Spaces:
Build error
Build error
Achyut Tiwari
commited on
Commit
•
e49e418
1
Parent(s):
880018c
Add files via upload
Browse files
training/run_retriever_no_trainer.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import functools
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
from random import choice, randint
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from accelerate import Accelerator
|
9 |
+
from accelerate.utils import set_seed
|
10 |
+
from datasets import load_dataset
|
11 |
+
from torch.utils import checkpoint
|
12 |
+
from torch.utils.data import Dataset, RandomSampler, DataLoader, SequentialSampler
|
13 |
+
from tqdm.auto import tqdm
|
14 |
+
from transformers import get_scheduler, AutoTokenizer, AdamW, SchedulerType, AutoModelForSequenceClassification
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
def get_parser():
|
20 |
+
parser = argparse.ArgumentParser(description="Train ELI5 retriever")
|
21 |
+
parser.add_argument(
|
22 |
+
"--dataset_name",
|
23 |
+
type=str,
|
24 |
+
default="vblagoje/lfqa",
|
25 |
+
help="The name of the dataset to use (via the datasets library).",
|
26 |
+
)
|
27 |
+
|
28 |
+
parser.add_argument(
|
29 |
+
"--per_device_train_batch_size",
|
30 |
+
type=int,
|
31 |
+
default=1024,
|
32 |
+
)
|
33 |
+
|
34 |
+
parser.add_argument(
|
35 |
+
"--per_device_eval_batch_size",
|
36 |
+
type=int,
|
37 |
+
default=1024,
|
38 |
+
help="Batch size (per device) for the evaluation dataloader.",
|
39 |
+
)
|
40 |
+
|
41 |
+
parser.add_argument(
|
42 |
+
"--max_length",
|
43 |
+
type=int,
|
44 |
+
default=128,
|
45 |
+
)
|
46 |
+
|
47 |
+
parser.add_argument(
|
48 |
+
"--checkpoint_batch_size",
|
49 |
+
type=int,
|
50 |
+
default=32,
|
51 |
+
)
|
52 |
+
|
53 |
+
parser.add_argument(
|
54 |
+
"--pretrained_model_name",
|
55 |
+
type=str,
|
56 |
+
default="google/bert_uncased_L-8_H-768_A-12",
|
57 |
+
)
|
58 |
+
|
59 |
+
parser.add_argument(
|
60 |
+
"--model_save_name",
|
61 |
+
type=str,
|
62 |
+
default="eli5_retriever_model_l-12_h-768_b-512-512",
|
63 |
+
)
|
64 |
+
|
65 |
+
parser.add_argument(
|
66 |
+
"--learning_rate",
|
67 |
+
type=float,
|
68 |
+
default=2e-4,
|
69 |
+
)
|
70 |
+
|
71 |
+
parser.add_argument(
|
72 |
+
"--weight_decay",
|
73 |
+
type=float,
|
74 |
+
default=0.2,
|
75 |
+
)
|
76 |
+
|
77 |
+
parser.add_argument(
|
78 |
+
"--log_freq",
|
79 |
+
type=int,
|
80 |
+
default=500,
|
81 |
+
help="Log train/validation loss every log_freq update steps"
|
82 |
+
)
|
83 |
+
|
84 |
+
parser.add_argument(
|
85 |
+
"--num_train_epochs",
|
86 |
+
type=int,
|
87 |
+
default=4,
|
88 |
+
)
|
89 |
+
|
90 |
+
parser.add_argument(
|
91 |
+
"--max_train_steps",
|
92 |
+
type=int,
|
93 |
+
default=None,
|
94 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
95 |
+
)
|
96 |
+
|
97 |
+
parser.add_argument(
|
98 |
+
"--gradient_accumulation_steps",
|
99 |
+
type=int,
|
100 |
+
default=1,
|
101 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
102 |
+
)
|
103 |
+
|
104 |
+
parser.add_argument(
|
105 |
+
"--lr_scheduler_type",
|
106 |
+
type=SchedulerType,
|
107 |
+
default="linear", # this is linear with warmup
|
108 |
+
help="The scheduler type to use.",
|
109 |
+
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
110 |
+
)
|
111 |
+
|
112 |
+
parser.add_argument(
|
113 |
+
"--num_warmup_steps",
|
114 |
+
type=int,
|
115 |
+
default=100,
|
116 |
+
help="Number of steps for the warmup in the lr scheduler."
|
117 |
+
)
|
118 |
+
|
119 |
+
parser.add_argument(
|
120 |
+
"--warmup_percentage",
|
121 |
+
type=float,
|
122 |
+
default=0.08,
|
123 |
+
help="Number of steps for the warmup in the lr scheduler."
|
124 |
+
)
|
125 |
+
return parser
|
126 |
+
|
127 |
+
|
128 |
+
class RetrievalQAEmbedder(torch.nn.Module):
|
129 |
+
def __init__(self, sent_encoder):
|
130 |
+
super(RetrievalQAEmbedder, self).__init__()
|
131 |
+
dim = sent_encoder.config.hidden_size
|
132 |
+
self.bert_query = sent_encoder
|
133 |
+
self.output_dim = 128
|
134 |
+
self.project_query = torch.nn.Linear(dim, self.output_dim, bias=False)
|
135 |
+
self.project_doc = torch.nn.Linear(dim, self.output_dim, bias=False)
|
136 |
+
self.ce_loss = torch.nn.CrossEntropyLoss(reduction="mean")
|
137 |
+
|
138 |
+
def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1):
|
139 |
+
# reproduces BERT forward pass with checkpointing
|
140 |
+
if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size:
|
141 |
+
return self.bert_query(input_ids, attention_mask=attention_mask)[1]
|
142 |
+
else:
|
143 |
+
# prepare implicit variables
|
144 |
+
device = input_ids.device
|
145 |
+
input_shape = input_ids.size()
|
146 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
147 |
+
head_mask = [None] * self.bert_query.config.num_hidden_layers
|
148 |
+
extended_attention_mask: torch.Tensor = self.bert_query.get_extended_attention_mask(
|
149 |
+
attention_mask, input_shape, device
|
150 |
+
)
|
151 |
+
|
152 |
+
# define function for checkpointing
|
153 |
+
def partial_encode(*inputs):
|
154 |
+
encoder_outputs = self.bert_query.encoder(inputs[0], attention_mask=inputs[1], head_mask=head_mask, )
|
155 |
+
sequence_output = encoder_outputs[0]
|
156 |
+
pooled_output = self.bert_query.pooler(sequence_output)
|
157 |
+
return pooled_output
|
158 |
+
|
159 |
+
# run embedding layer on everything at once
|
160 |
+
embedding_output = self.bert_query.embeddings(
|
161 |
+
input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None
|
162 |
+
)
|
163 |
+
# run encoding and pooling on one mini-batch at a time
|
164 |
+
pooled_output_list = []
|
165 |
+
for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)):
|
166 |
+
b_embedding_output = embedding_output[b * checkpoint_batch_size: (b + 1) * checkpoint_batch_size]
|
167 |
+
b_attention_mask = extended_attention_mask[b * checkpoint_batch_size: (b + 1) * checkpoint_batch_size]
|
168 |
+
pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask)
|
169 |
+
pooled_output_list.append(pooled_output)
|
170 |
+
return torch.cat(pooled_output_list, dim=0)
|
171 |
+
|
172 |
+
