Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
-
import shutil
|
4 |
import logging
|
|
|
|
|
5 |
import gradio as gr
|
6 |
-
|
7 |
from audio_separator.separator import Separator
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -12,80 +12,80 @@ use_autocast = device == "cuda"
|
|
12 |
#=========================#
|
13 |
# Roformer Models #
|
14 |
#=========================#
|
15 |
-
|
16 |
-
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
|
17 |
-
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
|
18 |
-
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
|
19 |
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
|
|
|
|
|
|
|
|
|
20 |
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
|
21 |
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
|
22 |
-
'Mel-Roformer-Denoise-Aufr33-Aggr': 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
|
23 |
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
|
24 |
-
'
|
25 |
-
'MelBand Roformer Kim | Inst
|
26 |
-
'MelBand Roformer Kim |
|
27 |
-
'MelBand Roformer Kim | InstVoc Duality
|
28 |
-
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa': 'melband_roformer_instvox_duality_v2.ckpt',
|
29 |
-
'Vocals Mel Band Roformer': 'vocals_mel_band_roformer.ckpt',
|
30 |
-
'Mel Band Roformer Bleed Suppressor V1': 'mel_band_roformer_bleed_suppressor_v1.ckpt',
|
31 |
-
'Mel Band Roformer SYHFT V2': 'MelBandRoformerSYHFTV2.ckpt',
|
32 |
-
'Mel Band Roformer SYHFT V2.5': 'MelBandRoformerSYHFTV2.5.ckpt',
|
33 |
}
|
|
|
34 |
#=========================#
|
35 |
# MDX23C Models #
|
36 |
#=========================#
|
37 |
-
|
|
|
38 |
'MDX23C-8KFFT-InstVoc_HQ.ckpt',
|
39 |
'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
|
40 |
-
'MDX23C_D1581.ckpt',
|
41 |
]
|
|
|
42 |
#=========================#
|
43 |
# MDXN-NET Models #
|
44 |
#=========================#
|
45 |
-
|
46 |
-
'UVR-MDX-NET-Crowd_HQ_1.onnx',
|
47 |
-
'UVR-MDX-NET-Inst_1.onnx',
|
48 |
-
'UVR-MDX-NET-Inst_2.onnx',
|
49 |
-
'UVR-MDX-NET-Inst_3.onnx',
|
50 |
-
'UVR-MDX-NET-Inst_HQ_1.onnx',
|
51 |
-
'UVR-MDX-NET-Inst_HQ_2.onnx',
|
52 |
-
'UVR-MDX-NET-Inst_HQ_3.onnx',
|
53 |
-
'UVR-MDX-NET-Inst_HQ_4.onnx',
|
54 |
-
'UVR-MDX-NET-Inst_HQ_5.onnx',
|
55 |
'UVR-MDX-NET-Inst_full_292.onnx',
|
56 |
-
'UVR-MDX-
|
57 |
'UVR-MDX-NET_Inst_82_beta.onnx',
|
58 |
'UVR-MDX-NET_Inst_90_beta.onnx',
|
59 |
-
'UVR-MDX-NET_Inst_187_beta.onnx',
|
60 |
'UVR-MDX-NET_Main_340.onnx',
|
61 |
'UVR-MDX-NET_Main_390.onnx',
|
62 |
'UVR-MDX-NET_Main_406.onnx',
|
63 |
'UVR-MDX-NET_Main_427.onnx',
|
64 |
'UVR-MDX-NET_Main_438.onnx',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
'UVR_MDXNET_1_9703.onnx',
|
66 |
'UVR_MDXNET_2_9682.onnx',
|
67 |
'UVR_MDXNET_3_9662.onnx',
|
68 |
-
'
|
|
|
|
|
69 |
'UVR_MDXNET_KARA.onnx',
|
70 |
'UVR_MDXNET_KARA_2.onnx',
|
71 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
'kuielab_a_bass.onnx',
|
73 |
'kuielab_a_drums.onnx',
|
74 |
-
'
|
75 |
-
'
|
76 |
'kuielab_b_bass.onnx',
|
77 |
'kuielab_b_drums.onnx',
|
78 |
-
'kuielab_b_other.onnx',
|
79 |
-
'kuielab_b_vocals.onnx',
|
80 |
-
'Kim_Inst.onnx',
|
81 |
-
'Kim_Vocal_1.onnx',
|
82 |
-
'Kim_Vocal_2.onnx',
|
83 |
-
'Reverb_HQ_By_FoxJoy.onnx',
|
84 |
]
|
|
|
85 |
#========================#
|
86 |
# VR-ARCH Models #
|
87 |
#========================#
|
88 |
-
|
89 |
'1_HP-UVR.pth',
|
90 |
'2_HP-UVR.pth',
|
91 |
'3_HP-Vocal-UVR.pth',
|
@@ -103,168 +103,186 @@ VR_ARCH_MODELS = [
|
|
103 |
'15_SP-UVR-MID-44100-1.pth',
|
104 |
'16_SP-UVR-MID-44100-2.pth',
|
105 |
'17_HP-Wind_Inst-UVR.pth',
|
106 |
-
'MGM_HIGHEND_v4.pth',
|
107 |
-
'MGM_LOWEND_A_v4.pth',
|
108 |
-
'MGM_LOWEND_B_v4.pth',
|
109 |
-
'MGM_MAIN_v4.pth',
|
110 |
-
'UVR-BVE-4B_SN-44100-1.pth',
|
111 |
-
'UVR-DeEcho-DeReverb.pth',
|
112 |
'UVR-De-Echo-Aggressive.pth',
|
113 |
'UVR-De-Echo-Normal.pth',
|
|
|
114 |
'UVR-DeNoise-Lite.pth',
|
115 |
'UVR-DeNoise.pth',
|
|
|
|
|
|
|
|
|
|
|
116 |
]
|
|
|
117 |
#=======================#
|
118 |
# DEMUCS Models #
|
119 |
#=======================#
|
120 |
-
|
121 |
-
'hdemucs_mmi.yaml',
|
122 |
-
'htdemucs.yaml',
|
123 |
-
'htdemucs_6s.yaml',
|
124 |
'htdemucs_ft.yaml',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
]
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
try:
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
except Exception as e:
|
145 |
-
raise
|
146 |
-
return out_dir
|
147 |
|
148 |
-
|
149 |
-
|
150 |
base_name = os.path.splitext(os.path.basename(audio))[0]
|
151 |
-
|
152 |
-
model = ROFORMER_MODELS[model_key]
|
153 |
try:
|
154 |
-
out_dir = prepare_output_dir(audio, out_dir)
|
155 |
separator = Separator(
|
156 |
log_level=logging.WARNING,
|
157 |
-
model_file_dir=
|
158 |
output_dir=out_dir,
|
159 |
output_format=out_format,
|
|
|
160 |
normalization_threshold=norm_thresh,
|
161 |
amplification_threshold=amp_thresh,
|
162 |
-
use_autocast=use_autocast,
|
163 |
mdxc_params={
|
164 |
-
"segment_size":
|
165 |
"override_model_segment_size": override_seg_size,
|
166 |
"batch_size": batch_size,
|
167 |
"overlap": overlap,
|
168 |
-
"pitch_shift": pitch_shift,
|
169 |
}
|
170 |
)
|
|
|
|
|
|
|
171 |
|
172 |
-
progress(0.
|
173 |
-
separator.load_model(model_filename=model)
|
174 |
-
|
175 |
-
progress(0.7, desc="Audio separated...")
