTS_",
visible=False,
)
wav_speaker_dereverb = gr.Checkbox(
True,
label=lg_conf["xtts_dereverb_label"],
info=lg_conf["xtts_dereverb_info"]
)
wav_speaker_output = gr.HTML()
create_xtts_wav = gr.Button(
lg_conf["xtts_button"]
)
gr.Markdown(lg_conf["xtts_footer"])
else:
wav_speaker_dereverb = gr.Checkbox(
False,
label=lg_conf["xtts_dereverb_label"],
info=lg_conf["xtts_dereverb_info"],
visible=False
)
with gr.Column():
with gr.Accordion(
lg_conf["extra_setting"], open=False
):
# Add the new video acceleration rate regulation option
video_acceleration_rate_regulation_gui = gr.Checkbox(
False,
label="Video Acceleration Rate Regulation",
info="Enable this option to regulate the video segments rate to match the translated audio segments length and regulate overall video length.",
)
audio_accelerate = gr.Slider(
label=lg_conf["acc_max_label"],
value=1.9,
step=0.1,
minimum=1.0,
maximum=2.5,
visible=True,
interactive=True,
info=lg_conf["acc_max_info"],
)
acceleration_rate_regulation_gui = gr.Checkbox(
False,
label=lg_conf["acc_rate_label"],
info=lg_conf["acc_rate_info"],
)
avoid_overlap_gui = gr.Checkbox(
False,
label=lg_conf["or_label"],
info=lg_conf["or_info"],
)
gr.HTML("<hr></h2>")
audio_mix_options = [
"Mixing audio with sidechain compression",
"Adjusting volumes and mixing audio",
]
AUDIO_MIX = gr.Dropdown(
audio_mix_options,
value=audio_mix_options[1],
label=lg_conf["aud_mix_label"],
info=lg_conf["aud_mix_info"],
)
volume_original_mix = gr.Slider(
label=lg_conf["vol_ori"],
info="for Adjusting volumes and mixing audio",
value=0.25,
step=0.05,
minimum=0.0,
maximum=2.50,
visible=True,
interactive=True,
)
volume_translated_mix = gr.Slider(
label=lg_conf["vol_tra"],
info="for Adjusting volumes and mixing audio",
value=1.80,
step=0.05,
minimum=0.0,
maximum=2.50,
visible=True,
interactive=True,
)
main_voiceless_track = gr.Checkbox(
label=lg_conf["voiceless_tk_label"],
info=lg_conf["voiceless_tk_info"],
)
gr.HTML("<hr></h2>")
sub_type_options = [
"disable",
"srt",
"vtt",
"ass",
"txt",
"tsv",
"json",
"aud",
]
sub_type_output = gr.Dropdown(
sub_type_options,
value=sub_type_options[1],
label=lg_conf["sub_type"],
)
soft_subtitles_to_video_gui = gr.Checkbox(
label=lg_conf["soft_subs_label"],
info=lg_conf["soft_subs_info"],
)
burn_subtitles_to_video_gui = gr.Checkbox(
label=lg_conf["burn_subs_label"],
info=lg_conf["burn_subs_info"],
)
gr.HTML("<hr></h2>")
gr.Markdown(lg_conf["whisper_title"])
literalize_numbers_gui = gr.Checkbox(
True,
label=lg_conf["lnum_label"],
info=lg_conf["lnum_info"],
)
vocal_refinement_gui = gr.Checkbox(
False,
label=lg_conf["scle_label"],
info=lg_conf["scle_info"],
)
segment_duration_limit_gui = gr.Slider(
label=lg_conf["sd_limit_label"],
info=lg_conf["sd_limit_info"],
value=15,
step=1,
minimum=1,
maximum=30,
)
whisper_model_default = (
"large-v3"
if SoniTr.device == "cuda"
else "medium"
)
WHISPER_MODEL_SIZE = gr.Dropdown(
ASR_MODEL_OPTIONS + find_whisper_models(),
value=whisper_model_default,
label="Whisper ASR model",
info=lg_conf["asr_model_info"],
allow_custom_value=True,
)
com_t_opt, com_t_default = (
[COMPUTE_TYPE_GPU, "float16"]