def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1):
|
173 |
+
q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size)
|
174 |
+
return self.project_query(q_reps)
|
175 |
+
|
176 |
+
def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1):
|
177 |
+
a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size)
|
178 |
+
return self.project_doc(a_reps)
|
179 |
+
|
180 |
+
def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1):
|
181 |
+
device = q_ids.device
|
182 |
+
q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size)
|
183 |
+
a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size)
|
184 |
+
compare_scores = torch.mm(q_reps, a_reps.t())
|
185 |
+
loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device))
|
186 |
+
loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device))
|
187 |
+
loss = (loss_qa + loss_aq) / 2
|
188 |
+
return loss
|
189 |
+
|
190 |
+
|
191 |
+
class ELI5DatasetQARetriever(Dataset):
|
192 |
+
def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None):
|
193 |
+
self.data = examples_array
|
194 |
+
self.answer_thres = extra_answer_threshold
|
195 |
+
self.min_length = min_answer_length
|
196 |
+
self.training = training
|
197 |
+
self.n_samples = self.data.num_rows if n_samples is None else n_samples
|
198 |
+
|
199 |
+
def __len__(self):
|
200 |
+
return self.n_samples
|
201 |
+
|
202 |
+
def make_example(self, idx):
|
203 |
+
example = self.data[idx]
|
204 |
+
question = example["title"]
|
205 |
+
if self.training:
|
206 |
+
answers = [a for i, (a, sc) in enumerate(zip(example["answers"]["text"], example["answers"]["score"]))]
|
207 |
+
answer_tab = choice(answers).split(" ")
|
208 |
+
start_idx = randint(0, max(0, len(answer_tab) - self.min_length))
|
209 |
+
answer_span = " ".join(answer_tab[start_idx:])
|
210 |
+
else:
|
211 |
+
answer_span = example["answers"]["text"][0]
|
212 |
+
return question, answer_span
|
213 |
+
|
214 |
+
def __getitem__(self, idx):
|
215 |
+
return self.make_example(idx % self.data.num_rows)
|
216 |
+
|
217 |
+
|
218 |
+
def make_qa_retriever_batch(qa_list, tokenizer, max_len=64):
|
219 |
+
q_ls = [q for q, a in qa_list]
|
220 |
+
a_ls = [a for q, a in qa_list]
|
221 |
+
q_toks = tokenizer(q_ls, padding="max_length", max_length=max_len, truncation=True)
|
222 |
+
q_ids, q_mask = (
|
223 |
+
torch.LongTensor(q_toks["input_ids"]),
|
224 |
+
torch.LongTensor(q_toks["attention_mask"])
|
225 |
+
)
|
226 |
+
a_toks = tokenizer(a_ls, padding="max_length", max_length=max_len, truncation=True)
|
227 |
+
a_ids, a_mask = (
|
228 |
+
torch.LongTensor(a_toks["input_ids"]),
|
229 |
+
torch.LongTensor(a_toks["attention_mask"]),
|
230 |
+
)
|
231 |
+
return q_ids, q_mask, a_ids, a_mask
|
232 |
+
|
233 |
+
|
234 |
+
def evaluate_qa_retriever(model, data_loader):
|
235 |
+
# make iterator
|
236 |
+
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
|
237 |
+
tot_loss = 0.0
|
238 |
+
with torch.no_grad():
|
239 |
+
for step, batch in enumerate(epoch_iterator):
|
240 |
+
q_ids, q_mask, a_ids, a_mask = batch
|
241 |
+
loss = model(q_ids, q_mask, a_ids, a_mask)
|
242 |
+
tot_loss += loss.item()
|
243 |
+
return tot_loss / (step + 1)
|
244 |
+
|
245 |
+
|
246 |
+
def train(config):
|
247 |
+
set_seed(42)
|
248 |
+
args = config["args"]
|
249 |
+
data_files = {"train": "train.json", "validation": "validation.json", "test": "test.json"}
|
250 |
+
eli5 = load_dataset(args.dataset_name, data_files=data_files)
|
251 |
+
|
252 |
+
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
253 |
+
accelerator = Accelerator()
|
254 |
+
# Make one log on every process with the configuration for debugging.
|
255 |
+
logging.basicConfig(
|
256 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
257 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
258 |
+
level=logging.INFO,
|
259 |
+
)
|
260 |
+
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
|
261 |
+
logger.info(accelerator.state)
|
262 |
+
|
263 |
+
# prepare torch Dataset objects
|
264 |
+
train_dataset = ELI5DatasetQARetriever(eli5['train'], training=True)
|
265 |
+
valid_dataset = ELI5DatasetQARetriever(eli5['validation'], training=False)
|
266 |
+
|
267 |
+
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name)
|
268 |
+
base_model = AutoModel.from_pretrained(args.pretrained_model_name)
|
269 |
+
|
270 |
+
model = RetrievalQAEmbedder(base_model)
|
271 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
272 |
+
optimizer_grouped_parameters = [
|
273 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
274 |
+
'weight_decay': args.weight_decay},
|
275 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
276 |
+
]
|
277 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, weight_decay=args.weight_decay)
|
278 |
+
|
279 |
+
model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length)
|
280 |
+
train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size,
|
281 |
+
sampler=RandomSampler(train_dataset), collate_fn=model_collate_fn)
|
282 |
+
|
283 |
+
model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length)
|
284 |
+
eval_dataloader = DataLoader(valid_dataset, batch_size=args.per_device_eval_batch_size,
|
285 |
+
sampler=SequentialSampler(valid_dataset), collate_fn=model_collate_fn)
|
286 |
+
|
287 |
+
# train the model
|
288 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer,
|
289 |
+
train_dataloader, eval_dataloader)
|
290 |
+
# Scheduler and math around the number of training steps.
|
291 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
292 |
+
if args.max_train_steps is None:
|
293 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
294 |
+
else:
|
295 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
296 |
+
|
297 |
+
num_warmup_steps = args.num_warmup_steps if args.num_warmup_steps else math.ceil(args.max_train_steps *
|
298 |
+
args.warmup_percentage)
|
299 |
+
scheduler = get_scheduler(
|
300 |
+
name=args.lr_scheduler_type,
|
301 |
+
optimizer=optimizer,
|
302 |
+
num_warmup_steps=args.num_warmup_steps,
|
303 |
+
num_training_steps=args.max_train_steps,
|
304 |
+
)