|
176 |
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
177 |
-
print(f"Separation complete!\nResults: {', '.join(separation)}")
|
178 |
|
179 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
180 |
return stems[1], stems[0]
|
181 |
except Exception as e:
|
182 |
raise RuntimeError(f"Roformer separation failed: {e}") from e
|
183 |
|
184 |
-
|
185 |
-
|
186 |
base_name = os.path.splitext(os.path.basename(audio))[0]
|
187 |
-
print_message(audio, model)
|
188 |
try:
|
189 |
-
out_dir = prepare_output_dir(audio, out_dir)
|
190 |
separator = Separator(
|
191 |
log_level=logging.WARNING,
|
192 |
-
model_file_dir=
|
193 |
output_dir=out_dir,
|
194 |
output_format=out_format,
|
|
|
195 |
normalization_threshold=norm_thresh,
|
196 |
amplification_threshold=amp_thresh,
|
197 |
-
use_autocast=use_autocast,
|
198 |
mdxc_params={
|
199 |
-
"segment_size":
|
200 |
"override_model_segment_size": override_seg_size,
|
201 |
"batch_size": batch_size,
|
202 |
"overlap": overlap,
|
203 |
-
"pitch_shift": pitch_shift,
|
204 |
}
|
205 |
)
|
206 |
|
207 |
-
progress(0.2, desc="
|
208 |
separator.load_model(model_filename=model)
|
209 |
|
210 |
-
progress(0.7, desc="
|
211 |
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
212 |
-
print(f"Separation complete!\nResults: {', '.join(separation)}")
|
213 |
|
214 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
215 |
return stems[1], stems[0]
|
216 |
except Exception as e:
|
217 |
raise RuntimeError(f"MDX23C separation failed: {e}") from e
|
218 |
|
219 |
-
|
220 |
-
|
221 |
base_name = os.path.splitext(os.path.basename(audio))[0]
|
222 |
-
print_message(audio, model)
|
223 |
try:
|
224 |
-
out_dir = prepare_output_dir(audio, out_dir)
|
225 |
separator = Separator(
|
226 |
log_level=logging.WARNING,
|
227 |
-
model_file_dir=
|
228 |
output_dir=out_dir,
|
229 |
output_format=out_format,
|
|
|
230 |
normalization_threshold=norm_thresh,
|
231 |
amplification_threshold=amp_thresh,
|
232 |
-
use_autocast=use_autocast,
|
233 |
mdx_params={
|
234 |
"hop_length": hop_length,
|
235 |
-
"segment_size":
|
236 |
"overlap": overlap,
|
237 |
"batch_size": batch_size,
|
238 |
"enable_denoise": denoise,
|
239 |
}
|
240 |
)
|
241 |
|
242 |
-
progress(0.2, desc="
|
243 |
separator.load_model(model_filename=model)
|
244 |
|
245 |
-
progress(0.7, desc="
|
246 |
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
247 |
-
print(f"Separation complete!\nResults: {', '.join(separation)}")
|
248 |
|
249 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
250 |
return stems[0], stems[1]
|
251 |
except Exception as e:
|
252 |
raise RuntimeError(f"MDX-NET separation failed: {e}") from e
|
253 |
|
254 |
-
|
255 |
-
|
256 |
base_name = os.path.splitext(os.path.basename(audio))[0]
|
257 |
-
print_message(audio, model)
|
258 |
try:
|
259 |
-
out_dir = prepare_output_dir(audio, out_dir)
|
260 |
separator = Separator(
|
261 |
log_level=logging.WARNING,
|
262 |
-
model_file_dir=
|
263 |
output_dir=out_dir,
|
264 |
output_format=out_format,
|
|
|
265 |
normalization_threshold=norm_thresh,
|
266 |
amplification_threshold=amp_thresh,
|
267 |
-
use_autocast=use_autocast,
|
268 |
vr_params={
|
269 |
"batch_size": batch_size,
|
270 |
"window_size": window_size,
|
@@ -276,45 +294,43 @@ def vr_separator(audio, model, window_size, aggression, tta, post_process, post_
|
|
276 |
}
|
277 |
)
|
278 |
|
279 |
-
progress(0.2, desc="
|
280 |
separator.load_model(model_filename=model)
|
281 |
|
282 |
-
progress(0.7, desc="
|
283 |
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
284 |
-
print(f"Separation complete!\nResults: {', '.join(separation)}")
|
285 |
|
286 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
287 |
return stems[0], stems[1]
|
288 |
except Exception as e:
|
289 |
raise RuntimeError(f"VR ARCH separation failed: {e}") from e
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
try:
|
295 |
-
out_dir = prepare_output_dir(audio, out_dir)
|
296 |
separator = Separator(
|
297 |
log_level=logging.WARNING,
|
298 |
-
model_file_dir=
|
299 |
output_dir=out_dir,
|
300 |
output_format=out_format,
|
|
|
301 |
normalization_threshold=norm_thresh,
|
302 |
amplification_threshold=amp_thresh,
|
303 |
-
use_autocast=use_autocast,
|
304 |
demucs_params={
|
305 |
-
"
|
|
|
306 |
"shifts": shifts,
|
307 |
"overlap": overlap,
|
308 |
"segments_enabled": segments_enabled,
|
309 |
}
|
310 |
)
|
311 |
|
312 |
-
progress(0.2, desc="
|
313 |
separator.load_model(model_filename=model)
|
314 |
|
315 |
-
progress(0.7, desc="
|
316 |
separation = separator.separate(audio)
|
317 |
-
print(f"Separation complete!\nResults: {', '.join(separation)}")
|
318 |
|
319 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
320 |
|
@@ -331,231 +347,922 @@ def update_stems(model):
|
|
331 |
else:
|
332 |
return gr.update(visible=False)
|
333 |
|
|
|
|
|
|
|
|
|
|
|
334 |
|
|
|
|
|
|
|
|
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
|
|
|
|
|
|
338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
with gr.Row():
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
with gr.Row():
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
mdx23c_pitch_shift = gr.Slider(minimum=-12, maximum=12, step=1, value=0, label="Pitch shift", info="Shift audio pitch by a number of semitones while processing. may improve output for deep/high vocals.")
|
373 |
-
with gr.Row():
|
374 |
-
mdx23c_audio = gr.Audio(label="Input Audio", type="filepath")
|
375 |
-
with gr.Row():
|
376 |
-
mdx23c_button = gr.Button("Separate!", variant="primary")
|
377 |
-
with gr.Row():
|
378 |
-
mdx23c_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
|
379 |
-
mdx23c_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
|
380 |
-
|
381 |
-
with gr.Tab("MDX-NET"):
|
382 |
-
with gr.Group():
|
383 |
-
with gr.Row():
|
384 |
-
mdx_model = gr.Dropdown(label="Select the Model", choices=MDXNET_MODELS)
|
385 |
-
with gr.Row():
|
386 |
-
mdx_hop_length = gr.Slider(minimum=32, maximum=2048, step=32, value=1024, label="Hop Length", info="Usually called stride in neural networks; only change if you know what you're doing.")
|
387 |
-
mdx_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.")
|
388 |
-
with gr.Row():
|
389 |
-
mdx_overlap = gr.Slider(minimum=0.001, maximum=0.999, step=0.001, value=0.25, label="Overlap", info="Amount of overlap between prediction windows. Higher is better but slower.")
|
390 |
-
mdx_denoise = gr.Checkbox(value=False, label="Denoise", info="Enable denoising after separation.")
|
391 |
-
with gr.Row():
|
392 |
-
mdx_audio = gr.Audio(label="Input Audio", type="filepath")
|
393 |
-
with gr.Row():
|
394 |
-
mdx_button = gr.Button("Separate!", variant="primary")
|
395 |
-
with gr.Row():
|
396 |
-
mdx_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
|
397 |
-
mdx_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
|
398 |
-
|
399 |
-
with gr.Tab("VR ARCH"):
|
400 |
-
with gr.Group():
|
401 |
-
with gr.Row():
|
402 |
-
vr_model = gr.Dropdown(label="Select the Model", choices=VR_ARCH_MODELS)
|
403 |
-
with gr.Row():
|
404 |
-
vr_window_size = gr.Slider(minimum=320, maximum=1024, step=32, value=512, label="Window Size", info="Balance quality and speed. 1024 = fast but lower, 320 = slower but better quality.")
|
405 |
-
vr_aggression = gr.Slider(minimum=1, maximum=50, step=1, value=5, label="Agression", info="Intensity of primary stem extraction.")
|
406 |
-
with gr.Row():
|
407 |
-
vr_tta = gr.Checkbox(value=False, label="TTA", info="Enable Test-Time-Augmentation; slow but improves quality.")
|
408 |
-
with gr.Row():
|
409 |
-
vr_post_process = gr.Checkbox(value=False, label="Post Process", info="Identify leftover artifacts within vocal output; may improve separation for some songs.")
|
410 |
-
vr_post_process_threshold = gr.Slider(minimum=0.1, maximum=0.3, step=0.1, value=0.2, label="Post Process Threshold", info="Threshold for post-processing.")
|
411 |
-
vr_high_end_process = gr.Checkbox(value=False, label="High End Process", info="Mirror the missing frequency range of the output.")
|
412 |
-
with gr.Row():
|
413 |
-
vr_audio = gr.Audio(label="Input Audio", type="filepath")
|
414 |
-
with gr.Row():
|
415 |
-
vr_button = gr.Button("Separate!", variant="primary")
|
416 |
-
with gr.Row():
|
417 |
-
vr_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
|
418 |
-
vr_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
|
419 |
-
|
420 |
-
with gr.Tab("Demucs"):
|
421 |
-
with gr.Group():
|
422 |
-
with gr.Row():
|
423 |
-
demucs_model = gr.Dropdown(label="Select the Model", choices=DEMUCS_MODELS)
|
424 |
-
with gr.Row():
|
425 |
-
demucs_seg_size = gr.Slider(minimum=1, maximum=100, step=1, value=40, label="Segment Size", info="Size of segments into which the audio is split. Higher = slower but better quality.")
|
426 |
-
demucs_shifts = gr.Slider(minimum=0, maximum=20, step=1, value=2, label="Shifts", info="Number of predictions with random shifts, higher = slower but better quality.")
|
427 |
-
demucs_overlap = gr.Slider(minimum=0.001, maximum=0.999, step=0.001, value=0.25, label="Overlap", info="Overlap between prediction windows. Higher = slower but better quality.")
|
428 |
-
demucs_segments_enabled = gr.Checkbox(value=True, label="Segment-wise processing", info="Enable segment-wise processing.")