if SoniTr.device == "cuda"
else [COMPUTE_TYPE_CPU, "float32"]
)
compute_type = gr.Dropdown(
com_t_opt,
value=com_t_default,
label=lg_conf["ctype_label"],
info=lg_conf["ctype_info"],
)
batch_size_value = 8 if os.environ.get("ZERO_GPU") != "TRUE" else 32
batch_size = gr.Slider(
minimum=1,
maximum=32,
value=batch_size_value,
label=lg_conf["batchz_label"],
info=lg_conf["batchz_info"],
step=1,
)
input_srt = gr.File(
label=lg_conf["srt_file_label"],
file_types=[".srt", ".ass", ".vtt"],
height=130,
)
gr.HTML("<hr></h2>")
text_segmentation_options = [
"sentence",
"word",
"character"
]
text_segmentation_scale_gui = gr.Dropdown(
text_segmentation_options,
value=text_segmentation_options[0],
label=lg_conf["tsscale_label"],
info=lg_conf["tsscale_info"],
)
divide_text_segments_by_gui = gr.Textbox(
label=lg_conf["divide_text_label"],
value="",
info=lg_conf["divide_text_info"],
)
gr.HTML("<hr></h2>")
pyannote_models_list = list(
diarization_models.keys()
)
diarization_process_dropdown = gr.Dropdown(
pyannote_models_list,
value=pyannote_models_list[1],
label=lg_conf["diarization_label"],
)
translate_process_dropdown = gr.Dropdown(
TRANSLATION_PROCESS_OPTIONS,
value=TRANSLATION_PROCESS_OPTIONS[0],
label=lg_conf["tr_process_label"],
)
gr.HTML("<hr></h2>")
main_output_type = gr.Dropdown(
OUTPUT_TYPE_OPTIONS,
value=OUTPUT_TYPE_OPTIONS[0],
label=lg_conf["out_type_label"],
)
VIDEO_OUTPUT_NAME = gr.Textbox(
label=lg_conf["out_name_label"],
value="",
info=lg_conf["out_name_info"],
)
play_sound_gui = gr.Checkbox(
True,
label=lg_conf["task_sound_label"],
info=lg_conf["task_sound_info"],
)
enable_cache_gui = gr.Checkbox(
True,
label=lg_conf["cache_label"],
info=lg_conf["cache_info"],
)
PREVIEW = gr.Checkbox(
label="Preview", info=lg_conf["preview_info"]
)
is_gui_dummy_check = gr.Checkbox(
True, visible=False
)
with gr.Column(variant="compact"):
edit_sub_check = gr.Checkbox(
label=lg_conf["edit_sub_label"],
info=lg_conf["edit_sub_info"],
interactive=True, # Always enable the checkbox
)
dummy_false_check = gr.Checkbox(
False,
visible=False,
)
def visible_component_subs(input_bool):
if input_bool:
return gr.update(visible=True), gr.update(
visible=True
)
else:
return gr.update(visible=False), gr.update(
visible=False
)
subs_button = gr.Button(
lg_conf["button_subs"],
variant="primary",
visible=False,
)
subs_edit_space = gr.Textbox(
visible=False,
lines=10,
label=lg_conf["editor_sub_label"],
info=lg_conf["editor_sub_info"],
placeholder=lg_conf["editor_sub_ph"],
)
edit_sub_check.change(
visible_component_subs,
[edit_sub_check],
[subs_button, subs_edit_space],
)
with gr.Row():
video_button = gr.Button(
lg_conf["button_translate"],
variant="primary",
)
with gr.Row():
video_output = gr.File(
label=lg_conf["output_result_label"],
file_count="multiple",
interactive=False,
) # gr.Video()
gr.HTML("<hr></h2>")
if (
os.getenv("YOUR_HF_TOKEN") is None
or os.getenv("YOUR_HF_TOKEN") == ""
):
HFKEY = gr.Textbox(
visible=True,
label="HF Token",
info=lg_conf["ht_token_info"],
placeholder=lg_conf["ht_token_ph"],
)
else:
HFKEY = gr.Textbox(
visible=False,
label="HF Token",
info=lg_conf["ht_token_info"],