|
305 |
+
|
306 |
+
# Train!
|
307 |
+
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
308 |
+
|
309 |
+
logger.info("***** Running training *****")
|
310 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
311 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
312 |
+
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
|
313 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
314 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
315 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
316 |
+
logger.info(f" Warmup steps = {num_warmup_steps}")
|
317 |
+
logger.info(f" Logging training progress every {args.log_freq} optimization steps")
|
318 |
+
|
319 |
+
loc_loss = 0.0
|
320 |
+
current_loss = 0.0
|
321 |
+
checkpoint_step = 0
|
322 |
+
|
323 |
+
completed_steps = checkpoint_step
|
324 |
+
progress_bar = tqdm(range(args.max_train_steps), initial=checkpoint_step,
|
325 |
+
disable=not accelerator.is_local_main_process)
|
326 |
+
for epoch in range(args.num_train_epochs):
|
327 |
+
model.train()
|
328 |
+
batch = next(iter(train_dataloader))
|
329 |
+
for step in range(1000):
|
330 |
+
#for step, batch in enumerate(train_dataloader, start=checkpoint_step):
|
331 |
+
# model inputs
|
332 |
+
q_ids, q_mask, a_ids, a_mask = batch
|
333 |
+
pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
|
334 |
+
loss = pre_loss.sum() / args.gradient_accumulation_steps
|
335 |
+
accelerator.backward(loss)
|
336 |
+
loc_loss += loss.item()
|
337 |
+
if ((step + 1) % args.gradient_accumulation_steps == 0) or (step + 1 == len(train_dataloader)):
|
338 |
+
current_loss = loc_loss
|
339 |
+
optimizer.step()
|
340 |
+
scheduler.step()
|
341 |
+
optimizer.zero_grad()
|
342 |
+
progress_bar.update(1)
|
343 |
+
progress_bar.set_postfix(loss=loc_loss)
|
344 |
+
loc_loss = 0
|
345 |
+
completed_steps += 1
|
346 |
+
|
347 |
+
if step % (args.log_freq * args.gradient_accumulation_steps) == 0:
|
348 |
+
accelerator.wait_for_everyone()
|
349 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
350 |
+
eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
|
351 |
+
logger.info(f"Train loss {current_loss} , eval loss {eval_loss}")
|
352 |
+
if args.wandb and accelerator.is_local_main_process:
|
353 |
+
import wandb
|
354 |
+
wandb.log({"loss": current_loss, "eval_loss": eval_loss, "step": completed_steps})
|
355 |
+
|
356 |
+
if completed_steps >= args.max_train_steps:
|
357 |
+
break
|
358 |
+
|
359 |
+
logger.info("Saving model {}".format(args.model_save_name))
|
360 |
+
accelerator.wait_for_everyone()
|
361 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
362 |
+
accelerator.save(unwrapped_model.state_dict(), "{}_{}.bin".format(args.model_save_name, epoch))
|
363 |
+
eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
|
364 |
+
logger.info("Evaluation loss epoch {:4d}: {:.3f}".format(epoch, eval_loss))
|
365 |
+
|
366 |
+
|
367 |
+
if __name__ == "__main__":
|
368 |
+
parser = get_parser()
|
369 |
+
parser.add_argument(
|
370 |
+
"--wandb",
|
371 |
+
action="store_true",
|
372 |
+
help="Whether to use W&B logging",
|
373 |
+
)
|
374 |
+
main_args, _ = parser.parse_known_args()
|
375 |
+
config = {"args": main_args}
|
376 |
+
if main_args.wandb:
|
377 |
+
import wandb
|
378 |
+
wandb.init(project="Retriever")
|
379 |
+
|
380 |
+
train(config=config)
|
381 |
+
|
training/run_retriever_no_trainer_gpl.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import List, Any, Union, Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import ujson
|
9 |
+
from accelerate import Accelerator
|
10 |
+
from accelerate.utils import set_seed
|
11 |
+
from torch import nn, Tensor
|
12 |
+
from torch.nn import functional as F
|
13 |
+
from torch.utils.data import Dataset, RandomSampler, DataLoader, SequentialSampler
|
14 |
+
from tqdm.auto import tqdm
|
15 |
+
from transformers import get_scheduler, AutoTokenizer, AutoModel, AdamW, SchedulerType, PreTrainedTokenizerBase, AutoModelForSequenceClassification, BatchEncoding
|
16 |
+
from transformers.file_utils import PaddingStrategy
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
def get_parser():
|
22 |
+
parser = argparse.ArgumentParser(description="Train LFQA retriever")
|
23 |
+
parser.add_argument(
|
24 |
+
"--dpr_input_file",
|
25 |
+
type=str,
|
26 |
+
help="DPR formatted input file with question/positive/negative pairs in a JSONL file",
|
27 |
+
)
|
28 |
+
|
29 |
+
parser.add_argument(
|
30 |
+
"--per_device_train_batch_size",
|
31 |
+
type=int,
|
32 |
+
default=32,
|
33 |
+
)
|
34 |
+
|
35 |
+
parser.add_argument(
|
36 |
+
"--per_device_eval_batch_size",
|
37 |
+
type=int,
|
38 |
+
default=32,
|
39 |
+
help="Batch size (per device) for the evaluation dataloader.",
|
40 |
+
)
|
41 |
+
|
42 |
+
parser.add_argument(
|
43 |
+
"--max_length",
|
44 |
+
type=int,
|
45 |
+
default=128,
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
parser.add_argument(
|
50 |
+
"--pretrained_model_name",
|
51 |
+
type=str,
|
52 |
+
default="sentence-transformers/all-MiniLM-L6-v2",
|
53 |
+
)
|
54 |
+
|
55 |
+
parser.add_argument(
|
56 |
+
"--ce_model_name",
|
57 |
+
type=str,
|
58 |
+
default="cross-encoder/ms-marco-MiniLM-L-6-v2",
|
59 |
+
)
|
60 |
+
|
61 |
+
parser.add_argument(
|
62 |
+
"--model_save_name",
|
63 |
+
type=str,
|
64 |
+
default="eli5_retriever_model_l-12_h-768_b-512-512",
|
65 |
+
)
|
66 |
+
|
67 |
+
parser.add_argument(
|
68 |
+
"--learning_rate",
|
69 |
+
type=float,
|
70 |
+
default=2e-5,
|
71 |
+
)
|
72 |
+
|
73 |
+
parser.add_argument(
|
74 |
+
"--weight_decay",
|
75 |
+
type=float,
|
76 |
+
default=0.01,
|
77 |
+
)
|
78 |
+
|
79 |
+
parser.add_argument(
|
80 |
+
"--log_freq",
|
81 |
+
type=int,
|
82 |
+
default=500,
|
83 |
+
help="Log train/validation loss every log_freq update steps"
|
84 |
+
)
|
85 |
+
|
86 |
+
parser.add_argument(
|
87 |
+
"--num_train_epochs",
|
88 |
+
type=int,
|
89 |
+
default=4,
|
90 |
+
)
|
91 |
+
|
92 |
+
parser.add_argument(
|
93 |
+
"--max_train_steps",
|
94 |
+
type=int,
|
95 |
+
default=None,
|
96 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
97 |
+
)
|
98 |
+
|
99 |
+
parser.add_argument(
|
100 |
+
"--gradient_accumulation_steps",
|
101 |
+
type=int,
|
102 |
+
default=1,
|
103 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
104 |
+
)
|
105 |
+
|
106 |
+
parser.add_argument(
|
107 |
+
"--lr_scheduler_type",
|
108 |
+
type=SchedulerType,
|
109 |
+
default="linear", # this is linear with warmup
|
110 |
+
help="The scheduler type to use.",
|
111 |
+
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
112 |
+
)
|
113 |
+
|
114 |
+
parser.add_argument(
|
115 |
+
"--num_warmup_steps",
|
116 |
+
type=int,
|
117 |
+
default=100,
|
118 |
+
help="Number of steps for the warmup in the lr scheduler."
