Spaces:
Running
Running
File size: 23,528 Bytes
3f56d56 75d3f3c 88c2f54 385df8a 3f56d56 75d3f3c 3f56d56 0494538 3f56d56 0494538 e42de32 3f56d56 0494538 3f56d56 0494538 3f56d56 0494538 3f56d56 0494538 3f56d56 0494538 3f56d56 0494538 3f56d56 0494538 3f56d56 0494538 3f56d56 0494538 3f56d56 0494538 3f56d56 76ee41e e42de32 76ee41e 88c2f54 d642c92 4abdf78 88c2f54 e1e1b10 3f56d56 4abdf78 76ee41e ccc7052 d642c92 75d3f3c d642c92 4abdf78 49bfe31 d642c92 94f7531 d642c92 61615af 1657aae d642c92 1657aae 4abdf78 61615af 4abdf78 71d7fa0 d642c92 4abdf78 3f56d56 e1e1b10 3f56d56 4abdf78 76ee41e d642c92 75d3f3c d642c92 94f7531 49bfe31 d642c92 94f7531 d642c92 61615af 1657aae d642c92 1657aae 4abdf78 61615af 4abdf78 71d7fa0 d642c92 4abdf78 3f56d56 e1e1b10 3f56d56 4abdf78 76ee41e d642c92 75d3f3c d642c92 49bfe31 d642c92 61615af 1657aae d642c92 1657aae 4abdf78 61615af 4abdf78 d642c92 4abdf78 3f56d56 e1e1b10 3f56d56 4abdf78 76ee41e d642c92 75d3f3c d642c92 49bfe31 d642c92 61615af 1657aae d642c92 1657aae 4abdf78 61615af 4abdf78 d642c92 4abdf78 3f56d56 1657aae 3f56d56 76ee41e d642c92 75d3f3c d642c92 61615af 1657aae d642c92 1657aae d642c92 4abdf78 d642c92 4abdf78 3f56d56 465565a f2d4244 465565a b43d613 465565a b43d613 3f56d56 ccf4bd7 e42de32 ccf4bd7 e42de32 49bfe31 ccf4bd7 49bfe31 e1e1b10 e42de32 3f56d56 ccf4bd7 94f7531 49bfe31 94f7531 3f56d56 00ae72d 3f56d56 ccf4bd7 94f7531 49bfe31 94f7531 3f56d56 00ae72d 3f56d56 ccf4bd7 1e451c2 ccf4bd7 1e451c2 49bfe31 3f56d56 00ae72d 3f56d56 ccf4bd7 49bfe31 ccf4bd7 94f7531 49bfe31 ccf4bd7 3f56d56 00ae72d 3f56d56 ccf4bd7 49bfe31 ccf4bd7 49bfe31 3f56d56 00ae72d 3f56d56 4abdf78 3f56d56 94f7531 3f56d56 94f7531 3f56d56 e1e1b10 3f56d56 94f7531 3f56d56 94f7531 3f56d56 e1e1b10 3f56d56 e1e1b10 3f56d56 e1e1b10 3f56d56 4abdf78 3f56d56 e42de32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import os
import torch
import shutil
import logging
import gradio as gr
from audio_separator.separator import Separator
device = "cuda" if torch.cuda.is_available() else "cpu"
use_autocast = device == "cuda"
# Model lists
ROFORMER_MODELS = {
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
'Mel-Roformer-Denoise-Aufr33-Aggr': 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
'MelBand Roformer Kim | Inst V1 by Unwa': 'melband_roformer_inst_v1.ckpt',
'MelBand Roformer Kim | Inst V2 by Unwa': 'melband_roformer_inst_v2.ckpt',
'MelBand Roformer Kim | InstVoc Duality V1 by Unwa': 'melband_roformer_instvoc_duality_v1.ckpt',