placeholder=lg_conf["ht_token_ph"],
)
gr.Examples(
examples=[
[
["./assets/Video_main.mp4"],
"",
"",
"",
False,
whisper_model_default,
batch_size_value,
com_t_default,
"Spanish (es)",
"English (en)",
1,
2,
"en-US-EmmaMultilingualNeural-Female",
"en-US-AndrewMultilingualNeural-Male",
],
], # no update
fn=SoniTr.batch_multilingual_media_conversion,
inputs=[
video_input,
blink_input,
directory_input,
HFKEY,
PREVIEW,
WHISPER_MODEL_SIZE,
batch_size,
compute_type,
SOURCE_LANGUAGE,
TRANSLATE_AUDIO_TO,
min_speakers,
max_speakers,
tts_voice00,
tts_voice01,
],
outputs=[video_output],
cache_examples=False,
)
with gr.Tab(lg_conf["tab_docs"]):
with gr.Column():
with gr.Accordion("Docs", open=True):
with gr.Column(variant="compact"):
with gr.Column():
input_doc_type = gr.Dropdown(
[
"WRITE TEXT",
"SUBMIT DOCUMENT",
"Find Document Path",
],
value="SUBMIT DOCUMENT",
label=lg_conf["docs_input_label"],
info=lg_conf["docs_input_info"],
)
def swap_visibility(data_type):
if data_type == "WRITE TEXT":
return (
gr.update(visible=True, value=""),
gr.update(visible=False, value=None),
gr.update(visible=False, value=""),
)
elif data_type == "SUBMIT DOCUMENT":
return (
gr.update(visible=False, value=""),
gr.update(visible=True, value=None),
gr.update(visible=False, value=""),
)
elif data_type == "Find Document Path":
return (
gr.update(visible=False, value=""),
gr.update(visible=False, value=None),
gr.update(visible=True, value=""),
)
text_docs = gr.Textbox(
label="Text",
value="This is an example",
info="Write a text",
placeholder="...",
lines=5,
visible=False,
)
input_docs = gr.File(
label="Document", visible=True
)
directory_input_docs = gr.Textbox(
visible=False,
label="Document Path",
info="Example: /home/my_doc.pdf",
placeholder="Path goes here...",
)
input_doc_type.change(
fn=swap_visibility,
inputs=input_doc_type,
outputs=[
text_docs,
input_docs,
directory_input_docs,
],
)
gr.HTML()
tts_documents = gr.Dropdown(
list(
filter(
lambda x: x != "_XTTS_/AUTOMATIC.wav",
SoniTr.tts_info.tts_list(),
)
),
value="en-US-EmmaMultilingualNeural-Female",
label="TTS",
visible=True,
interactive=True,
)
gr.HTML()
docs_SOURCE_LANGUAGE = gr.Dropdown(
LANGUAGES_LIST[1:],
value="English (en)",
label=lg_conf["sl_label"],
info=lg_conf["docs_source_info"],
)
docs_TRANSLATE_TO = gr.Dropdown(
LANGUAGES_LIST[1:],
value="English (en)",
label=lg_conf["tat_label"],
info=lg_conf["tat_info"],
)
with gr.Column():
with gr.Accordion(
lg_conf["extra_setting"], open=False
):
docs_translate_process_dropdown = gr.Dropdown(
DOCS_TRANSLATION_PROCESS_OPTIONS,
value=DOCS_TRANSLATION_PROCESS_OPTIONS[
0
],
label="Translation process",
)
gr.HTML("<hr></h2>")
docs_output_type = gr.Dropdown(
DOCS_OUTPUT_TYPE_OPTIONS,
value=DOCS_OUTPUT_TYPE_OPTIONS[2],
label="Output type",
)
docs_OUTPUT_NAME = gr.Textbox(
label="Final file name",
value="",
info=lg_conf["out_name_info"],
)
docs_chunk_size = gr.Number(
label=lg_conf["chunk_size_label"],
value=0,
visible=True,
interactive=True,
info=lg_conf["chunk_size_info"],
)
gr.HTML("<hr></h2>")
start_page_gui = gr.Number(
step=1,
value=1,
minimum=1,
maximum=99999,
label="Start page",
)
end_page_gui = gr.Number(
step=1,
value=99999,
minimum=1,
maximum=99999,
label="End page",
)
gr.HTML("<hr>Videobook config</h2>")
videobook_width_gui = gr.Number(
step=1,
value=1280,
minimum=100,
maximum=4096,
label="Width",
)
videobook_height_gui = gr.Number(
step=1,
value=720,
minimum=100,
maximum=4096,
label="Height",
)
videobook_bcolor_gui = gr.Dropdown(
BORDER_COLORS,
value=BORDER_COLORS[0],
label="Border color",
)
docs_dummy_check = gr.Checkbox(
True, visible=False
)
with gr.Row():
docs_button = gr.Button(
lg_conf["docs_button"],
variant="primary",
)
with gr.Row():
docs_output = gr.File(
label="Result",
interactive=False,
)
with gr.Tab("Custom voice R.V.C. (Optional)"):
with gr.Column():
with gr.Accordion("Get the R.V.C. Models", open=True):
url_links = gr.Textbox(
label="URLs",
value="",
info=lg_conf["cv_url_info"],
placeholder="urls here...",
lines=1,
)
download_finish = gr.HTML()
download_button = gr.Button("DOWNLOAD MODELS")
def update_models():
models_path, index_path = upload_model_list()
dict_models = {
f"fmodel{i:02d}": gr.update(
choices=models_path
)
for i in range(MAX_TTS+1)
}
dict_index = {
f"findex{i:02d}": gr.update(
choices=index_path, value=None
)
for i in range(MAX_TTS+1)
}
dict_changes = {**dict_models, **dict_index}
return [value for value in dict_changes.values()]
with gr.Column():
with gr.Accordion(lg_conf["replace_title"], open=False):
with gr.Column(variant="compact"):
with gr.Column():
gr.Markdown(lg_conf["sec1_title"])
enable_custom_voice = gr.Checkbox(
False,
label="ENABLE",
info=lg_conf["enable_replace"]
)
workers_custom_voice = gr.Number(
step=1,
value=1,
minimum=1,
maximum=50,
label="workers",
visible=False,
)
gr.Markdown(lg_conf["sec2_title"])
gr.Markdown(lg_conf["sec2_subtitle"])
PITCH_ALGO_OPT = [
"pm",
"harvest",
"crepe",
"rmvpe",
"rmvpe+",
]
def model_conf():
return gr.Dropdown(
models_path,
# value="",
label="Model",
visible=True,
interactive=True,
)
def pitch_algo_conf():
return gr.Dropdown(
PITCH_ALGO_OPT,
value=PITCH_ALGO_OPT[3],
label="Pitch algorithm",
visible=True,
interactive=True,
)
def pitch_lvl_conf():
return gr.Slider(
label="Pitch level",
minimum=-24,
maximum=24,
step=1,
value=0,
visible=True,
interactive=True,
)
def index_conf():
return gr.Dropdown(
index_path,
value=None,
label="Index",
visible=True,
interactive=True,
)
def index_inf_conf():
return gr.Slider(
minimum=0,
maximum=1,
label="Index influence",
value=0.75,
)
def respiration_filter_conf():
return gr.Slider(
minimum=0,
maximum=7,
label="Respiration median filtering",
value=3,
step=1,
interactive=True,
)
def envelope_ratio_conf():
return gr.Slider(
minimum=0,
maximum=1,
label="Envelope ratio",
value=0.25,
interactive=True,
)
def consonant_protec_conf():
return gr.Slider(
minimum=0,
maximum=0.5,
label="Consonant breath protection",
value=0.5,
interactive=True,
)
def button_conf(tts_name):
return gr.Button(
lg_conf["cv_button_apply"]+" "+tts_name,
variant="primary",
)
TTS_TABS = [
'TTS Speaker {:02d}'.format(i) for i in range(1, MAX_TTS+1)
]
CV_SUBTITLES = [
lg_conf["cv_tts1"],
lg_conf["cv_tts2"],
lg_conf["cv_tts3"],
lg_conf["cv_tts4"],
lg_conf["cv_tts5"],
lg_conf["cv_tts6"],
lg_conf["cv_tts7"],
lg_conf["cv_tts8"],
lg_conf["cv_tts9"],
lg_conf["cv_tts10"],
lg_conf["cv_tts11"],
lg_conf["cv_tts12"],
]
configs_storage = []
for i in range(MAX_TTS): # Loop from 00 to 11
with gr.Accordion(CV_SUBTITLES[i], open=False):
gr.Markdown(TTS_TABS[i])
with gr.Column():
tag_gui = gr.Textbox(
value=TTS_TABS[i], visible=False
)
model_gui = model_conf()
pitch_algo_gui = pitch_algo_conf()
pitch_lvl_gui = pitch_lvl_conf()
index_gui = index_conf()
index_inf_gui = index_inf_conf()
rmf_gui = respiration_filter_conf()
er_gui = envelope_ratio_conf()
cbp_gui = consonant_protec_conf()
with gr.Row(variant="compact"):
button_config = button_conf(
TTS_TABS[i]
)
confirm_conf = gr.HTML()
button_config.click(
SoniTr.vci.apply_conf,
inputs=[
tag_gui,
model_gui,
pitch_algo_gui,
pitch_lvl_gui,
index_gui,
index_inf_gui,
rmf_gui,
er_gui,
cbp_gui,
],
outputs=[confirm_conf],
)
configs_storage.append({
"tag": tag_gui,
"model": model_gui,
"index": index_gui,
})
with gr.Column():
with gr.Accordion("Test R.V.C.", open=False):
with gr.Row(variant="compact"):
text_test = gr.Textbox(
label="Text",
value="This is an example",
info="write a text",
placeholder="...",
lines=5,
)
with gr.Column():
tts_test = gr.Dropdown(
sorted(SoniTr.tts_info.list_edge),
value="en-GB-ThomasNeural-Male",
label="TTS",
visible=True,
interactive=True,
)
model_test = model_conf()
index_test = index_conf()
pitch_test = pitch_lvl_conf()
pitch_alg_test = pitch_algo_conf()
with gr.Row(variant="compact"):
button_test = gr.Button("Test audio")
with gr.Column():
with gr.Row():
original_ttsvoice = gr.Audio()
ttsvoice = gr.Audio()
button_test.click(
SoniTr.vci.make_test,
inputs=[
text_test,
tts_test,
model_test,
index_test,
pitch_test,
pitch_alg_test,
],
outputs=[ttsvoice, original_ttsvoice],
)
download_button.click(
download_list,
[url_links],
[download_finish],
queue=False
).then(
update_models,
[],
[
elem["model"] for elem in configs_storage
] + [model_test] + [
elem["index"] for elem in configs_storage
] + [index_test],
)
with gr.Tab(lg_conf["tab_help"]):
gr.Markdown(lg_conf["tutorial"])
gr.Markdown(news)
def play_sound_alert(play_sound):
if not play_sound:
return None
# silent_sound = "assets/empty_audio.mp3"
sound_alert = "assets/sound_alert.mp3"
time.sleep(0.25)
# yield silent_sound
yield None
time.sleep(0.25)
yield sound_alert
sound_alert_notification = gr.Audio(
value=None,
type="filepath",
format="mp3",
autoplay=True,
visible=False,
)
if logs_in_gui:
logger.info("Logs in gui need public url")
class Logger:
def __init__(self, filename):
this.terminal = sys.stdout
this.log = open(filename, "w")
def write(self, message):
this.terminal.write(message)
this.log.write(message)
def flush(self):
this.terminal.flush()
this.log.flush()
def isatty(self):
return False
sys.stdout = Logger("output.log")
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
with gr.Accordion("Logs", open=False):
logs = gr.Textbox(label=">>>")
app.load(read_logs, None, logs, every=1)
if SoniTr.tts_info.xtts_enabled:
# Update tts list
def update_tts_list():