|
119 |
+
)
|
120 |
+
|
121 |
+
parser.add_argument(
|
122 |
+
"--warmup_percentage",
|
123 |
+
type=float,
|
124 |
+
default=0.08,
|
125 |
+
help="Number of steps for the warmup in the lr scheduler."
|
126 |
+
)
|
127 |
+
return parser
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass
|
131 |
+
class InputExample:
|
132 |
+
guid: str = ""
|
133 |
+
texts: List[str] = None
|
134 |
+
label: Union[int, float] = 0
|
135 |
+
|
136 |
+
|
137 |
+
class DPRDataset(Dataset):
|
138 |
+
"""
|
139 |
+
Dataset DPR format of question, answers, positive, negative, and hard negative passages
|
140 |
+
See https://github.com/facebookresearch/DPR#retriever-input-data-format for more details
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(self, file_path: str, include_all_positive: bool = False) -> None:
|
144 |
+
super().__init__()
|
145 |
+
with open(file_path, "r") as fp:
|
146 |
+
self.data = []
|
147 |
+
|
148 |
+
def dpr_example_to_input_example(idx, dpr_item):
|
149 |
+
examples = []
|
150 |
+
for p_idx, p_item in enumerate(dpr_item["positive_ctxs"]):
|
151 |
+
for n_idx, n_item in enumerate(dpr_item["negative_ctxs"]):
|
152 |
+
examples.append(InputExample(guid=[idx, p_idx, n_idx], texts=[dpr_item["question"],
|
153 |
+
p_item["text"],
|
154 |
+
n_item["text"]]))
|
155 |
+
if not include_all_positive:
|
156 |
+
break
|
157 |
+
return examples
|
158 |
+
|
159 |
+
for idx, line in enumerate(fp):
|
160 |
+
self.data.extend(dpr_example_to_input_example(idx, ujson.loads(line)))
|
161 |
+
|
162 |
+
def __len__(self):
|
163 |
+
return len(self.data)
|
164 |
+
|
165 |
+
def __getitem__(self, index):
|
166 |
+
return self.data[index]
|
167 |
+
|
168 |
+
|
169 |
+
def dpr_collate_fn(batch):
|
170 |
+
query_id, pos_id, neg_id = zip(*[example.guid for example in batch])
|
171 |
+
query, pos, neg = zip(*[example.texts for example in batch])
|
172 |
+
return (query_id, pos_id, neg_id), (query, pos, neg)
|
173 |
+
|
174 |
+
|
175 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
176 |
+
def mean_pooling(model_output, attention_mask):
|
177 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
178 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
179 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
180 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
181 |
+
return sum_embeddings / sum_mask
|
182 |
+
|
183 |
+
|
184 |
+
@dataclass
|
185 |
+
class CrossEncoderCollator:
|
186 |
+
tokenizer: PreTrainedTokenizerBase
|
187 |
+
model: Any
|
188 |
+
target_tokenizer: PreTrainedTokenizerBase
|
189 |
+
padding: Union[bool, str, PaddingStrategy] = True
|
190 |
+
max_length: Optional[int] = None
|
191 |
+
pad_to_multiple_of: Optional[int] = None
|
192 |
+
return_tensors: str = "pt"
|
193 |
+
|
194 |
+
def __call__(self, batch):
|
195 |
+
query_id, pos_id, neg_id = zip(*[example.guid for example in batch])
|
196 |
+
query, pos_passage, neg_passage = zip(*[example.texts for example in batch])
|
197 |
+
batch_input: List[List[str]] = list(zip(query, pos_passage)) + list(zip(query, neg_passage))
|
198 |
+
features = self.tokenizer(batch_input, padding=self.padding, truncation=True,
|
199 |
+
return_tensors=self.return_tensors)
|
200 |
+
with torch.no_grad():
|
201 |
+
scores = self.model(**features).logits
|
202 |
+
|
203 |
+
labels = scores[:len(query)] - scores[len(query):]
|
204 |
+
batch_input: List[str] = list(query) + list(pos_passage) + list(neg_passage)
|
205 |
+
#breakpoint()
|
206 |
+
encoded_input = self.target_tokenizer(batch_input, padding=True, truncation=True,
|
207 |
+
max_length=256, return_tensors='pt')
|
208 |
+
|
209 |
+
encoded_input["labels"] = labels
|
210 |
+
|
211 |
+
return encoded_input
|
212 |
+
|
213 |
+
|
214 |
+
class RetrievalQAEmbedder(torch.nn.Module):
|
215 |
+
def __init__(self, sent_encoder, sent_tokenizer, batch_size:int = 32):
|
216 |
+
super(RetrievalQAEmbedder, self).__init__()
|
217 |
+
dim = sent_encoder.config.hidden_size
|
218 |
+
self.model = sent_encoder
|
219 |
+
self.tokenizer = sent_tokenizer
|
220 |
+
self.scale = 1
|
221 |
+
self.similarity_fct = 'dot'
|
222 |
+
self.batch_size = 32
|
223 |
+
self.loss_fct = nn.MSELoss()
|
224 |
+
|
225 |
+
def forward(self, examples: BatchEncoding):
|
226 |
+
# Tokenize sentences
|
227 |
+
labels = examples.pop("labels")
|
228 |
+
# Compute token embeddings
|
229 |
+
model_output = self.model(**examples)
|
230 |
+
|
231 |
+
examples["labels"] = labels
|
232 |
+
|
233 |
+
# Perform pooling. In this case, mean pooling
|
234 |
+
sentence_embeddings = mean_pooling(model_output, examples['attention_mask'])
|
235 |
+
target_shape = (3, self.batch_size, sentence_embeddings.shape[-1])
|
236 |
+
sentence_embeddings_reshaped = torch.reshape(sentence_embeddings, target_shape)
|
237 |
+
|
238 |
+
#breakpoint()
|
239 |
+
|
240 |
+
embeddings_query = sentence_embeddings_reshaped[0]
|
241 |
+
embeddings_pos = sentence_embeddings_reshaped[1]
|
242 |
+
embeddings_neg = sentence_embeddings_reshaped[2]
|
243 |
+
|
244 |
+
if self.similarity_fct == 'cosine':
|
245 |
+
embeddings_query = F.normalize(embeddings_query, p=2, dim=1)
|
246 |
+
embeddings_pos = F.normalize(embeddings_pos, p=2, dim=1)
|
247 |
+
embeddings_neg = F.normalize(embeddings_neg, p=2, dim=1)
|
248 |
+
|
249 |
+
scores_pos = (embeddings_query * embeddings_pos).sum(dim=-1) * self.scale
|
250 |
+
scores_neg = (embeddings_query * embeddings_neg).sum(dim=-1) * self.scale
|
251 |
+
margin_pred = scores_pos - scores_neg
|
252 |
+
#breakpoint()
|
253 |
+
return self.loss_fct(margin_pred, labels.squeeze())
|
254 |
+
|
255 |
+
|
256 |
+
def evaluate_qa_retriever(model, data_loader):
|
257 |
+
# make iterator
|
258 |
+
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
|
259 |
+
tot_loss = 0.0
|
260 |
+
with torch.no_grad():
|
261 |
+
for step, batch in enumerate(epoch_iterator):
|
262 |
+
q_ids, q_mask, a_ids, a_mask = batch
|
263 |
+
loss = model(q_ids, q_mask, a_ids, a_mask)
|
264 |
+
tot_loss += loss.item()
|
265 |
+
return tot_loss / (step + 1)
|
266 |
+
|
267 |
+
|
268 |
+
def train(config):
|
269 |
+
set_seed(42)
|
270 |
+
args = config["args"]
|
271 |
+
|
272 |
+
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
273 |
+
accelerator = Accelerator()