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa': 'melband_roformer_instvox_duality_v2.ckpt',
}
MDX23C_MODELS = [
'MDX23C-8KFFT-InstVoc_HQ.ckpt',
'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
'MDX23C_D1581.ckpt',
]
MDXNET_MODELS = [
'UVR-MDX-NET-Crowd_HQ_1.onnx',
'UVR-MDX-NET-Inst_1.onnx',
'UVR-MDX-NET-Inst_2.onnx',
'UVR-MDX-NET-Inst_3.onnx',
'UVR-MDX-NET-Inst_HQ_1.onnx',
'UVR-MDX-NET-Inst_HQ_2.onnx',
'UVR-MDX-NET-Inst_HQ_3.onnx',
'UVR-MDX-NET-Inst_HQ_4.onnx',
'UVR-MDX-NET-Inst_HQ_5.onnx',
'UVR-MDX-NET-Inst_full_292.onnx',
'UVR-MDX-NET-Voc_FT.onnx',
'UVR-MDX-NET_Inst_82_beta.onnx',
'UVR-MDX-NET_Inst_90_beta.onnx',
'UVR-MDX-NET_Inst_187_beta.onnx',
'UVR-MDX-NET_Main_340.onnx',
'UVR-MDX-NET_Main_390.onnx',
'UVR-MDX-NET_Main_406.onnx',
'UVR-MDX-NET_Main_427.onnx',
'UVR-MDX-NET_Main_438.onnx',
'UVR_MDXNET_1_9703.onnx',
'UVR_MDXNET_2_9682.onnx',
'UVR_MDXNET_3_9662.onnx',
'UVR_MDXNET_9482.onnx',
'UVR_MDXNET_KARA.onnx',
'UVR_MDXNET_KARA_2.onnx',
'UVR_MDXNET_Main.onnx',
'kuielab_a_bass.onnx',
'kuielab_a_drums.onnx',
'kuielab_a_other.onnx',
'kuielab_a_vocals.onnx',
'kuielab_b_bass.onnx',
'kuielab_b_drums.onnx',
'kuielab_b_other.onnx',
'kuielab_b_vocals.onnx',
'Kim_Inst.onnx',
'Kim_Vocal_1.onnx',
'Kim_Vocal_2.onnx',
'Reverb_HQ_By_FoxJoy.onnx',
]
VR_ARCH_MODELS = [
'1_HP-UVR.pth',
'2_HP-UVR.pth',
'3_HP-Vocal-UVR.pth',
'4_HP-Vocal-UVR.pth',
'5_HP-Karaoke-UVR.pth',
'6_HP-Karaoke-UVR.pth',
'7_HP2-UVR.pth',
'8_HP2-UVR.pth',
'9_HP2-UVR.pth',
'10_SP-UVR-2B-32000-1.pth',
'11_SP-UVR-2B-32000-2.pth',
'12_SP-UVR-3B-44100.pth',
'13_SP-UVR-4B-44100-1.pth',
'14_SP-UVR-4B-44100-2.pth',
'15_SP-UVR-MID-44100-1.pth',
'16_SP-UVR-MID-44100-2.pth',
'17_HP-Wind_Inst-UVR.pth',
'MGM_HIGHEND_v4.pth',
'MGM_LOWEND_A_v4.pth',
'MGM_LOWEND_B_v4.pth',
'MGM_MAIN_v4.pth',
'UVR-BVE-4B_SN-44100-1.pth',
'UVR-DeEcho-DeReverb.pth',
'UVR-De-Echo-Aggressive.pth',
'UVR-De-Echo-Normal.pth',
'UVR-DeNoise-Lite.pth',
'UVR-DeNoise.pth',
]
DEMUCS_MODELS = [
'hdemucs_mmi.yaml',
'htdemucs.yaml',
'htdemucs_6s.yaml',
'htdemucs_ft.yaml',
]
def print_message(input_file, model_name):
"""Prints information about the audio separation process."""
base_name = os.path.splitext(os.path.basename(input_file))[0]
print("\n")
print("🎵 Audio-Separator 🎵")
print("Input audio:", base_name)
print("Separation Model:", model_name)
print("Audio Separation Process...")
def prepare_output_dir(input_file, output_dir):
"""Create a directory for the output files and clean it if it already exists."""