update_dict = {
f"tts_voice{i:02d}": gr.update(choices=SoniTr.tts_info.tts_list())
for i in range(MAX_TTS)
}
update_dict["tts_documents"] = gr.update(
choices=list(
filter(
lambda x: x != "_XTTS_/AUTOMATIC.wav",
SoniTr.tts_info.tts_list(),
)
)
)
return [value for value in update_dict.values()]
create_xtts_wav.click(
create_wav_file_vc,
inputs=[
wav_speaker_name,
wav_speaker_file,
wav_speaker_start,
wav_speaker_end,
wav_speaker_dir,
wav_speaker_dereverb,
],
outputs=[wav_speaker_output],
).then(
update_tts_list,
None,
[
tts_voice00,
tts_voice01,
tts_voice02,
tts_voice03,
tts_voice04,
tts_voice05,
tts_voice06,
tts_voice07,
tts_voice08,
tts_voice09,
tts_voice10,
tts_voice11,
tts_documents,
],
)
# Run translate text
subs_button.click(
SoniTr.batch_multilingual_media_conversion,
inputs=[
video_input,
blink_input,
directory_input,
HFKEY,
PREVIEW,
WHISPER_MODEL_SIZE,
batch_size,
compute_type,
SOURCE_LANGUAGE,
TRANSLATE_AUDIO_TO,
min_speakers,
max_speakers,
tts_voice00,
tts_voice01,
tts_voice02,
tts_voice03,
tts_voice04,
tts_voice05,
tts_voice06,
tts_voice07,
tts_voice08,
tts_voice09,
tts_voice10,
tts_voice11,
VIDEO_OUTPUT_NAME,
AUDIO_MIX,
audio_accelerate,
acceleration_rate_regulation_gui,
video_acceleration_rate_regulation_gui, # New option
volume_original_mix,
volume_translated_mix,
sub_type_output,
edit_sub_check, # TRUE BY DEFAULT
dummy_false_check, # dummy false
subs_edit_space,
avoid_overlap_gui,
vocal_refinement_gui,
literalize_numbers_gui,
segment_duration_limit_gui,
diarization_process_dropdown,
translate_process_dropdown,
input_srt,
main_output_type,
main_voiceless_track,
voice_imitation_gui,
voice_imitation_max_segments_gui,
voice_imitation_vocals_dereverb_gui,
voice_imitation_remove_previous_gui,
voice_imitation_method_gui,
wav_speaker_dereverb,
text_segmentation_scale_gui,
divide_text_segments_by_gui,
soft_subtitles_to_video_gui,
burn_subtitles_to_video_gui,
enable_cache_gui,
enable_custom_voice,
workers_custom_voice,
is_gui_dummy_check,
],
outputs=subs_edit_space,
).then(
play_sound_alert, [play_sound_gui], [sound_alert_notification]
)
# Run translate tts and complete
video_button.click(
SoniTr.batch_multilingual_media_conversion,
inputs=[
video_input,
blink_input,
directory_input,
HFKEY,
PREVIEW,
WHISPER_MODEL_SIZE,
batch_size,
compute_type,
SOURCE_LANGUAGE,
TRANSLATE_AUDIO_TO,
min_speakers,
max_speakers,
tts_voice00,
tts_voice01,
tts_voice02,
tts_voice03,
tts_voice04,
tts_voice05,
tts_voice06,
tts_voice07,
tts_voice08,
tts_voice09,
tts_voice10,
tts_voice11,
VIDEO_OUTPUT_NAME,
AUDIO_MIX,
audio_accelerate,
acceleration_rate_regulation_gui,
video_acceleration_rate_regulation_gui, # New option
volume_original_mix,
volume_translated_mix,
sub_type_output,
dummy_false_check,
edit_sub_check,
subs_edit_space,
avoid_overlap_gui,
vocal_refinement_gui,
literalize_numbers_gui,
segment_duration_limit_gui,
diarization_process_dropdown,
translate_process_dropdown,
input_srt,
main_output_type,
main_voiceless_track,
voice_imitation_gui,
voice_imitation_max_segments_gui,
voice_imitation_vocals_dereverb_gui,
voice_imitation_remove_previous_gui,