|
274 |
+
# Make one log on every process with the configuration for debugging.
|
275 |
+
logging.basicConfig(
|
276 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
277 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
278 |
+
level=logging.INFO,
|
279 |
+
)
|
280 |
+
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
|
281 |
+
logger.info(accelerator.state)
|
282 |
+
|
283 |
+
# prepare torch Dataset objects
|
284 |
+
train_dataset = DPRDataset(file_path=args.dpr_input_file)
|
285 |
+
valid_dataset = Dataset()
|
286 |
+
|
287 |
+
base_tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name)
|
288 |
+
base_model = AutoModel.from_pretrained(args.pretrained_model_name)
|
289 |
+
|
290 |
+
ce_tokenizer = AutoTokenizer.from_pretrained(args.ce_model_name)
|
291 |
+
ce_model = AutoModelForSequenceClassification.from_pretrained(args.ce_model_name)
|
292 |
+
_ = ce_model.eval()
|
293 |
+
|
294 |
+
model = RetrievalQAEmbedder(base_model, base_tokenizer)
|
295 |
+
no_decay = ['bias', 'LayerNorm.weight']
|
296 |
+
optimizer_grouped_parameters = [
|
297 |
+
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
298 |
+
'weight_decay': args.weight_decay},
|
299 |
+
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
300 |
+
]
|
301 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
|
302 |
+
|
303 |
+
cec = CrossEncoderCollator(model=ce_model, tokenizer=ce_tokenizer, target_tokenizer=base_tokenizer)
|
304 |
+
train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size,
|
305 |
+
sampler=RandomSampler(train_dataset), collate_fn=cec)
|
306 |
+
|
307 |
+
eval_dataloader = DataLoader(valid_dataset, batch_size=args.per_device_eval_batch_size,
|
308 |
+
sampler=SequentialSampler(valid_dataset), collate_fn=cec)
|
309 |
+
|
310 |
+
# train the model
|
311 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer,
|
312 |
+
train_dataloader, eval_dataloader)
|
313 |
+
# Scheduler and math around the number of training steps.
|
314 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
315 |
+
if args.max_train_steps is None:
|
316 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
317 |
+
else:
|
318 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
319 |
+
|
320 |
+
num_warmup_steps = args.num_warmup_steps if args.num_warmup_steps else math.ceil(args.max_train_steps *
|
321 |
+
args.warmup_percentage)
|
322 |
+
scheduler = get_scheduler(
|
323 |
+
name=args.lr_scheduler_type,
|
324 |
+
optimizer=optimizer,
|
325 |
+
num_warmup_steps=args.num_warmup_steps,
|
326 |
+
num_training_steps=args.max_train_steps,
|
327 |
+
)
|
328 |
+
|
329 |
+
# Train!
|
330 |
+
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
331 |
+
|
332 |
+
logger.info("***** Running training *****")
|
333 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
334 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
335 |
+
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
|
336 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
337 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
338 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
339 |
+
logger.info(f" Warmup steps = {num_warmup_steps}")
|
340 |
+
logger.info(f" Logging training progress every {args.log_freq} optimization steps")
|
341 |
+
|
342 |
+
loc_loss = 0.0
|
343 |
+
current_loss = 0.0
|
344 |
+
checkpoint_step = 0
|
345 |
+
|
346 |
+
completed_steps = checkpoint_step
|
347 |
+
progress_bar = tqdm(range(args.max_train_steps), initial=checkpoint_step,
|
348 |
+
disable=not accelerator.is_local_main_process)
|
349 |
+
for epoch in range(args.num_train_epochs):
|
350 |
+
model.train()
|
351 |
+
for step, batch in enumerate(train_dataloader, start=checkpoint_step):
|
352 |
+
# model inputs
|
353 |
+
pre_loss = model(batch)
|
354 |
+
loss = pre_loss / args.gradient_accumulation_steps
|
355 |
+
accelerator.backward(loss)
|
356 |
+
loc_loss += loss.item()
|
357 |
+
if ((step + 1) % args.gradient_accumulation_steps == 0) or (step + 1 == len(train_dataloader)):
|
358 |
+
current_loss = loc_loss
|
359 |
+
optimizer.step()
|
360 |
+
scheduler.step()
|
361 |
+
optimizer.zero_grad()
|
362 |
+
progress_bar.update(1)
|
363 |
+
progress_bar.set_postfix(loss=loc_loss)
|
364 |
+
loc_loss = 0
|
365 |
+
completed_steps += 1
|
366 |
+
|
367 |
+
if step % (args.log_freq * args.gradient_accumulation_steps) == 0:
|
368 |
+
# accelerator.wait_for_everyone()
|
369 |
+
# unwrapped_model = accelerator.unwrap_model(model)
|
370 |
+
# eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
|
371 |
+
eval_loss = 0
|
372 |
+
logger.info(f"Train loss {current_loss} , eval loss {eval_loss}")
|
373 |
+
if args.wandb and accelerator.is_local_main_process:
|
374 |
+
import wandb
|
375 |
+
wandb.log({"loss": current_loss, "eval_loss": eval_loss, "step": completed_steps})
|
376 |
+
|
377 |
+
if completed_steps >= args.max_train_steps:
|
378 |
+
break
|
379 |
+
|
380 |
+
logger.info("Saving model {}".format(args.model_save_name))
|
381 |
+
accelerator.wait_for_everyone()
|
382 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
383 |
+
accelerator.save(unwrapped_model.state_dict(), "{}_{}.bin".format(args.model_save_name, epoch))
|
384 |
+
eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
|
385 |
+
logger.info("Evaluation loss epoch {:4d}: {:.3f}".format(epoch, eval_loss))
|
386 |
+
|
387 |
+
|
388 |
+
if __name__ == "__main__":
|
389 |
+
parser = get_parser()
|
390 |
+
parser.add_argument(
|
391 |
+
"--wandb",
|
392 |
+
action="store_true",
|
393 |
+
help="Whether to use W&B logging",
|
394 |
+
)
|
395 |
+
main_args, _ = parser.parse_known_args()
|
396 |
+
config = {"args": main_args}
|
397 |
+
if main_args.wandb:
|
398 |
+
import wandb
|
399 |
+
|
400 |
+
wandb.init(project="Retriever")
|
401 |
+
|
402 |
+
train(config=config)
|
403 |
+
|
training/run_seq2seq_no_trainer.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import re
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from accelerate import Accelerator
|
9 |
+
from accelerate.utils import set_seed
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from tqdm.auto import tqdm
|
12 |
+
from transformers import get_scheduler, AutoTokenizer, AdamW, SchedulerType, AutoModelForSeq2SeqLM, \
|
13 |
+
DataCollatorWithPadding
|
14 |
+
|
15 |
+
from datasets import load_dataset
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
def get_parser():
|
21 |
+
parser = argparse.ArgumentParser(description="Train ELI5 seq2seq answer generation model")
|
22 |
+
parser.add_argument(
|
23 |
+
"--dataset_name",
|
24 |
+
type=str,
|
25 |
+
default="vblagoje/lfqa",
|
26 |
+
help="The name of the dataset to use (via the datasets library).",
|
27 |
+
)
|
28 |
+
|
29 |
+
parser.add_argument(
|
30 |
+
"--per_device_train_batch_size",
|
31 |
+
type=int,
|
32 |
+
default=4,
|
33 |
+
)
|
34 |
+
|
35 |
+
parser.add_argument(
|
36 |
+
"--per_device_eval_batch_size",
|
37 |
+
type=int,
|
38 |
+
default=4,
|
39 |
+
help="Batch size (per device) for the evaluation dataloader.",
|
40 |
+
)
|
41 |
+
|
42 |
+
parser.add_argument(
|
43 |
+
"--pretrained_model_name",
|
44 |
+
type=str,
|
45 |
+
default="facebook/bart-large",
|
46 |
+
)
|
47 |
+
|
48 |
+
parser.add_argument(
|
49 |
+
"--model_save_name",
|
50 |
+
type=str,
|
51 |
+
default="eli5_bart_model",
|
52 |
+
)
|
53 |
+
|
54 |
+
parser.add_argument(
|
55 |
+
"--learning_rate",
|
56 |
+
type=float,
|
57 |
+
default=2e-4,
|
58 |
+
)
|
59 |
+
|
60 |
+
parser.add_argument(
|
61 |
+
"--weight_decay",
|
62 |
+
type=float,
|
63 |
+
default=0.0,
|
64 |
+
help="Weight decay to use."
|
65 |
+
)
|
66 |
+
|
67 |
+
parser.add_argument(
|
68 |
+
"--log_freq",
|
69 |
+
type=int,
|
70 |
+
default=100,
|
71 |
+
help="Log train/validation loss every log_freq update steps"
|
72 |
+
)
|
73 |
+
|
74 |
+
parser.add_argument(
|
75 |
+
"--ignore_pad_token_for_loss",
|
76 |
+
type=bool,
|
77 |
+
default=True,
|
78 |
+
help="Whether to ignore the tokens corresponding to " "padded labels in the loss computation or not.",
|
79 |
+
)
|
80 |
+
|
81 |
+
parser.add_argument(
|
82 |
+
"--num_train_epochs",
|
83 |
+
type=int,
|
84 |
+
default=3,
|
85 |
+
)
|
86 |
+
|
87 |
+
parser.add_argument(
|
88 |
+
"--max_train_steps",
|
89 |
+
type=int,
|
90 |
+
default=None,
|
91 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
92 |
+
)
|
93 |
+
|
94 |
+
parser.add_argument(
|
95 |
+
"--gradient_accumulation_steps",
|
96 |
+
type=int,
|
97 |
+
default=16,
|
98 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
99 |
+
)
|
100 |
+
|
101 |
+
parser.add_argument(
|
102 |
+
"--pad_to_max_length",
|
103 |
+
action="store_true",
|
104 |
+
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
|
105 |
+
)
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--overwrite_cache", type=bool, default=None, help="Overwrite the cached training and evaluation sets"
|
109 |
+
)
|
110 |
+
|
111 |
+
parser.add_argument(
|
112 |
+
"--max_source_length",
|
113 |
+
type=int,
|
114 |
+
default=1024,
|
115 |
+
help="The maximum total input sequence length after "
|
116 |
+
"tokenization.Sequences longer than this will be truncated, sequences shorter will be padded.",
|
117 |
+
)
|
118 |
+
|
119 |
+
parser.add_argument(
|
120 |
+
"--max_target_length",
|
121 |
+
type=int,
|
122 |
+
default=360,
|
123 |
+
help="The maximum total sequence length for target text after "
|
124 |
+
"tokenization. Sequences longer than this will be truncated, sequences shorter will be padded."
|
125 |
+
)
|
126 |
+
|
127 |
+
parser.add_argument(
|
128 |
+
"--lr_scheduler_type",
|
129 |
+
type=SchedulerType,
|
130 |
+
default="linear", # this is linear with warmup
|
131 |
+
help="The scheduler type to use.",
|
132 |
+
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
133 |
+
)
|
134 |
+
|
135 |
+
parser.add_argument(
|
136 |
+
"--num_warmup_steps",
|
137 |
+
type=int,
|
138 |
+
default=None,
|
139 |
+
help="Number of steps for the warmup in the lr scheduler."
|
140 |
+
)
|
141 |
+
|
142 |
+
parser.add_argument(
|
143 |
+
"--warmup_percentage",
|
144 |
+
type=float,
|
145 |
+
default=0.08,
|
146 |
+
help="Number of steps for the warmup in the lr scheduler."
|
147 |
+
)
|
148 |
+
return parser
|
149 |
+
|
150 |
+
|
151 |
+
def cleanup_references(text):
|
152 |
+
# URL reference where we need to remove both the link text and URL
|
153 |
+
# ...and this letter is used by most biographers as the cornerstone of Lee's personal
|
154 |
+
# views on slavery ([1](_URL_2_ & pg=PA173), [2](_URL_1_), [3](_URL_5_)).
|
155 |
+
# ...and this letter is used by most biographers as the cornerstone of Lee's personal views on slavery.
|
156 |
+
result = re.sub(r"[\(\s]*\[\d+\]\([^)]+\)[,)]*", "", text, 0, re.MULTILINE)
|
157 |
+
|
158 |
+
# URL reference where we need to preserve link text but remove URL
|
159 |
+
# At the outbreak of the Civil War, [Leyburn left his church](_URL_19_) and joined the South.
|
160 |
+
# At the outbreak of the Civil War, Leyburn left his church and joined the South.
|
161 |
+
result = re.sub(r"\[([^]]+)\]\([^)]+\)", "\\1", result, 0, re.MULTILINE)
|
162 |
+
|
163 |
+
# lastly remove just dangling _URL_[0-9]_ URL references
|
164 |
+
result = re.sub(r"_URL_\d_", "", result, 0, re.MULTILINE)
|
165 |
+
return result
|
166 |
+
|
167 |
+
|
168 |
+
def clean_answer(text):
|
169 |
+
result = cleanup_references(text)
|
170 |
+
result = result.replace("\n", " ")
|
171 |
+
result = re.sub(r"\s\s+", " ", result)
|
172 |
+
result = re.sub(r"BULLET::::-", "", result)
|
173 |
+
return result.strip()
|
174 |
+
|
175 |
+
|
176 |
+
def clean_question(text):
|
177 |
+
result = cleanup_references(text)
|
178 |
+
result = result.replace("\n", " ")
|
179 |
+
result = re.sub(r"\s\s+", " ", result)
|
180 |
+
result = result.replace("[deleted]", "")
|
181 |
+
return result.lower().strip()
|
182 |
+
|
183 |
+
|
184 |
+
def prepare_support_docs(example):
|
185 |
+
provenances = example["output"][-1]["provenance"]
|
186 |
+
context = "<P> " + " <P> ".join([p["text"] for p in provenances])
|
187 |
+
return {"context": context}
|
188 |
+
|
189 |
+
|
190 |
+
def preprocess_eli5(examples, **fn_kwargs):
|
191 |
+
document_cache = fn_kwargs["document_cache"]
|
192 |
+
training = fn_kwargs.get("training", True)
|
193 |
+
extra_answer_threshold = fn_kwargs.get("extra_answer_threshold", 3)
|
194 |
+
include_selftext = fn_kwargs.get("include_selftext", False)
|
195 |
+
exclude_answer_patterns = fn_kwargs.get("exclude_answer_patterns", [])
|
196 |
+
|
197 |
+
questions, contexts, answers = [], [], []
|
198 |
+
for q_id, question, selftext, answer in zip(examples["q_id"], examples["title"], examples["selftext"],
|
199 |
+
examples["answers"]):
|
200 |
+
accepted_answer_idx = []
|
201 |
+
if training:
|
202 |
+
accepted_answer_idx = [idx for idx, score in enumerate(answer["score"]) if
|
203 |
+
score > extra_answer_threshold]
|
204 |
+
if not training or not accepted_answer_idx:
|
205 |
+
accepted_answer_idx = [0]
|
206 |
+
document = document_cache[q_id]
|
207 |
+
for idx in accepted_answer_idx:
|
208 |
+
skip_answer = any([p.search(answer["text"][idx]) for p in exclude_answer_patterns])
|
209 |
+
if skip_answer:
|
210 |
+
continue
|
211 |
+
if include_selftext:
|
212 |
+
questions.append(clean_question(f"{question} {selftext}"))
|
213 |
+
else:
|
214 |
+
questions.append(clean_question(question))
|
215 |
+
contexts.append(document.lower().strip())
|
216 |
+
answers.append(clean_answer(answer["text"][idx]))
|
217 |
+
|
218 |
+
return {"question": questions, "context": contexts, "answer": answers}
|
219 |
+
|
220 |
+
|
221 |
+
def eval_qa_s2s_epoch(model, dataloader, accelerator, args):
|
222 |
+
model.eval()
|
223 |
+
num_eval_steps = math.ceil(len(dataloader))
|
224 |
+
progress_bar = tqdm(range(num_eval_steps), disable=not accelerator.is_local_main_process)
|
225 |
+
total_loss = 0.
|
226 |
+
with torch.no_grad():
|
227 |
+
for step, batch in enumerate(dataloader):
|
228 |
+
outputs = model(**batch)
|
229 |
+
loss = outputs.loss
|
230 |
+
total_loss += loss.item()
|
231 |
+
progress_bar.update(1)
|
232 |
+
progress_bar.set_postfix(loss=round((total_loss / (step + 1)), 3))
|
233 |
+
return total_loss / (step + 1)
|
234 |
+
|
235 |
+
|
236 |
+
def train(config):
|
237 |
+
set_seed(42)
|
238 |
+
args = config["args"]
|
239 |
+
eli5 = load_dataset(args.dataset_name)
|
240 |
+
|
241 |
+
support_docs = load_dataset("vblagoje/lfqa_support_docs")
|
242 |
+
|
243 |
+
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
244 |
+
accelerator = Accelerator()
|
245 |
+
# Make one log on every process with the configuration for debugging.
|
246 |
+
logging.basicConfig(
|
247 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
248 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
249 |
+
level=logging.INFO,
|
250 |
+
)
|
251 |
+
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
|
252 |
+
logger.info(accelerator.state)
|
253 |
+
|
254 |
+
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name)
|
255 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(args.pretrained_model_name)
|
256 |
+
|
257 |
+
# Optimizer
|
258 |
+
# Split weights in two groups, one with weight decay and the other not.
|
259 |
+
no_decay = ["bias", "LayerNorm.weight"]
|
260 |
+
optimizer_grouped_parameters = [
|
261 |
+
{
|
262 |
+
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
263 |
+
"weight_decay": args.weight_decay,
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
267 |
+
"weight_decay": 0.0,
|
268 |
+
},
|
269 |
+
]
|
270 |
+
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, weight_decay=args.weight_decay)
|
271 |
+
|
272 |
+
processed_datasets = {}
|
273 |
+
support_docs_prepared = {}
|
274 |
+
with accelerator.main_process_first():
|
275 |
+
for split in ["train", "validation"]:
|
276 |
+
support_docs_prepared[split] = support_docs[split].map(prepare_support_docs,
|
277 |
+
batched=False,
|
278 |
+
cache_file_name=f"./support_docs_{split}.arrow",
|
279 |
+
load_from_cache_file=not args.overwrite_cache,
|
280 |
+
desc="Preparing support docs",
|
281 |
+
)
|
282 |
+
column_names = eli5["train"].column_names
|
283 |
+
for split in ["train", "validation"]:
|
284 |
+
d_cache = dict([(e["id"], e["context"]) for e in tqdm(support_docs_prepared[split],
|
285 |
+
desc=f"Adding support docs to LFQA {split}")])
|
286 |
+
processed_datasets[split] = eli5[split].map(preprocess_eli5,
|
287 |
+
batched=True,
|
288 |
+
remove_columns=column_names,
|
289 |
+
cache_file_name=f"./processed_datasets_{split}.arrow",
|
290 |
+
load_from_cache_file=not args.overwrite_cache,
|
291 |
+
desc="Preparing dataset for tokenization",
|
292 |
+
fn_kwargs={"document_cache": d_cache,
|
293 |
+
"training": split == "train",
|
294 |
+
"exclude_answer_patterns": [re.compile("not sure what you"),
|
295 |
+
re.compile("\n\n >")]}
|
296 |
+
)
|
297 |
+
|
298 |
+
padding = "max_length" if args.pad_to_max_length else False
|
299 |
+
# Temporarily set max_target_length for training.
|
300 |
+
max_target_length = args.max_target_length
|
301 |
+
|
302 |
+
label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
303 |
+
|
304 |
+
def tokenize_dataset(examples):
|
305 |
+
inputs = ["question: {} context: {}".format(q, c) for q, c in zip(examples["question"], examples["context"])]
|
306 |
+
targets = examples["answer"]
|
307 |
+
model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True)
|
308 |
+
|
309 |
+
# Setup the tokenizer for targets
|
310 |
+
with tokenizer.as_target_tokenizer():
|
311 |
+
labels = tokenizer(targets, max_length=max_target_length, padding=True, truncation=True,
|
312 |
+
return_tensors="np")
|
313 |
+
|
314 |
+
model_inputs["decoder_input_ids"] = labels["input_ids"][:, :-1].tolist()
|
315 |
+
# replace pad_token_id with label_pad_token_id to avoid loss calculation on those tokens
|
316 |
+
labels["input_ids"] = np.where(labels["input_ids"] == tokenizer.pad_token_id,
|
317 |
+
label_pad_token_id, labels["input_ids"])
|
318 |
+
|
319 |
+
model_inputs["labels"] = labels["input_ids"][:, 1:].tolist()
|
320 |
+
return model_inputs
|
321 |
+
|
322 |
+
tokenized_datasets = {}
|
323 |
+
with accelerator.main_process_first():
|
324 |
+
for split, dataset in processed_datasets.items():
|
325 |
+
tokenized_datasets[split] = dataset.map(
|
326 |
+
tokenize_dataset,
|
327 |
+
batched=True,
|
328 |
+
cache_file_name=f"./tokenized_dataset_{split}.arrow",
|
329 |
+
remove_columns=dataset.column_names,
|
330 |
+
load_from_cache_file=not args.overwrite_cache,
|
331 |
+
desc="Running tokenizer on dataset"
|
332 |
+
)
|
333 |
+
|
334 |
+
train_dataset = tokenized_datasets["train"]
|
335 |
+
eval_dataset = tokenized_datasets["validation"]
|
336 |
+
train_dataset.set_format(type='torch')
|
337 |
+
eval_dataset.set_format(type='torch')
|
338 |
+
|
339 |
+
data_collator = DataCollatorWithPadding(tokenizer, "max_length")
|
340 |
+
|
341 |
+
# first epoch we don't shuffle
|
342 |
+
train_dataloader = DataLoader(train_dataset, shuffle=False, batch_size=args.per_device_train_batch_size,
|
343 |
+
collate_fn=data_collator)
|
344 |
+
eval_dataloader = DataLoader(eval_dataset, batch_size=args.per_device_eval_batch_size, collate_fn=data_collator)
|
345 |
+
|
346 |
+
# train the model
|
347 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer, train_dataloader,
|
348 |
+
eval_dataloader)
|
349 |
+
# Scheduler and math around the number of training steps.
|
350 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
351 |
+
if args.max_train_steps is None:
|
352 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
353 |
+
else:
|
354 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
355 |
+
|
356 |
+
num_warmup_steps = args.num_warmup_steps if args.num_warmup_steps else math.ceil(args.max_train_steps *
|
357 |
+
args.warmup_percentage)
|
358 |
+
scheduler = get_scheduler(
|
359 |
+
name=args.lr_scheduler_type,
|
360 |
+
optimizer=optimizer,
|
361 |
+
num_warmup_steps=num_warmup_steps,
|
362 |
+
num_training_steps=args.max_train_steps,
|
363 |
+
)
|
364 |
+
# Train!
|
365 |
+
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
366 |
+
|
367 |
+
logger.info("***** Running training *****")
|
368 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
369 |
+
logger.info(f" Num eval examples = {len(eval_dataset)}")
|
370 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
371 |
+
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
|
372 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
373 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
374 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
375 |
+
logger.info(f" Warmup steps = {num_warmup_steps}")
|
376 |
+
logger.info(f" Logging training progress every {args.log_freq} optimization steps")
|
377 |
+
|
378 |
+
# Only show the progress bar once on each machine.
|
379 |
+
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
380 |
+
completed_steps = 0
|
381 |
+
switched_train_dataloader = False
|
382 |
+
for epoch in range(args.num_train_epochs):
|
383 |
+
model.train()
|
384 |
+
if epoch > 0 and not switched_train_dataloader:
|
385 |
+
train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size,
|
386 |
+
shuffle=True, collate_fn=data_collator)
|
387 |
+
train_dataloader = accelerator.prepare(train_dataloader)
|
388 |
+
switched_train_dataloader = True
|
389 |
+
|
390 |
+
for step, batch in enumerate(train_dataloader):
|
391 |
+
outputs = model(**batch)
|
392 |
+
loss = torch.mean(outputs.loss)
|
393 |
+
accelerator.backward(loss)
|
394 |
+
if ((step + 1) % args.gradient_accumulation_steps == 0) or (step + 1 == len(train_dataloader)):
|
395 |
+
optimizer.step()
|
396 |
+
scheduler.step()
|
397 |
+
optimizer.zero_grad()
|
398 |
+
progress_bar.update(1)
|
399 |
+
progress_bar.set_postfix(loss=round(loss.item(), 3))
|
400 |
+
completed_steps += 1
|
401 |
+
|
402 |
+
if completed_steps >= args.max_train_steps:
|
403 |
+
break
|
404 |
+
|
405 |
+
if step % (args.log_freq * args.gradient_accumulation_steps) == 0:
|
406 |
+
validation_loss = eval_qa_s2s_epoch(model, eval_dataloader, accelerator, args)
|
407 |
+
model.train()
|
408 |
+
logger.info(f"Train loss {loss.item()} , validation loss {validation_loss}")
|
409 |
+
if args.wandb and accelerator.is_local_main_process:
|
410 |
+
import wandb
|
411 |
+
wandb.log({"loss": loss.item(),
|
412 |
+
"lr": scheduler.get_last_lr()[0],
|
413 |
+
"validation_loss": validation_loss,
|
414 |
+
"completed_steps": completed_steps})
|
415 |
+
|
416 |
+
logger.info("Saving model {}".format(args.model_save_name))
|
417 |
+
accelerator.wait_for_everyone()
|
418 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
419 |
+
accelerator.save(unwrapped_model.state_dict(), "{}_{}.bin".format(args.model_save_name, epoch))
|
420 |
+
|
421 |
+
# Calculating the validation loss over epoch
|
422 |
+
validation_loss = eval_qa_s2s_epoch(model, eval_dataloader, accelerator, args)
|
423 |
+
|
424 |
+
logger.info("Epoch: {}".format(epoch))
|
425 |
+
logger.info("Validation loss: {}".format(validation_loss))
|
426 |
+
|
427 |
+
|
428 |
+
def main():
|
429 |
+
parser = get_parser()
|
430 |
+
parser.add_argument(
|
431 |
+
"--wandb",
|
432 |
+
action="store_true",
|
433 |
+
help="If true, use W&B logging",
|
434 |
+
)
|
435 |
+
main_args, _ = parser.parse_known_args()
|
436 |
+
config = {"args": main_args}
|
437 |
+
if main_args.wandb:
|
438 |
+
import wandb
|
439 |
+
wandb.init(project="Bart_ELI5")
|
440 |
+
train(config=config)
|
441 |
+
|
442 |
+
|
443 |
+
main()
|
444 |
+
|
445 |
+
|
446 |
+
|