|
429 |
-
with gr.Row():
|
430 |
-
demucs_audio = gr.Audio(label="Input Audio", type="filepath")
|
431 |
-
with gr.Row():
|
432 |
-
demucs_button = gr.Button("Separate!", variant="primary")
|
433 |
-
with gr.Row():
|
434 |
-
demucs_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
|
435 |
-
demucs_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
|
436 |
-
with gr.Row():
|
437 |
-
demucs_stem3 = gr.Audio(label="Stem 3", type="filepath", interactive=False)
|
438 |
-
demucs_stem4 = gr.Audio(label="Stem 4", type="filepath", interactive=False)
|
439 |
-
with gr.Row(visible=False) as stem6:
|
440 |
-
demucs_stem5 = gr.Audio(label="Stem 5", type="filepath", interactive=False)
|
441 |
-
demucs_stem6 = gr.Audio(label="Stem 6", type="filepath", interactive=False)
|
442 |
-
|
443 |
-
|
444 |
-
with gr.Tab("General settings"):
|
445 |
-
with gr.Group():
|
446 |
-
model_file_dir = gr.Textbox(value="/tmp/audio-separator-models/", label="Directory to cache model files", info="The directory where model files are stored.", placeholder="/tmp/audio-separator-models/")
|
447 |
-
with gr.Row():
|
448 |
-
output_dir = gr.Textbox(value="output", label="File output directory", info="The directory where output files will be saved.", placeholder="output")
|
449 |
-
output_format = gr.Dropdown(value="wav", choices=["wav", "flac", "mp3"], label="Output Format", info="The format of the output audio file.")
|
450 |
-
with gr.Row():
|
451 |
-
norm_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.9, label="Normalization threshold", info="The threshold for audio normalization.")
|
452 |
-
amp_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.6, label="Amplification threshold", info="The threshold for audio amplification.")
|
453 |
-
with gr.Row():
|
454 |
-
batch_size = gr.Slider(minimum=1, maximum=16, step=1, value=1, label="Batch Size", info="Larger consumes more RAM but may process slightly faster.")
|
455 |
-
with gr.Tab("Credits"):
|
456 |
-
gr.Markdown("""
|
457 |
-
Politrees - gradio webui\n
|
458 |
-
theNeodev - mod the ui\n
|
459 |
-
nomadkaraoke - original project
|
460 |
-
""")
|
461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
batch_size,
|
480 |
-
],
|
481 |
-
outputs=[roformer_stem1, roformer_stem2],
|
482 |
-
)
|
483 |
-
mdx23c_button.click(
|
484 |
-
mdx23c_separator,
|
485 |
-
inputs=[
|
486 |
-
mdx23c_audio,
|
487 |
-
mdx23c_model,
|
488 |
-
mdx23c_seg_size,
|
489 |
-
mdx23c_override_seg_size,
|
490 |
-
mdx23c_overlap,
|
491 |
-
mdx23c_pitch_shift,
|
492 |
-
model_file_dir,
|
493 |
-
output_dir,
|
494 |
-
output_format,
|
495 |
-
norm_threshold,
|
496 |
-
amp_threshold,
|
497 |
-
batch_size,
|
498 |
-
],
|
499 |
-
outputs=[mdx23c_stem1, mdx23c_stem2],
|
500 |
-
)
|
501 |
-
mdx_button.click(
|
502 |
-
mdx_separator,
|
503 |
-
inputs=[
|
504 |
-
mdx_audio,
|
505 |
-
mdx_model,
|
506 |
-
mdx_hop_length,
|
507 |
-
mdx_seg_size,
|
508 |
-
mdx_overlap,
|
509 |
-
mdx_denoise,
|
510 |
-
model_file_dir,
|
511 |
-
output_dir,
|
512 |
-
output_format,
|
513 |
-
norm_threshold,
|
514 |
-
amp_threshold,
|
515 |
-
batch_size,
|
516 |
-
],
|
517 |
-
outputs=[mdx_stem1, mdx_stem2],
|
518 |
-
)
|
519 |
-
vr_button.click(
|
520 |
-
vr_separator,
|
521 |
-
inputs=[
|
522 |
-
vr_audio,
|
523 |
-
vr_model,
|
524 |
-
vr_window_size,
|
525 |
-
vr_aggression,
|
526 |
-
vr_tta,
|
527 |
-
vr_post_process,
|
528 |
-
vr_post_process_threshold,
|
529 |
-
vr_high_end_process,
|
530 |
-
model_file_dir,
|
531 |
-
output_dir,
|
532 |
-
output_format,
|
533 |
-
norm_threshold,
|
534 |
-
amp_threshold,
|
535 |
-
batch_size,
|
536 |
-
],
|
537 |
-
outputs=[vr_stem1, vr_stem2],
|
538 |
-
)
|
539 |
-
demucs_button.click(
|
540 |
-
demucs_separator,
|
541 |
-
inputs=[
|
542 |
-
demucs_audio,
|
543 |
-
demucs_model,
|
544 |
-
demucs_seg_size,
|
545 |
-
demucs_shifts,
|
546 |
-
demucs_overlap,
|
547 |
-
demucs_segments_enabled,
|
548 |
-
model_file_dir,
|
549 |
-
output_dir,
|
550 |
-
output_format,
|
551 |
-
norm_threshold,
|
552 |
-
amp_threshold,
|
553 |
-
],
|
554 |
-
outputs=[demucs_stem1, demucs_stem2, demucs_stem3, demucs_stem4, demucs_stem5, demucs_stem6],
|
555 |
-
)
|
556 |
|
557 |
-
|
558 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
|
560 |
-
|
561 |
-
|
|
|
1 |
import os
|
2 |
import torch
|
|
|
3 |
import logging
|
4 |
+
import yt_dlp
|
5 |
+
import spaces
|
6 |
import gradio as gr
|
|
|
7 |
from audio_separator.separator import Separator
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
#=========================#
|
13 |
# Roformer Models #
|
14 |
#=========================#
|
15 |
+
roformer_models = {
|
|
|
|
|
|
|
16 |
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
|
17 |
+
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
|
18 |
+
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
|
19 |
+
'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
|
20 |
+
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
|
21 |
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
|
22 |
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
|
23 |
+
'Mel-Roformer-Denoise-Aufr33-Aggr' : 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
|
24 |
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
|
25 |
+
'MelBand Roformer Kim | Inst V1 by Unwa' : 'melband_roformer_inst_v1.ckpt',
|
26 |
+
'MelBand Roformer Kim | Inst V2 by Unwa' : 'melband_roformer_inst_v2.ckpt',
|
27 |
+
'MelBand Roformer Kim | InstVoc Duality V1 by Unwa' : 'melband_roformer_instvoc_duality_v1.ckpt',
|
28 |
+
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa' : 'melband_roformer_instvox_duality_v2.ckpt',
|
|
|
|
|
|
|
|
|
|
|
29 |
}
|
30 |
+
|
31 |
#=========================#
|
32 |
# MDX23C Models #
|
33 |
#=========================#
|
34 |
+
mdx23c_models = [
|
35 |
+
'MDX23C_D1581.ckpt',
|
36 |
'MDX23C-8KFFT-InstVoc_HQ.ckpt',
|
37 |
'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
|
|
|
38 |
]
|
39 |
+
|
40 |
#=========================#
|
41 |
# MDXN-NET Models #
|
42 |
#=========================#
|
43 |
+
mdxnet_models = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
'UVR-MDX-NET-Inst_full_292.onnx',
|
45 |
+
'UVR-MDX-NET_Inst_187_beta.onnx',
|
46 |
'UVR-MDX-NET_Inst_82_beta.onnx',
|
47 |
'UVR-MDX-NET_Inst_90_beta.onnx',
|
|
|
48 |
'UVR-MDX-NET_Main_340.onnx',
|
49 |
'UVR-MDX-NET_Main_390.onnx',
|
50 |
'UVR-MDX-NET_Main_406.onnx',
|
51 |
'UVR-MDX-NET_Main_427.onnx',
|
52 |
'UVR-MDX-NET_Main_438.onnx',
|
53 |
+
'UVR-MDX-NET-Inst_HQ_1.onnx',
|
54 |
+
'UVR-MDX-NET-Inst_HQ_2.onnx',
|
55 |
+
'UVR-MDX-NET-Inst_HQ_3.onnx',
|
56 |
+
'UVR-MDX-NET-Inst_HQ_4.onnx',
|
57 |
+
'UVR-MDX-NET-Inst_HQ_5.onnx',
|
58 |
+
'UVR_MDXNET_Main.onnx',
|
59 |
+
'UVR-MDX-NET-Inst_Main.onnx',
|
60 |
'UVR_MDXNET_1_9703.onnx',
|
61 |
'UVR_MDXNET_2_9682.onnx',
|
62 |
'UVR_MDXNET_3_9662.onnx',
|
63 |
+
'UVR-MDX-NET-Inst_1.onnx',
|
64 |
+
'UVR-MDX-NET-Inst_2.onnx',
|
65 |
+
'UVR-MDX-NET-Inst_3.onnx',
|
66 |
'UVR_MDXNET_KARA.onnx',
|
67 |
'UVR_MDXNET_KARA_2.onnx',
|
68 |
+
'UVR_MDXNET_9482.onnx',
|
69 |
+
'UVR-MDX-NET-Voc_FT.onnx',
|
70 |
+
'Kim_Vocal_1.onnx',
|
71 |
+
'Kim_Vocal_2.onnx',
|
72 |
+
'Kim_Inst.onnx',
|
73 |
+
'Reverb_HQ_By_FoxJoy.onnx',
|
74 |
+
'UVR-MDX-NET_Crowd_HQ_1.onnx',
|
75 |
+
'kuielab_a_vocals.onnx',
|
76 |
+
'kuielab_a_other.onnx',
|
77 |
'kuielab_a_bass.onnx',
|
78 |
'kuielab_a_drums.onnx',
|
79 |
+
'kuielab_b_vocals.onnx',
|
80 |
+
'kuielab_b_other.onnx',
|
81 |
'kuielab_b_bass.onnx',
|
82 |
'kuielab_b_drums.onnx',
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
]
|
84 |
+
|
85 |
#========================#
|
86 |
# VR-ARCH Models #
|
87 |
#========================#
|
88 |
+
vrarch_models = [
|
89 |
'1_HP-UVR.pth',
|
90 |
'2_HP-UVR.pth',
|
91 |
'3_HP-Vocal-UVR.pth',
|
|
|
103 |
'15_SP-UVR-MID-44100-1.pth',
|
104 |
'16_SP-UVR-MID-44100-2.pth',
|
105 |
'17_HP-Wind_Inst-UVR.pth',
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
'UVR-De-Echo-Aggressive.pth',
|
107 |
'UVR-De-Echo-Normal.pth',
|
108 |
+
'UVR-DeEcho-DeReverb.pth',
|
109 |
'UVR-DeNoise-Lite.pth',
|
110 |
'UVR-DeNoise.pth',
|
111 |
+
'UVR-BVE-4B_SN-44100-1.pth',
|
112 |
+
'MGM_HIGHEND_v4.pth',
|
113 |
+
'MGM_LOWEND_A_v4.pth',
|
114 |
+
'MGM_LOWEND_B_v4.pth',
|
115 |
+
'MGM_MAIN_v4.pth',
|
116 |
]
|
117 |
+
|
118 |
#=======================#
|
119 |
# DEMUCS Models #
|
120 |
#=======================#
|
121 |
+
demucs_models = [
|
|
|
|
|
|
|
122 |
'htdemucs_ft.yaml',
|
123 |
+
'htdemucs_6s.yaml',
|
124 |
+
'htdemucs.yaml',
|
125 |
+
'hdemucs_mmi.yaml',
|
126 |
+
]
|
127 |
+
|
128 |
+
output_format = [
|
129 |
+
'wav',
|
130 |
+
'flac',
|
131 |
+
'mp3',
|
132 |
+
'ogg',
|
133 |
+
'opus',
|
134 |
+
'm4a',
|
135 |
+
'aiff',
|
136 |
+
'ac3'
|
137 |
]
|
138 |
|
139 |
+
found_files = []
|
140 |
+
logs = []
|
141 |
+
out_dir = "./outputs"
|
142 |
+
models_dir = "./models"
|
143 |
+
extensions = (".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3")
|
144 |
+
|
145 |
+
def download_audio(url, output_dir="ytdl"):
|
146 |
+
|
147 |
+
os.makedirs(output_dir, exist_ok=True)
|
148 |
+
|
149 |
+
ydl_opts = {
|
150 |
+
'format': 'bestaudio/best',
|
151 |
+
'postprocessors': [{
|
152 |
+
'key': 'FFmpegExtractAudio',
|
153 |
+
'preferredcodec': 'wav',
|
154 |
+
'preferredquality': '32',
|
155 |
+
}],
|
156 |
+
'outtmpl': os.path.join(output_dir, '%(title)s.%(ext)s'),
|
157 |
+
'postprocessor_args': [
|
158 |
+
'-acodec', 'pcm_f32le'
|
159 |
+
],
|
160 |
+
}
|
161 |
+
|
162 |
try:
|
163 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
164 |
+
info = ydl.extract_info(url, download=False)
|
165 |
+
video_title = info['title']
|
166 |
+
|
167 |
+
ydl.download([url])
|
168 |
+
|
169 |
+
file_path = os.path.join(output_dir, f"{video_title}.wav")
|
170 |
+
|
171 |
+
if os.path.exists(file_path):
|
172 |
+
return os.path.abspath(file_path)
|
173 |
+
else:
|
174 |
+
raise Exception("Something went wrong")
|
175 |
+
|
176 |
except Exception as e:
|
177 |
+
raise Exception(f"Error extracting audio with yt-dlp: {str(e)}")
|
|
|
178 |
|
179 |
+
@spaces.GPU(duration=60)
|
180 |
+
def roformer_separator(audio, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
|
181 |
base_name = os.path.splitext(os.path.basename(audio))[0]
|
182 |
+
roformer_model = roformer_models[model_key]
|
|
|
183 |
try:
|
|
|
184 |
separator = Separator(
|
185 |
log_level=logging.WARNING,
|
186 |
+
model_file_dir=models_dir,
|
187 |
output_dir=out_dir,
|
188 |
output_format=out_format,
|
189 |
+
use_autocast=use_autocast,
|
190 |
normalization_threshold=norm_thresh,
|
191 |
amplification_threshold=amp_thresh,
|
|
|
192 |
mdxc_params={
|
193 |
+
"segment_size": segment_size,
|
194 |
"override_model_segment_size": override_seg_size,
|
195 |
"batch_size": batch_size,
|
196 |
"overlap": overlap,
|
|
|
197 |
}
|
198 |
)
|
199 |
+
|
200 |
+
progress(0.2, desc="Loading model...")
|
201 |
+
separator.load_model(model_filename=roformer_model)
|
202 |
|
203 |
+
progress(0.7, desc="Separating audio...")
|
|
|
|
|
|
|
204 |
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
|
|
205 |
|
206 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
207 |
return stems[1], stems[0]
|
208 |
except Exception as e:
|
209 |
raise RuntimeError(f"Roformer separation failed: {e}") from e
|
210 |
|
211 |
+
@spaces.GPU(duration=60)
|
212 |
+
def mdxc_separator(audio, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
|
213 |
base_name = os.path.splitext(os.path.basename(audio))[0]
|
|
|
214 |
try:
|
|
|
215 |
separator = Separator(
|
216 |
log_level=logging.WARNING,
|
217 |
+
model_file_dir=models_dir,
|
218 |
output_dir=out_dir,
|
219 |
output_format=out_format,
|
220 |
+
use_autocast=use_autocast,
|
221 |
normalization_threshold=norm_thresh,
|
222 |
amplification_threshold=amp_thresh,
|
|
|
223 |
mdxc_params={
|
224 |
+
"segment_size": segment_size,
|
225 |
"override_model_segment_size": override_seg_size,
|
226 |
"batch_size": batch_size,
|
227 |
"overlap": overlap,
|
|
|
228 |
}
|
229 |
)
|
230 |
|
231 |
+
progress(0.2, desc="Loading model...")
|
232 |
separator.load_model(model_filename=model)
|
233 |
|
234 |
+
progress(0.7, desc="Separating audio...")
|
235 |
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
|
|
236 |
|
237 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
238 |
return stems[1], stems[0]
|
239 |
except Exception as e:
|
240 |
raise RuntimeError(f"MDX23C separation failed: {e}") from e
|
241 |
|
242 |
+
@spaces.GPU(duration=60)
|
243 |
+
def mdxnet_separator(audio, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
|
244 |
base_name = os.path.splitext(os.path.basename(audio))[0]
|
|
|
245 |
try:
|
|
|
246 |
separator = Separator(
|
247 |
log_level=logging.WARNING,
|
248 |
+
model_file_dir=models_dir,
|
249 |
output_dir=out_dir,
|
250 |
output_format=out_format,
|
251 |
+
use_autocast=use_autocast,
|
252 |
normalization_threshold=norm_thresh,
|
253 |
amplification_threshold=amp_thresh,
|
|
|
254 |
mdx_params={
|
255 |
"hop_length": hop_length,
|
256 |
+
"segment_size": segment_size,
|
257 |
"overlap": overlap,
|
258 |
"batch_size": batch_size,
|
259 |
"enable_denoise": denoise,
|
260 |
}
|
261 |
)
|
262 |
|
263 |
+
progress(0.2, desc="Loading model...")
|
264 |
separator.load_model(model_filename=model)
|
265 |
|
266 |
+
progress(0.7, desc="Separating audio...")
|
267 |
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
|
|
268 |
|
269 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
270 |
return stems[0], stems[1]
|
271 |
except Exception as e:
|
272 |
raise RuntimeError(f"MDX-NET separation failed: {e}") from e
|
273 |
|
274 |
+
@spaces.GPU(duration=60)
|
275 |
+
def vrarch_separator(audio, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
|
276 |
base_name = os.path.splitext(os.path.basename(audio))[0]
|
|
|
277 |
try:
|
|
|
278 |
separator = Separator(
|
279 |
log_level=logging.WARNING,
|
280 |
+
model_file_dir=models_dir,
|
281 |
output_dir=out_dir,
|
282 |
output_format=out_format,
|
283 |
+
use_autocast=use_autocast,
|
284 |
normalization_threshold=norm_thresh,
|
285 |
amplification_threshold=amp_thresh,
|
|
|
286 |
vr_params={
|
287 |
"batch_size": batch_size,
|
288 |
"window_size": window_size,
|
|
|
294 |
}
|
295 |
)
|
296 |
|
297 |
+
progress(0.2, desc="Loading model...")
|
298 |
separator.load_model(model_filename=model)
|
299 |
|
300 |
+
progress(0.7, desc="Separating audio...")
|
301 |
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
|
|
302 |
|
303 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
304 |
return stems[0], stems[1]
|
305 |
except Exception as e:
|
306 |
raise RuntimeError(f"VR ARCH separation failed: {e}") from e
|
307 |
|
308 |
+
@spaces.GPU(duration=60)
|
309 |
+
def demucs_separator(audio, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
|
310 |
+
base_name = os.path.splitext(os.path.basename(audio))[0]
|
311 |
try:
|
|
|
312 |
separator = Separator(
|
313 |
log_level=logging.WARNING,
|
314 |
+
model_file_dir=models_dir,
|
315 |
output_dir=out_dir,
|
316 |
output_format=out_format,
|
317 |
+
use_autocast=use_autocast,
|
318 |
normalization_threshold=norm_thresh,
|
319 |
amplification_threshold=amp_thresh,
|
|
|
320 |
demucs_params={
|
321 |
+
"batch_size": batch_size,
|
322 |
+
"segment_size": segment_size,
|
323 |
"shifts": shifts,
|
324 |
"overlap": overlap,
|
325 |
"segments_enabled": segments_enabled,
|
326 |
}
|
327 |
)
|
328 |
|
329 |
+
progress(0.2, desc="Loading model...")
|
330 |
separator.load_model(model_filename=model)
|
331 |
|
332 |
+
progress(0.7, desc="Separating audio...")
|
333 |
separation = separator.separate(audio)
|
|
|
334 |
|
335 |
stems = [os.path.join(out_dir, file_name) for file_name in separation]
|
336 |
|
|
|
347 |
else:
|
348 |
return gr.update(visible=False)
|
349 |
|
350 |
+
@spaces.GPU(duration=60)
|
351 |
+
def roformer_batch(path_input, path_output, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh):
|
352 |
+
found_files.clear()
|
353 |
+
logs.clear()
|
354 |
+
roformer_model = roformer_models[model_key]
|
355 |
|
356 |
+
for audio_files in os.listdir(path_input):
|
357 |
+
if audio_files.endswith(extensions):
|
358 |
+
found_files.append(audio_files)
|
359 |
+
total_files = len(found_files)
|
360 |
|
361 |
+
if total_files == 0:
|
362 |
+
logs.append("No valid audio files.")
|
363 |
+
yield "\n".join(logs)
|
364 |
+
else:
|
365 |
+
logs.append(f"{total_files} audio files found")
|
366 |
+
found_files.sort()
|
367 |
|
368 |
+
for audio_files in found_files:
|
369 |
+
file_path = os.path.join(path_input, audio_files)
|
370 |
+
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
371 |
+
try:
|
372 |
+
separator = Separator(
|
373 |
+
log_level=logging.WARNING,
|
374 |
+
model_file_dir=models_dir,
|
375 |
+
output_dir=path_output,
|
376 |
+
output_format=out_format,
|
377 |
+
use_autocast=use_autocast,
|
378 |
+
normalization_threshold=norm_thresh,
|
379 |
+
amplification_threshold=amp_thresh,
|
380 |
+
mdxc_params={
|
381 |
+
"segment_size": segment_size,
|
382 |
+
"override_model_segment_size": override_seg_size,
|
383 |
+
"batch_size": batch_size,
|
384 |
+
"overlap": overlap,
|
385 |
+
}
|
386 |
+
)
|
387 |
|
388 |
+
logs.append("Loading model...")
|
389 |
+
yield "\n".join(logs)
|
390 |
+
separator.load_model(model_filename=roformer_model)
|
391 |
|
392 |
+
logs.append(f"Separating file: {audio_files}")
|
393 |
+
yield "\n".join(logs)
|
394 |
+
separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
395 |
+
logs.append(f"File: {audio_files} separated!")
|
396 |
+
yield "\n".join(logs)
|
397 |
+
except Exception as e:
|
398 |
+
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
|
399 |
|
400 |
+
@spaces.GPU(duration=60)
|
401 |
+
def mdx23c_batch(path_input, path_output, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh):
|
402 |
+
found_files.clear()
|
403 |
+
logs.clear()
|
404 |
|
405 |
+
for audio_files in os.listdir(path_input):
|
406 |
+
if audio_files.endswith(extensions):
|
407 |
+
found_files.append(audio_files)
|
408 |
+
total_files = len(found_files)
|
409 |
+
|
410 |
+
if total_files == 0:
|
411 |
+
logs.append("No valid audio files.")
|
412 |
+
yield "\n".join(logs)
|
413 |
+
else:
|
414 |
+
logs.append(f"{total_files} audio files found")
|
415 |
+
found_files.sort()
|
416 |
+
|
417 |
+
for audio_files in found_files:
|
418 |
+
file_path = os.path.join(path_input, audio_files)
|
419 |
+
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
420 |
+
try:
|
421 |
+
separator = Separator(
|
422 |
+
log_level=logging.WARNING,
|
423 |
+
model_file_dir=models_dir,
|
424 |
+
output_dir=path_output,
|
425 |
+
output_format=out_format,
|
426 |
+
use_autocast=use_autocast,
|
427 |
+
normalization_threshold=norm_thresh,
|
428 |
+
amplification_threshold=amp_thresh,
|
429 |
+
mdxc_params={
|
430 |
+
"segment_size": segment_size,
|
431 |
+
"override_model_segment_size": override_seg_size,
|
432 |
+
"batch_size": batch_size,
|
433 |
+
"overlap": overlap,
|
434 |
+
}
|
435 |
+
)
|
436 |
+
|
437 |
+
logs.append("Loading model...")
|
438 |
+
yield "\n".join(logs)
|
439 |
+
separator.load_model(model_filename=model)
|
440 |
+
|
441 |
+
logs.append(f"Separating file: {audio_files}")
|
442 |
+
yield "\n".join(logs)
|
443 |
+
separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
444 |
+
logs.append(f"File: {audio_files} separated!")
|
445 |
+
yield "\n".join(logs)
|
446 |
+
except Exception as e:
|
447 |
+
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
|
448 |
+
|
449 |
+
@spaces.GPU(duration=60)
|
450 |
+
def mdxnet_batch(path_input, path_output, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh):
|
451 |
+
found_files.clear()
|
452 |
+
logs.clear()
|
453 |
+
|
454 |
+
for audio_files in os.listdir(path_input):
|
455 |
+
if audio_files.endswith(extensions):
|
456 |
+
found_files.append(audio_files)
|
457 |
+
total_files = len(found_files)
|
458 |
+
|
459 |
+
if total_files == 0:
|
460 |
+
logs.append("No valid audio files.")
|
461 |
+
yield "\n".join(logs)
|
462 |
+
else:
|
463 |
+
logs.append(f"{total_files} audio files found")
|
464 |
+
found_files.sort()
|
465 |
+
|
466 |
+
for audio_files in found_files:
|
467 |
+
file_path = os.path.join(path_input, audio_files)
|
468 |
+
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
469 |
+
try:
|
470 |
+
separator = Separator(
|
471 |
+
log_level=logging.WARNING,
|
472 |
+
model_file_dir=models_dir,
|
473 |
+
output_dir=path_output,
|
474 |
+
output_format=out_format,
|
475 |
+
use_autocast=use_autocast,
|
476 |
+
normalization_threshold=norm_thresh,
|
477 |
+
amplification_threshold=amp_thresh,
|
478 |
+
mdx_params={
|
479 |
+
"hop_length": hop_length,
|
480 |
+
"segment_size": segment_size,
|
481 |
+
"overlap": overlap,
|
482 |
+
"batch_size": batch_size,
|
483 |
+
"enable_denoise": denoise,
|
484 |
+
}
|
485 |
+
)
|
486 |
+
|
487 |
+
logs.append("Loading model...")
|
488 |
+
yield "\n".join(logs)
|
489 |
+
separator.load_model(model_filename=model)
|
490 |
+
|
491 |
+
logs.append(f"Separating file: {audio_files}")
|
492 |
+
yield "\n".join(logs)
|
493 |
+
separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
494 |
+
logs.append(f"File: {audio_files} separated!")
|
495 |
+
yield "\n".join(logs)
|
496 |
+
except Exception as e:
|
497 |
+
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
|
498 |
+
|
499 |
+
@spaces.GPU(duration=60)
|
500 |
+
def vrarch_batch(path_input, path_output, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh):
|
501 |
+
found_files.clear()
|
502 |
+
logs.clear()
|
503 |
+
|
504 |
+
for audio_files in os.listdir(path_input):
|
505 |
+
if audio_files.endswith(extensions):
|
506 |
+
found_files.append(audio_files)
|
507 |
+
total_files = len(found_files)
|
508 |
+
|
509 |
+
if total_files == 0:
|
510 |
+
logs.append("No valid audio files.")
|
511 |
+
yield "\n".join(logs)
|
512 |
+
else:
|
513 |
+
logs.append(f"{total_files} audio files found")
|
514 |
+
found_files.sort()
|
515 |
+
|
516 |
+
for audio_files in found_files:
|
517 |
+
file_path = os.path.join(path_input, audio_files)
|
518 |
+
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
519 |
+
try:
|
520 |
+
separator = Separator(
|
521 |
+
log_level=logging.WARNING,
|
522 |
+
model_file_dir=models_dir,
|
523 |
+
output_dir=path_output,
|
524 |
+
output_format=out_format,
|
525 |
+
use_autocast=use_autocast,
|
526 |
+
normalization_threshold=norm_thresh,
|
527 |
+
amplification_threshold=amp_thresh,
|
528 |
+
vr_params={
|
529 |
+
"batch_size": batch_size,
|
530 |
+
"window_size": window_size,
|
531 |
+
"aggression": aggression,
|
532 |
+
"enable_tta": tta,
|
533 |
+
"enable_post_process": post_process,
|
534 |
+
"post_process_threshold": post_process_threshold,
|
535 |
+
"high_end_process": high_end_process,
|
536 |
+
}
|
537 |
+
)
|
538 |
+
|
539 |
+
logs.append("Loading model...")
|
540 |
+
yield "\n".join(logs)
|
541 |
+
separator.load_model(model_filename=model)
|
542 |
+
|
543 |
+
logs.append(f"Separating file: {audio_files}")
|
544 |
+
yield "\n".join(logs)
|
545 |
+
separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
|
546 |
+
logs.append(f"File: {audio_files} separated!")
|
547 |
+
yield "\n".join(logs)
|
548 |
+
except Exception as e:
|
549 |
+
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
|
550 |
+
|
551 |
+
@spaces.GPU(duration=60)
|
552 |
+
def demucs_batch(path_input, path_output, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh):
|
553 |
+
found_files.clear()
|
554 |
+
logs.clear()
|
555 |
+
|
556 |
+
for audio_files in os.listdir(path_input):
|
557 |
+
if audio_files.endswith(extensions):
|
558 |
+
found_files.append(audio_files)
|
559 |
+
total_files = len(found_files)
|
560 |
+
|
561 |
+
if total_files == 0:
|
562 |
+
logs.append("No valid audio files.")
|
563 |
+
yield "\n".join(logs)
|
564 |
+
else:
|
565 |
+
logs.append(f"{total_files} audio files found")
|
566 |
+
found_files.sort()
|
567 |
+
|
568 |
+
for audio_files in found_files:
|
569 |
+
file_path = os.path.join(path_input, audio_files)
|
570 |
+
try:
|
571 |
+
separator = Separator(
|
572 |
+
log_level=logging.WARNING,
|
573 |
+
model_file_dir=models_dir,
|
574 |
+
output_dir=path_output,
|
575 |
+
output_format=out_format,
|
576 |
+
use_autocast=use_autocast,
|
577 |
+
normalization_threshold=norm_thresh,
|
578 |
+
amplification_threshold=amp_thresh,
|
579 |
+
demucs_params={
|
580 |
+
"batch_size": batch_size,
|
581 |
+
"segment_size": segment_size,
|
582 |
+
"shifts": shifts,
|
583 |
+
"overlap": overlap,
|
584 |
+
"segments_enabled": segments_enabled,
|
585 |
+
}
|
586 |
+
)
|
587 |
+
|
588 |
+
logs.append("Loading model...")
|
589 |
+
yield "\n".join(logs)
|
590 |
+
separator.load_model(model_filename=model)
|
591 |
+
|
592 |
+
logs.append(f"Separating file: {audio_files}")
|
593 |
+
yield "\n".join(logs)
|
594 |
+
separator.separate(file_path)
|
595 |
+
logs.append(f"File: {audio_files} separated!")
|
596 |
+
yield "\n".join(logs)
|
597 |
+
except Exception as e:
|
598 |
+
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
|
599 |
+
|
600 |
+
with gr.Blocks(theme ="hev832/applio", title = "🎵 Audio Separator UI 🎵") as app:
|
601 |
+
with gr.Row():
|
602 |
+
gr.Markdown("<h1> 🎵 Audio Separator UI 🎵 </h1>")
|
603 |
+
with gr.Row():
|
604 |
+
with gr.Tabs():
|
605 |
+
with gr.TabItem("BS/Mel Roformer"):
|
606 |
with gr.Row():
|
607 |
+
roformer_model = gr.Dropdown(
|
608 |
+
label = "Select the model",
|
609 |
+
choices = list(roformer_models.keys()),
|
610 |
+
value = lambda : None,
|
611 |
+
interactive = True
|
612 |
+
)
|
613 |
+
roformer_output_format = gr.Dropdown(
|
614 |
+
label = "Select the output format",
|
615 |
+
choices = output_format,
|
616 |
+
value = lambda : None,
|
617 |
+
interactive = True
|
618 |
+
)
|
619 |
+
with gr.Accordion("Advanced settings"), open = False):
|
620 |
+
with gr.Group():
|
621 |
+
with gr.Row():
|
622 |
+
roformer_segment_size = gr.Slider(
|
623 |
+
label = "Segment size",
|
624 |
+
info = "Larger consumes more resources, but may give better results",
|
625 |
+
minimum = 32,
|
626 |
+
maximum = 4000,
|
627 |
+
step = 32,
|
628 |
+
value = 256,
|
629 |
+
interactive = True
|
630 |
+
)
|
631 |
+
roformer_override_segment_size = gr.Checkbox(
|
632 |
+
label = "Override segment size",
|
633 |
+
info = "Override model default segment size instead of using the model default value",
|
634 |
+
value = False,
|
635 |
+
interactive = True
|
636 |
+
)
|
637 |
+
with gr.Row():
|
638 |
+
roformer_overlap = gr.Slider(
|
639 |
+
label = "Overlap",
|
640 |
+
info = "Amount of overlap between prediction windows",
|
641 |
+
minimum = 2,
|
642 |
+
maximum = 10,
|
643 |
+
step = 1,
|
644 |
+
value = 8,
|
645 |
+
interactive = True
|
646 |
+
)
|
647 |
+
roformer_batch_size = gr.Slider(
|
648 |
+
label = "Batch size",
|
649 |
+
info = "Larger consumes more RAM but may process slightly faster",
|
650 |
+
minimum = 1,
|
651 |
+
maximum = 16,
|
652 |
+
step = 1,
|
653 |
+
value = 1,
|
654 |
+
interactive = True
|
655 |
+
)
|
656 |
+
with gr.Row():
|
657 |
+
roformer_normalization_threshold = gr.Slider(
|
658 |
+
label = "Normalization threshold",
|
659 |
+
info = "The threshold for audio normalization",
|
660 |
+
minimum = 0.1,
|
661 |
+
maximum = 1,
|
662 |
+
step = 0.1,
|
663 |
+
value = 0.1,
|
664 |
+
interactive = True
|
665 |
+
)
|
666 |
+
roformer_amplification_threshold = gr.Slider(
|
667 |
+
label = "Amplification threshold",
|
668 |
+
info = "The threshold for audio amplification",
|
669 |
+
minimum = 0.1,
|
670 |
+
maximum = 1,
|
671 |
+
step = 0.1,
|
672 |
+
value = 0.1,
|
673 |
+
interactive = True
|
674 |
+
)
|
675 |
with gr.Row():
|
676 |
+
roformer_audio = gr.Audio(
|
677 |
+
label = "Input audio",
|
678 |
+
type = "filepath",
|
679 |
+
interactive = True
|
680 |
+
)
|
681 |
+
with gr.Accordion("Separation by link", open = False):
|
682 |
+
with gr.Row():
|
683 |
+
roformer_link = gr.Textbox(
|
684 |
+
label = _("Link"),
|
685 |
+
placeholder = "Paste the link here",
|
686 |
+
interactive = True
|
687 |
+
)
|
688 |
+
with gr.Row():
|
689 |
+
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
|
690 |
+
with gr.Row():
|
691 |
+
roformer_download_button = gr.Button(
|
692 |
+
"Download!",
|
693 |
+
variant = "primary"
|
694 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
|
696 |
+
roformer_download_button.click(download_audio, [roformer_link], [roformer_audio])
|
697 |
+
|
698 |
+
|
699 |
+
|
700 |
+
|
701 |
+
with gr.Row():
|
702 |
+
roformer_button = gr.Button(_("Separate!"), variant = "primary")
|
703 |
+
with gr.Row():
|
704 |
+
roformer_stem1 = gr.Audio(
|
705 |
+
show_download_button = True,
|
706 |
+
interactive = False,
|
707 |
+
label = _("Stem 1"),
|
708 |
+
type = "filepath"
|
709 |
+
)
|
710 |
+
roformer_stem2 = gr.Audio(
|
711 |
+
show_download_button = True,
|
712 |
+
interactive = False,
|
713 |
+
label = _("Stem 2"),
|
714 |
+
type = "filepath"
|
715 |
+
)
|
716 |
+
|
717 |
+
roformer_button.click(roformer_separator, [roformer_audio, roformer_model, roformer_output_format, roformer_segment_size, roformer_override_segment_size, roformer_overlap, roformer_batch_size, roformer_normalization_threshold, roformer_amplification_threshold], [roformer_stem1, roformer_stem2])
|
718 |
+
|
719 |
+
with gr.TabItem("MDX23C"):
|
720 |
+
with gr.Row():
|
721 |
+
mdx23c_model = gr.Dropdown(
|
722 |
+
label = _("Select the model"),
|
723 |
+
choices = mdx23c_models,
|
724 |
+
value = lambda : None,
|
725 |
+
interactive = True
|
726 |
+
)
|
727 |
+
mdx23c_output_format = gr.Dropdown(
|
728 |
+
label = _("Select the output format"),
|
729 |
+
choices = output_format,
|
730 |
+
value = lambda : None,
|
731 |
+
interactive = True
|
732 |
+
)
|
733 |
+
with gr.Accordion(_("Advanced settings"), open = False):
|
734 |
+
with gr.Group():
|
735 |
+
with gr.Row():
|
736 |
+
mdx23c_segment_size = gr.Slider(
|
737 |
+
minimum = 32,
|
738 |
+
maximum = 4000,
|
739 |
+
step = 32,
|
740 |
+
label = _("Segment size"),
|
741 |
+
info = _("Larger consumes more resources, but may give better results"),
|
742 |
+
value = 256,
|
743 |
+
interactive = True
|
744 |
+
)
|
745 |
+
mdx23c_override_segment_size = gr.Checkbox(
|
746 |
+
label = _("Override segment size"),
|
747 |
+
info = _("Override model default segment size instead of using the model default value"),
|
748 |
+
value = False,
|
749 |
+
interactive = True
|
750 |
+
)
|
751 |
+
with gr.Row():
|
752 |
+
mdx23c_overlap = gr.Slider(
|
753 |
+
minimum = 2,
|
754 |
+
maximum = 50,
|
755 |
+
step = 1,
|
756 |
+
label = _("Overlap"),
|
757 |
+
info = _("Amount of overlap between prediction windows"),
|
758 |
+
value = 8,
|
759 |
+
interactive = True
|
760 |
+
)
|
761 |
+
mdx23c_batch_size = gr.Slider(
|
762 |
+
label = _("Batch size"),
|
763 |
+
info = _("Larger consumes more RAM but may process slightly faster"),
|
764 |
+
minimum = 1,
|
765 |
+
maximum = 16,
|
766 |
+
step = 1,
|
767 |
+
value = 1,
|
768 |
+
interactive = True
|
769 |
+
)
|
770 |
+
with gr.Row():
|
771 |
+
mdx23c_normalization_threshold = gr.Slider(
|
772 |
+
label = _("Normalization threshold"),
|
773 |
+
info = _("The threshold for audio normalization"),
|
774 |
+
minimum = 0.1,
|
775 |
+
maximum = 1,
|
776 |
+
step = 0.1,
|
777 |
+
value = 0.1,
|
778 |
+
interactive = True
|
779 |
+
)
|
780 |
+
mdx23c_amplification_threshold = gr.Slider(
|
781 |
+
label = _("Amplification threshold"),
|
782 |
+
info = _("The threshold for audio amplification"),
|
783 |
+
minimum = 0.1,
|
784 |
+
maximum = 1,
|
785 |
+
step = 0.1,
|
786 |
+
value = 0.1,
|
787 |
+
interactive = True
|
788 |
+
)
|
789 |
+
with gr.Row():
|
790 |
+
mdx23c_audio = gr.Audio(
|
791 |
+
label = _("Input audio"),
|
792 |
+
type = "filepath",
|
793 |
+
interactive = True
|
794 |
+
)
|
795 |
+
with gr.Accordion(_("Separation by link"), open = False):
|
796 |
+
with gr.Row():
|
797 |
+
mdx23c_link = gr.Textbox(
|
798 |
+
label = _("Link"),
|
799 |
+
placeholder = _("Paste the link here"),
|
800 |
+
interactive = True
|
801 |
+
)
|
802 |
+
with gr.Row():
|
803 |
+
gr.Markdown(_("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)"))
|
804 |
+
with gr.Row():
|
805 |
+
mdx23c_download_button = gr.Button(
|
806 |
+
_("Download!"),
|
807 |
+
variant = "primary"
|
808 |
+
)
|
809 |
+
|
810 |
+
mdx23c_download_button.click(download_audio, [mdx23c_link], [mdx23c_audio])
|
811 |
+
|
812 |
+
|
813 |
+
with gr.Row():
|
814 |
+
mdx23c_button = gr.Button(_("Separate!"), variant = "primary")
|
815 |
+
with gr.Row():
|
816 |
+
mdx23c_stem1 = gr.Audio(
|
817 |
+
show_download_button = True,
|
818 |
+
interactive = False,
|
819 |
+
label = _("Stem 1"),
|
820 |
+
type = "filepath"
|
821 |
+
)
|
822 |
+
mdx23c_stem2 = gr.Audio(
|
823 |
+
show_download_button = True,
|
824 |
+
interactive = False,
|
825 |
+
label = _("Stem 2"),
|
826 |
+
type = "filepath"
|
827 |
+
)
|
828 |
+
|
829 |
+
mdx23c_button.click(mdxc_separator, [mdx23c_audio, mdx23c_model, mdx23c_output_format, mdx23c_segment_size, mdx23c_override_segment_size, mdx23c_overlap, mdx23c_batch_size, mdx23c_normalization_threshold, mdx23c_amplification_threshold], [mdx23c_stem1, mdx23c_stem2])
|
830 |
+
|
831 |
+
with gr.TabItem("MDX-NET"):
|
832 |
+
with gr.Row():
|
833 |
+
mdxnet_model = gr.Dropdown(
|
834 |
+
label = _("Select the model"),
|
835 |
+
choices = mdxnet_models,
|
836 |
+
value = lambda : None,
|
837 |
+
interactive = True
|
838 |
+
)
|
839 |
+
mdxnet_output_format = gr.Dropdown(
|
840 |
+
label = _("Select the output format"),
|
841 |
+
choices = output_format,
|
842 |
+
value = lambda : None,
|
843 |
+
interactive = True
|
844 |
+
)
|
845 |
+
with gr.Accordion(_("Advanced settings"), open = False):
|
846 |
+
with gr.Group():
|
847 |
+
with gr.Row():
|
848 |
+
mdxnet_hop_length = gr.Slider(
|
849 |
+
label = _("Hop length"),
|
850 |
+
info = _("Usually called stride in neural networks; only change if you know what you're doing"),
|
851 |
+
minimum = 32,
|
852 |
+
maximum = 2048,
|
853 |
+
step = 32,
|
854 |
+
value = 1024,
|
855 |
+
interactive = True
|
856 |
+
)
|
857 |
+
mdxnet_segment_size = gr.Slider(
|
858 |
+
minimum = 32,
|
859 |
+
maximum = 4000,
|
860 |
+
step = 32,
|
861 |
+
label = _("Segment size"),
|
862 |
+
info = _("Larger consumes more resources, but may give better results"),
|
863 |
+
value = 256,
|
864 |
+
interactive = True
|
865 |
+
)
|
866 |
+
mdxnet_denoise = gr.Checkbox(
|
867 |
+
label = _("Denoise"),
|
868 |
+
info = _("Enable denoising during separation"),
|
869 |
+
value = True,
|
870 |
+
interactive = True
|
871 |
+
)
|
872 |
+
with gr.Row():
|
873 |
+
mdxnet_overlap = gr.Slider(
|
874 |
+
label = _("Overlap"),
|
875 |
+
info = _("Amount of overlap between prediction windows"),
|
876 |
+
minimum = 0.001,
|
877 |
+
maximum = 0.999,
|
878 |
+
step = 0.001,
|
879 |
+
value = 0.25,
|
880 |
+
interactive = True
|
881 |
+
)
|
882 |
+