voice_imitation_method_gui,
wav_speaker_dereverb,
text_segmentation_scale_gui,
divide_text_segments_by_gui,
soft_subtitles_to_video_gui,
burn_subtitles_to_video_gui,
enable_cache_gui,
enable_custom_voice,
workers_custom_voice,
is_gui_dummy_check,
],
outputs=video_output,
trigger_mode="multiple",
).then(
play_sound_alert, [play_sound_gui], [sound_alert_notification]
)
# Run docs process
docs_button.click(
SoniTr.multilingual_docs_conversion,
inputs=[
text_docs,
input_docs,
directory_input_docs,
docs_SOURCE_LANGUAGE,
docs_TRANSLATE_TO,
tts_documents,
docs_OUTPUT_NAME,
docs_translate_process_dropdown,
docs_output_type,
docs_chunk_size,
enable_custom_voice,
workers_custom_voice,
start_page_gui,
end_page_gui,
videobook_width_gui,
videobook_height_gui,
videobook_bcolor_gui,
docs_dummy_check,
],
outputs=docs_output,
trigger_mode="multiple",
).then(
play_sound_alert, [play_sound_gui], [sound_alert_notification]
)
return app
def get_language_config(language_data, language=None, base_key="english"):
base_lang = language_data.get(base_key)
if language not in language_data:
logger.error(
f"Language {language} not found, defaulting to {base_key}"
)
return base_lang
lg_conf = language_data.get(language, {})
lg_conf.update((k, v) for k, v in base_lang.items() if k not in lg_conf)
return lg_conf
def create_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--theme",
type=str,
default="Taithrah/Minimal",
help=(
"Specify the theme; find themes in "
"https://huggingface.co/spaces/gradio/theme-gallery;"
" Example: --theme aliabid94/new-theme"
),
)
parser.add_argument(
"--public_url",
action="store_true",
default=False,
help="Enable public link",
)
parser.add_argument(
"--logs_in_gui",
action="store_true",
default=False,
help="Displays the operations performed in Logs",
)
parser.add_argument(
"--verbosity_level",
type=str,
default="info",
help=(
"Set logger verbosity level: "
"debug, info, warning, error, or critical"
),
)
parser.add_argument(
"--language",
type=str,
default="english",
help=" Select the language of the interface: english, spanish",
)
parser.add_argument(
"--cpu_mode",
action="store_true",
default=False,
help="Enable CPU mode to run the program without utilizing GPU acceleration.",
)
return parser
if __name__ == "__main__":
parser = create_parser()
args = parser.parse_args()
# Simulating command-line arguments
# args_list = "--theme aliabid94/new-theme --public_url".split()
# args = parser.parse_args(args_list)
set_logging_level(args.verbosity_level)
for id_model in UVR_MODELS:
download_manager(
os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir
)
models_path, index_path = upload_model_list()
SoniTr = SoniTranslate(cpu_mode=args.cpu_mode if os.environ.get("ZERO_GPU") != "TRUE" else "cpu")
lg_conf = get_language_config(language_data, language=args.language)
app = create_gui(args.theme, logs_in_gui=args.logs_in_gui)
print(IS_HUGGINGFACE_SPACE)
print(FORCE_PUBLIC_SHARE)
app.queue()
app.launch(
max_threads=1,
share=IS_HUGGINGFACE_SPACE or FORCE_PUBLIC_SHARE,
show_error=True,
quiet=False,
debug=(True if logger.isEnabledFor(logging.DEBUG) else False),
)