import gradio as gr import tempfile import os hf_token = os.environ.get('HF_TOKEN') lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces") from gradio_client import Client client = Client("https://fffiloni-test-llama-api-debug.hf.space/", hf_token=hf_token) lyrics_client = Client("https://fffiloni-music-to-lyrics.hf.space/") visualizer_client = Client("https://fffiloni-animated-audio-visualizer-1024.hf.space/", hf_token=hf_token) from share_btn import community_icon_html, loading_icon_html, share_js from compel import Compel, ReturnedEmbeddingsType from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") pipe.to("cuda") compel = Compel( tokenizer=[pipe.tokenizer, pipe.tokenizer_2], text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True] ) #pipe.enable_model_cpu_offload() # if using torch < 2.0 # pipe.enable_xformers_memory_efficient_attention() from pydub import AudioSegment import yt_dlp as youtube_dl from moviepy.editor import VideoFileClip YT_LENGTH_LIMIT_S = 480 # limit to 1 hour YouTube files def download_yt_audio(yt_url, filename): info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration_string"] file_h_m_s = file_length.split(":") file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] if len(file_h_m_s) == 1: file_h_m_s.insert(0, 0) if len(file_h_m_s) == 2: file_h_m_s.insert(0, 0) file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] if file_length_s > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: ydl.download([yt_url]) except youtube_dl.utils.ExtractorError as err: raise gr.Error(str(err)) def convert_to_mp3(input_path, output_path): try: video_clip = VideoFileClip(input_path) audio_clip = video_clip.audio print("Converting to MP3...") audio_clip.write_audiofile(output_path) except Exception as e: print("Error:", e) def load_youtube_audio(yt_link): gr.Info("Loading your YouTube link ... ") with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") download_yt_audio(yt_link, filepath) mp3_output_path = "video_sound.mp3" convert_to_mp3(filepath, mp3_output_path) print("Conversion complete. MP3 saved at:", mp3_output_path) return mp3_output_path def cut_audio(input_path, output_path, max_duration): audio = AudioSegment.from_file(input_path) if len(audio) > max_duration: audio = audio[:max_duration] audio.export(output_path, format="mp3") return output_path def get_text_after_colon(input_text): # Find the first occurrence of ":" colon_index = input_text.find(":") # Check if ":" exists in the input_text if colon_index != -1: # Extract the text after the colon result_text = input_text[colon_index + 1:].strip() return result_text else: # Return the original text if ":" is not found return input_text def solo_xd(prompt): images = pipe(prompt=prompt).images[0] return images def get_visualizer_video(audio_in, image_in, song_title): title = f"""{song_title.upper()}\nMusic-to-Image demo by @fffiloni | HuggingFace """ visualizer_video = visualizer_client.predict( title, # str in 'title' Textbox component audio_in, # str (filepath or URL to file) in 'audio_in' Audio component image_in, # str (filepath or URL to image) in 'image_in' Image component "my_music_to_image_awesome_video.mp4", api_name="/predict" ) return visualizer_video[0] def infer(audio_file, has_lyrics): print("NEW INFERENCE ...") gr.Info('Truncating your audio to the first 30 seconds') truncated_audio = cut_audio(audio_file, "trunc_audio.mp3", 30000) processed_audio = truncated_audio print("Calling LP Music Caps...") gr.Info('Calling LP Music Caps...') cap_result = lpmc_client( truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component api_name="predict" ) print(f"MUSIC DESC: {cap_result}") if has_lyrics == "Yes" : print("""——— Getting Lyrics ... Note: We only take the first minute of the song """) truncated_lyrics = cut_audio(audio_file, "trunc_lyrics.mp3", 60000) gr.Info("Getting Lyrics ...") lyrics_result = lyrics_client.predict( truncated_lyrics, # str (filepath or URL to file) in 'Song input' Audio component fn_index=0 ) print(f"LYRICS: {lyrics_result}") llama_q = f""" I'll give you a music description + the lyrics of the song. Give me an image description that would fit well with the music description, reflecting the lyrics too. Be creative, do not do list, just an image description as required. Try to think about human characters first. Your image description must fit well for a stable diffusion prompt. Here's the music description : « {cap_result} » And here are the lyrics : « {lyrics_result} » """ elif has_lyrics == "No" : llama_q = f""" I'll give you a music description. Give me an image description that would fit well with the music description. Be creative, do not do list, just an image description as required. Try to think about human characters first. Your image description must fit well for a stable diffusion prompt. Here's the music description : « {cap_result} » """ print("""——— Calling Llama2 ... """) gr.Info("Calling Llama2 ...") result = client.predict( llama_q, # str in 'Message' Textbox component "M2I", api_name="/predict" ) result = get_text_after_colon(result) print(f"Llama2 result: {result}") #gr.Info("Prompt Optimization ...") #get_shorter_prompt = f""" #From this image description, please provide a short but efficient summary for a good Stable Diffusion prompt: #'{result}' #""" #shorten = client.predict( # get_shorter_prompt, # str in 'Message' Textbox component # api_name="/predict" #) #print(f'SHORTEN PROMPT: {shorten}') # ——— print("""——— Calling SD-XL ... """) gr.Info('Calling SD-XL ...') prompt = result conditioning, pooled = compel(prompt) images = pipe(prompt_embeds=conditioning, pooled_prompt_embeds=pooled).images[0] print("Finished") #return cap_result, result, images return processed_audio, images, result, gr.update(visible=True), gr.Group.update(visible=True) css = """ #col-container {max-width: 780px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; } div#share-btn-container > div { flex-direction: row; background: black; align-items: center; } #share-btn-container:hover { background-color: #060606; } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important; right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } #share-btn-container.hidden { display: none!important; } .footer { margin-bottom: 45px; margin-top: 10px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""
Sends an audio into LP-Music-Caps
to generate a audio caption which is then translated to an illustrative image description with Llama2, and finally run through
Stable Diffusion XL to generate an image from the audio !
Note: Only the first 30 seconds of your audio will be used for inference.
You may also like: