Spaces:
Running
Running
import cv2 | |
import gradio as gr | |
import mim | |
mim.install('mmcv-full==1.5.0') | |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model, | |
vis_pose_result, process_mmdet_results) | |
from mmdet.apis import inference_detector, init_detector | |
import mediapy | |
pose_config = 'configs/topdown_heatmap_hrnet_w48_coco_256x192.py' | |
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' | |
det_config = 'configs/faster_rcnn_r50_fpn_1x_coco.py' | |
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' | |
# initialize pose model | |
pose_model = init_pose_model(pose_config, pose_checkpoint, device='cpu') | |
# initialize detector | |
det_model = init_detector(det_config, det_checkpoint, device='cpu') | |
max_num_frames=120 | |
def predict(video_path): | |
cap = cv2.VideoCapture(video_path) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
preds_all = [] | |
# fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
# out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) | |
# writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height)) | |
frames = [] | |
for _ in range(max_num_frames): | |
ok, frame = cap.read() | |
if not ok: | |
break | |
rgb_frame = frame[:,:,::-1] | |
mmdet_results = inference_detector(det_model, rgb_frame) | |
person_results = process_mmdet_results(mmdet_results, cat_id=1) | |
pose_results, returned_outputs = inference_top_down_pose_model( | |
pose_model, | |
rgb_frame, | |
person_results, | |
bbox_thr=0.3, | |
format='xyxy', | |
dataset=pose_model.cfg.data.test.type) | |
vis_result = vis_pose_result( | |
pose_model, | |
rgb_frame, | |
pose_results, | |
dataset=pose_model.cfg.data.test.type, | |
show=False) | |
frames.append(vis_result) | |
cap.release() | |
# writer.release() | |
mediapy.write_video("out.mp4", frames, fps=fps) | |
return "out.mp4" | |
title = "Pose Estimation video" | |
description = "" | |
article = "" | |
example_list = ['examples/000001_mpiinew_test.mp4'] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Video(label='Input Video'), | |
outputs=gr.Video(label='Result'), | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.queue().launch(show_api=False) | |