Spaces:
Sleeping
Sleeping
themanas021
commited on
Commit
โข
2fbbb50
1
Parent(s):
365a9d8
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import io
|
4 |
+
|
5 |
+
|
6 |
+
# Designing the interface
|
7 |
+
st.title("๐ผ๏ธ Image Captioning Demo ๐")
|
8 |
+
st.write("[Yih-Dar SHIEH](https://huggingface.co/ydshieh)")
|
9 |
+
|
10 |
+
st.sidebar.markdown(
|
11 |
+
"""
|
12 |
+
An image captioning model by combining ViT model with GPT2 model.
|
13 |
+
The encoder (ViT) and decoder (GPT2) are combined using Hugging Face transformers' [Vision-To-Text Encoder-Decoder
|
14 |
+
framework](https://huggingface.co/transformers/master/model_doc/visionencoderdecoder.html).
|
15 |
+
The pretrained weights of both models are loaded, with a set of randomly initialized cross-attention weights.
|
16 |
+
The model is trained on the COCO 2017 dataset for about 6900 steps (batch_size=256).
|
17 |
+
[Follow-up work of [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).]\n
|
18 |
+
"""
|
19 |
+
)
|
20 |
+
|
21 |
+
with st.spinner('Loading and compiling ViT-GPT2 model ...'):
|
22 |
+
from model import *
|
23 |
+
|
24 |
+
random_image_id = get_random_image_id()
|
25 |
+
|
26 |
+
st.sidebar.title("Select a sample image")
|
27 |
+
sample_image_id = st.sidebar.selectbox(
|
28 |
+
"Please choose a sample image",
|
29 |
+
sample_image_ids
|
30 |
+
)
|
31 |
+
|
32 |
+
if st.sidebar.button("Random COCO 2017 (val) images"):
|
33 |
+
random_image_id = get_random_image_id()
|
34 |
+
sample_image_id = "None"
|
35 |
+
|
36 |
+
bytes_data = None
|
37 |
+
with st.sidebar.form("file-uploader-form", clear_on_submit=True):
|
38 |
+
uploaded_file = st.file_uploader("Choose a file")
|
39 |
+
submitted = st.form_submit_button("Upload")
|
40 |
+
if submitted and uploaded_file is not None:
|
41 |
+
bytes_data = io.BytesIO(uploaded_file.getvalue())
|
42 |
+
|
43 |
+
if (bytes_data is None) and submitted:
|
44 |
+
|
45 |
+
st.write("No file is selected to upload")
|
46 |
+
|
47 |
+
else:
|
48 |
+
|
49 |
+
image_id = random_image_id
|
50 |
+
if sample_image_id != "None":
|
51 |
+
assert type(sample_image_id) == int
|
52 |
+
image_id = sample_image_id
|
53 |
+
|
54 |
+
sample_name = f"COCO_val2017_{str(image_id).zfill(12)}.jpg"
|
55 |
+
sample_path = os.path.join(sample_dir, sample_name)
|
56 |
+
|
57 |
+
if bytes_data is not None:
|
58 |
+
image = Image.open(bytes_data)
|
59 |
+
elif os.path.isfile(sample_path):
|
60 |
+
image = Image.open(sample_path)
|
61 |
+
else:
|
62 |
+
url = f"http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg"
|
63 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
64 |
+
|
65 |
+
width, height = image.size
|
66 |
+
resized = image.resize(size=(width, height))
|
67 |
+
if height > 384:
|
68 |
+
width = int(width / height * 384)
|
69 |
+
height = 384
|
70 |
+
resized = resized.resize(size=(width, height))
|
71 |
+
width, height = resized.size
|
72 |
+
if width > 512:
|
73 |
+
width = 512
|
74 |
+
height = int(height / width * 512)
|
75 |
+
resized = resized.resize(size=(width, height))
|
76 |
+
|
77 |
+
if bytes_data is None:
|
78 |
+
st.markdown(f"[{str(image_id).zfill(12)}.jpg](http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg)")
|
79 |
+
show = st.image(resized)
|
80 |
+
show.image(resized, '\n\nSelected Image')
|
81 |
+
resized.close()
|
82 |
+
|
83 |
+
# For newline
|
84 |
+
st.sidebar.write('\n')
|
85 |
+
|
86 |
+
with st.spinner('Generating image caption ...'):
|
87 |
+
|
88 |
+
caption = predict(image)
|
89 |
+
|
90 |
+
caption_en = caption
|
91 |
+
st.header(f'Predicted caption:\n\n')
|
92 |
+
st.subheader(caption_en)
|
93 |
+
|
94 |
+
st.sidebar.header("ViT-GPT2 predicts: ")
|
95 |
+
st.sidebar.write(f"{caption}")
|
96 |
+
|
97 |
+
image.close()
|