base_name = os.path.splitext(os.path.basename(input_file))[0]
out_dir = os.path.join(output_dir, base_name)
try:
if os.path.exists(out_dir):
shutil.rmtree(out_dir)
os.makedirs(out_dir)
except Exception as e:
raise RuntimeError(f"Failed to prepare output directory {out_dir}: {e}")
return out_dir
def roformer_separator(audio, model_key, seg_size, override_seg_size, overlap, pitch_shift, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using Roformer model."""
base_name = os.path.splitext(os.path.basename(audio))[0]
print_message(audio, model_key)
model = ROFORMER_MODELS[model_key]
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdxc_params={
"segment_size": seg_size,
"override_model_segment_size": override_seg_size,
"batch_size": batch_size,
"overlap": overlap,
"pitch_shift": pitch_shift,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[1], stems[0]
except Exception as e:
raise RuntimeError(f"Roformer separation failed: {e}") from e
def mdx23c_separator(audio, model, seg_size, override_seg_size, overlap, pitch_shift, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using MDX23C model."""
base_name = os.path.splitext(os.path.basename(audio))[0]
print_message(audio, model)
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdxc_params={
"segment_size": seg_size,
"override_model_segment_size": override_seg_size,
"batch_size": batch_size,
"overlap": overlap,
"pitch_shift": pitch_shift,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[1], stems[0]
except Exception as e:
raise RuntimeError(f"MDX23C separation failed: {e}") from e
def mdx_separator(audio, model, hop_length, seg_size, overlap, denoise, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using MDX-NET model."""
base_name = os.path.splitext(os.path.basename(audio))[0]
print_message(audio, model)
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
mdx_params={
"hop_length": hop_length,
"segment_size": seg_size,
"overlap": overlap,
"batch_size": batch_size,
"enable_denoise": denoise,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[0], stems[1]
except Exception as e:
raise RuntimeError(f"MDX-NET separation failed: {e}") from e
def vr_separator(audio, model, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using VR ARCH model."""
base_name = os.path.splitext(os.path.basename(audio))[0]
print_message(audio, model)
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
vr_params={
"batch_size": batch_size,
"window_size": window_size,
"aggression": aggression,
"enable_tta": tta,
"enable_post_process": post_process,
"post_process_threshold": post_process_threshold,
"high_end_process": high_end_process,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[0], stems[1]
except Exception as e:
raise RuntimeError(f"VR ARCH separation failed: {e}") from e
def demucs_separator(audio, model, seg_size, shifts, overlap, segments_enabled, model_dir, out_dir, out_format, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
"""Separate audio using Demucs model."""
print_message(audio, model)
try:
out_dir = prepare_output_dir(audio, out_dir)
separator = Separator(
log_level=logging.WARNING,
model_file_dir=model_dir,
output_dir=out_dir,
output_format=out_format,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
use_autocast=use_autocast,
demucs_params={
"segment_size": seg_size,
"shifts": shifts,
"overlap": overlap,
"segments_enabled": segments_enabled,
}
)
progress(0.2, desc="Model loaded...")
separator.load_model(model_filename=model)
progress(0.7, desc="Audio separated...")
separation = separator.separate(audio)
print(f"Separation complete!\nResults: {', '.join(separation)}")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
if model == "htdemucs_6s.yaml":
return stems[0], stems[1], stems[2], stems[3], stems[4], stems[5]
else:
return stems[0], stems[1], stems[2], stems[3], None, None
except Exception as e:
raise RuntimeError(f"Demucs separation failed: {e}") from e
def update_stems(model):
if model == "htdemucs_6s.yaml":
return gr.update(visible=True)
else:
return gr.update(visible=False)
with gr.Blocks(
title="🎵 Audio-Separator 🎵",
css="footer{display:none !important}",
theme=gr.themes.Default(
spacing_size="sm",
radius_size="lg",
)
) as app:
gr.HTML("<h1> 🎵 Audio-Separator 🎵 </h1>")
with gr.Accordion("General settings", open=False):
with gr.Group():
model_file_dir = gr.Textbox(value="/tmp/audio-separator-models/", label="Directory to cache model files", info="The directory where model files are stored.", placeholder="/tmp/audio-separator-models/")
with gr.Row():
output_dir = gr.Textbox(value="output", label="File output directory", info="The directory where output files will be saved.", placeholder="output")
output_format = gr.Dropdown(value="wav", choices=["wav", "flac", "mp3"], label="Output Format", info="The format of the output audio file.")
with gr.Row():
norm_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.9, label="Normalization threshold", info="The threshold for audio normalization.")
amp_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.6, label="Amplification threshold", info="The threshold for audio amplification.")
with gr.Row():
batch_size = gr.Slider(minimum=1, maximum=16, step=1, value=1, label="Batch Size", info="Larger consumes more RAM but may process slightly faster.")
with gr.Tab("Roformer"):
with gr.Group():
with gr.Row():
roformer_model = gr.Dropdown(label="Select the Model", choices=list(ROFORMER_MODELS.keys()))
with gr.Row():
roformer_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.")
roformer_override_seg_size = gr.Checkbox(value=False, label="Override segment size", info="Override model default segment size instead of using the model default value.")
roformer_overlap = gr.Slider(minimum=2, maximum=10, step=1, value=8, label="Overlap", info="Amount of overlap between prediction windows. Lower is better but slower.")
roformer_pitch_shift = gr.Slider(minimum=-12, maximum=12, step=1, value=0, label="Pitch shift", info="Shift audio pitch by a number of semitones while processing. may improve output for deep/high vocals.")
with gr.Row():
roformer_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
roformer_button = gr.Button("Separate!", variant="primary")
with gr.Row():
roformer_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
roformer_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Tab("MDX23C"):
with gr.Group():
with gr.Row():
mdx23c_model = gr.Dropdown(label="Select the Model", choices=MDX23C_MODELS)
with gr.Row():
mdx23c_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.")
mdx23c_override_seg_size = gr.Checkbox(value=False, label="Override segment size", info="Override model default segment size instead of using the model default value.")
mdx23c_overlap = gr.Slider(minimum=2, maximum=50, step=1, value=8, label="Overlap", info="Amount of overlap between prediction windows. Higher is better but slower.")
mdx23c_pitch_shift = gr.Slider(minimum=-12, maximum=12, step=1, value=0, label="Pitch shift", info="Shift audio pitch by a number of semitones while processing. may improve output for deep/high vocals.")
with gr.Row():
mdx23c_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
mdx23c_button = gr.Button("Separate!", variant="primary")
with gr.Row():
mdx23c_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
mdx23c_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Tab("MDX-NET"):
with gr.Group():
with gr.Row():
mdx_model = gr.Dropdown(label="Select the Model", choices=MDXNET_MODELS)
with gr.Row():
mdx_hop_length = gr.Slider(minimum=32, maximum=2048, step=32, value=1024, label="Hop Length", info="Usually called stride in neural networks; only change if you know what you're doing.")
mdx_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.")
mdx_overlap = gr.Slider(minimum=0.001, maximum=0.999, step=0.001, value=0.25, label="Overlap", info="Amount of overlap between prediction windows. Higher is better but slower.")
mdx_denoise = gr.Checkbox(value=False, label="Denoise", info="Enable denoising after separation.")
with gr.Row():
mdx_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
mdx_button = gr.Button("Separate!", variant="primary")
with gr.Row():
mdx_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
mdx_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Tab("VR ARCH"):
with gr.Group():
with gr.Row():
vr_model = gr.Dropdown(label="Select the Model", choices=VR_ARCH_MODELS)
with gr.Row():
vr_window_size = gr.Slider(minimum=320, maximum=1024, step=32, value=512, label="Window Size", info="Balance quality and speed. 1024 = fast but lower, 320 = slower but better quality.")
vr_aggression = gr.Slider(minimum=1, maximum=50, step=1, value=5, label="Agression", info="Intensity of primary stem extraction.")
vr_tta = gr.Checkbox(value=False, label="TTA", info="Enable Test-Time-Augmentation; slow but improves quality.")
vr_post_process = gr.Checkbox(value=False, label="Post Process", info="Identify leftover artifacts within vocal output; may improve separation for some songs.")
vr_post_process_threshold = gr.Slider(minimum=0.1, maximum=0.3, step=0.1, value=0.2, label="Post Process Threshold", info="Threshold for post-processing.")
vr_high_end_process = gr.Checkbox(value=False, label="High End Process", info="Mirror the missing frequency range of the output.")
with gr.Row():
vr_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
vr_button = gr.Button("Separate!", variant="primary")
with gr.Row():
vr_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
vr_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Tab("Demucs"):
with gr.Group():
with gr.Row():
demucs_model = gr.Dropdown(label="Select the Model", choices=DEMUCS_MODELS)
with gr.Row():
demucs_seg_size = gr.Slider(minimum=1, maximum=100, step=1, value=40, label="Segment Size", info="Size of segments into which the audio is split. Higher = slower but better quality.")
demucs_shifts = gr.Slider(minimum=0, maximum=20, step=1, value=2, label="Shifts", info="Number of predictions with random shifts, higher = slower but better quality.")
demucs_overlap = gr.Slider(minimum=0.001, maximum=0.999, step=0.001, value=0.25, label="Overlap", info="Overlap between prediction windows. Higher = slower but better quality.")
demucs_segments_enabled = gr.Checkbox(value=True, label="Segment-wise processing", info="Enable segment-wise processing.")
with gr.Row():
demucs_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
demucs_button = gr.Button("Separate!", variant="primary")
with gr.Row():
demucs_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
demucs_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
with gr.Row():
demucs_stem3 = gr.Audio(label="Stem 3", type="filepath", interactive=False)
demucs_stem4 = gr.Audio(label="Stem 4", type="filepath", interactive=False)
with gr.Row(visible=False) as stem6:
demucs_stem5 = gr.Audio(label="Stem 5", type="filepath", interactive=False)
demucs_stem6 = gr.Audio(label="Stem 6", type="filepath", interactive=False)
demucs_model.change(update_stems, inputs=[demucs_model], outputs=stem6)
roformer_button.click(
roformer_separator,
inputs=[
roformer_audio,
roformer_model,
roformer_seg_size,
roformer_override_seg_size,
roformer_overlap,
roformer_pitch_shift,
model_file_dir,
output_dir,
output_format,
norm_threshold,
amp_threshold,
batch_size,
],
outputs=[roformer_stem1, roformer_stem2],
)
mdx23c_button.click(
mdx23c_separator,
inputs=[
mdx23c_audio,
mdx23c_model,
mdx23c_seg_size,
mdx23c_override_seg_size,
mdx23c_overlap,
mdx23c_pitch_shift,
model_file_dir,
output_dir,
output_format,
norm_threshold,
amp_threshold,
batch_size,
],
outputs=[mdx23c_stem1, mdx23c_stem2],
)
mdx_button.click(
mdx_separator,
inputs=[
mdx_audio,
mdx_model,
mdx_hop_length,
mdx_seg_size,
mdx_overlap,
mdx_denoise,
model_file_dir,
output_dir,
output_format,
norm_threshold,
amp_threshold,
batch_size,
],
outputs=[mdx_stem1, mdx_stem2],
)
vr_button.click(
vr_separator,
inputs=[
vr_audio,
vr_model,
vr_window_size,
vr_aggression,
vr_tta,
vr_post_process,
vr_post_process_threshold,
vr_high_end_process,
model_file_dir,
output_dir,
output_format,
norm_threshold,
amp_threshold,
batch_size,
],
outputs=[vr_stem1, vr_stem2],
)
demucs_button.click(
demucs_separator,
inputs=[
demucs_audio,
demucs_model,
demucs_seg_size,
demucs_shifts,
demucs_overlap,
demucs_segments_enabled,
model_file_dir,
output_dir,
output_format,
norm_threshold,
amp_threshold,
],
outputs=[demucs_stem1, demucs_stem2, demucs_stem3, demucs_stem4, demucs_stem5, demucs_stem6],
)
def main():
app.launch(share=True)
if __name__ == "__main__":
main()
|