mdxnet_batch_size = gr.Slider(
|
883 |
+
label = _("Batch size"),
|
884 |
+
info = _("Larger consumes more RAM but may process slightly faster"),
|
885 |
+
minimum = 1,
|
886 |
+
maximum = 16,
|
887 |
+
step = 1,
|
888 |
+
value = 1,
|
889 |
+
interactive = True
|
890 |
+
)
|
891 |
+
with gr.Row():
|
892 |
+
mdxnet_normalization_threshold = gr.Slider(
|
893 |
+
label = _("Normalization threshold"),
|
894 |
+
info = _("The threshold for audio normalization"),
|
895 |
+
minimum = 0.1,
|
896 |
+
maximum = 1,
|
897 |
+
step = 0.1,
|
898 |
+
value = 0.1,
|
899 |
+
interactive = True
|
900 |
+
)
|
901 |
+
mdxnet_amplification_threshold = gr.Slider(
|
902 |
+
label = _("Amplification threshold"),
|
903 |
+
info = _("The threshold for audio amplification"),
|
904 |
+
minimum = 0.1,
|
905 |
+
maximum = 1,
|
906 |
+
step = 0.1,
|
907 |
+
value = 0.1,
|
908 |
+
interactive = True
|
909 |
+
)
|
910 |
+
with gr.Row():
|
911 |
+
mdxnet_audio = gr.Audio(
|
912 |
+
label = _("Input audio"),
|
913 |
+
type = "filepath",
|
914 |
+
interactive = True
|
915 |
+
)
|
916 |
+
with gr.Accordion(_("Separation by link"), open = False):
|
917 |
+
with gr.Row():
|
918 |
+
mdxnet_link = gr.Textbox(
|
919 |
+
label = _("Link"),
|
920 |
+
placeholder = _("Paste the link here"),
|
921 |
+
interactive = True
|
922 |
+
)
|
923 |
+
with gr.Row():
|
924 |
+
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
|
925 |
+
with gr.Row():
|
926 |
+
mdxnet_download_button = gr.Button(
|
927 |
+
"Download!",
|
928 |
+
variant = "primary"
|
929 |
+
)
|
930 |
+
|
931 |
+
mdxnet_download_button.click(download_audio, [mdxnet_link], [mdxnet_audio])
|
932 |
+
|
933 |
+
|
934 |
+
with gr.Row():
|
935 |
+
mdxnet_button = gr.Button("Separate!", variant = "primary")
|
936 |
+
with gr.Row():
|
937 |
+
mdxnet_stem1 = gr.Audio(
|
938 |
+
show_download_button = True,
|
939 |
+
interactive = False,
|
940 |
+
label = "Stem 1",
|
941 |
+
type = "filepath"
|
942 |
+
)
|
943 |
+
mdxnet_stem2 = gr.Audio(
|
944 |
+
show_download_button = True,
|
945 |
+
interactive = False,
|
946 |
+
label = "Stem 2",
|
947 |
+
type = "filepath"
|
948 |
+
)
|
949 |
+
|
950 |
+
mdxnet_button.click(mdxnet_separator, [mdxnet_audio, mdxnet_model, mdxnet_output_format, mdxnet_hop_length, mdxnet_segment_size, mdxnet_denoise, mdxnet_overlap, mdxnet_batch_size, mdxnet_normalization_threshold, mdxnet_amplification_threshold], [mdxnet_stem1, mdxnet_stem2])
|
951 |
+
|
952 |
+
with gr.TabItem("VR ARCH"):
|
953 |
+
with gr.Row():
|
954 |
+
vrarch_model = gr.Dropdown(
|
955 |
+
label = "Select the model",
|
956 |
+
choices = vrarch_models,
|
957 |
+
value = lambda : None,
|
958 |
+
interactive = True
|
959 |
+
)
|
960 |
+
vrarch_output_format = gr.Dropdown(
|
961 |
+
label = "Select the output format",
|
962 |
+
choices = output_format,
|
963 |
+
value = lambda : None,
|
964 |
+
interactive = True
|
965 |
+
)
|
966 |
+
with gr.Accordion("Advanced settings", open = False):
|
967 |
+
with gr.Group():
|
968 |
+
with gr.Row():
|
969 |
+
vrarch_window_size = gr.Slider(
|
970 |
+
label = _("Window size"),
|
971 |
+
info = _("Balance quality and speed. 1024 = fast but lower, 320 = slower but better quality"),
|
972 |
+
minimum=320,
|
973 |
+
maximum=1024,
|
974 |
+
step=32,
|
975 |
+
value = 512,
|
976 |
+
interactive = True
|
977 |
+
)
|
978 |
+
vrarch_agression = gr.Slider(
|
979 |
+
minimum = 1,
|
980 |
+
maximum = 50,
|
981 |
+
step = 1,
|
982 |
+
label = "Agression",
|
983 |
+
info = "Intensity of primary stem extraction",
|
984 |
+
value = 5,
|
985 |
+
interactive = True
|
986 |
+
)
|
987 |
+
vrarch_tta = gr.Checkbox(
|
988 |
+
label = "TTA",
|
989 |
+
info = "Enable Test-Time-Augmentation; slow but improves quality",
|
990 |
+
value = True,
|
991 |
+
visible = True,
|
992 |
+
interactive = True
|
993 |
+
)
|
994 |
+
with gr.Row():
|
995 |
+
vrarch_post_process = gr.Checkbox(
|
996 |
+
label = "Post process",
|
997 |
+
info = "Identify leftover artifacts within vocal output; may improve separation for some songs",
|
998 |
+
value = False,
|
999 |
+
visible = True,
|
1000 |
+
interactive = True
|
1001 |
+
)
|
1002 |
+
vrarch_post_process_threshold = gr.Slider(
|
1003 |
+
label = "Post process threshold",
|
1004 |
+
info = "Threshold for post-processing",
|
1005 |
+
minimum = 0.1,
|
1006 |
+
maximum = 0.3,
|
1007 |
+
step = 0.1,
|
1008 |
+
value = 0.2,
|
1009 |
+
interactive = True
|
1010 |
+
)
|
1011 |
+
with gr.Row():
|
1012 |
+
vrarch_high_end_process = gr.Checkbox(
|
1013 |
+
label = "High end process",
|
1014 |
+
info = "Mirror the missing frequency range of the output",
|
1015 |
+
value = False,
|
1016 |
+
visible = True,
|
1017 |
+
interactive = True,
|
1018 |
+
)
|
1019 |
+
vrarch_batch_size = gr.Slider(
|
1020 |
+
label = "Batch size",
|
1021 |
+
info = "Larger consumes more RAM but may process slightly faster",
|
1022 |
+
minimum = 1,
|
1023 |
+
maximum = 16,
|
1024 |
+
step = 1,
|
1025 |
+
value = 1,
|
1026 |
+
interactive = True
|
1027 |
+
)
|
1028 |
+
with gr.Row():
|
1029 |
+
vrarch_normalization_threshold = gr.Slider(
|
1030 |
+
label = "Normalization threshold",
|
1031 |
+
info = "The threshold for audio normalization",
|
1032 |
+
minimum = 0.1,
|
1033 |
+
maximum = 1,
|
1034 |
+
step = 0.1,
|
1035 |
+
value = 0.1,
|
1036 |
+
interactive = True
|
1037 |
+
)
|
1038 |
+
vrarch_amplification_threshold = gr.Slider(
|
1039 |
+
label = "Amplification threshold",
|
1040 |
+
info = "The threshold for audio amplification",
|
1041 |
+
minimum = 0.1,
|
1042 |
+
maximum = 1,
|
1043 |
+
step = 0.1,
|
1044 |
+
value = 0.1,
|
1045 |
+
interactive = True
|
1046 |
+
)
|
1047 |
+
with gr.Row():
|
1048 |
+
vrarch_audio = gr.Audio(
|
1049 |
+
label = "Input audio",
|
1050 |
+
type = "filepath",
|
1051 |
+
interactive = True
|
1052 |
+
)
|
1053 |
+
with gr.Accordion("Separation by link"), open = False):
|
1054 |
+
with gr.Row():
|
1055 |
+
vrarch_link = gr.Textbox(
|
1056 |
+
label = "Link",
|
1057 |
+
placeholder = _("Paste the link here"),
|
1058 |
+
interactive = True
|
1059 |
+
)
|
1060 |
+
with gr.Row():
|
1061 |
+
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
|
1062 |
+
with gr.Row():
|
1063 |
+
vrarch_download_button = gr.Button(
|
1064 |
+
"Download!",
|
1065 |
+
variant = "primary"
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
vrarch_download_button.click(download_audio, [vrarch_link], [vrarch_audio])
|
1069 |
|
1070 |
+
|
1071 |
+
with gr.Row():
|
1072 |
+
vrarch_button = gr.Button("Separate!", variant = "primary")
|
1073 |
+
with gr.Row():
|
1074 |
+
vrarch_stem1 = gr.Audio(
|
1075 |
+
show_download_button = True,
|
1076 |
+
interactive = False,
|
1077 |
+
type = "filepath",
|
1078 |
+
label = "Stem 1"
|
1079 |
+
)
|
1080 |
+
vrarch_stem2 = gr.Audio(
|
1081 |
+
show_download_button = True,
|
1082 |
+
interactive = False,
|
1083 |
+
type = "filepath",
|
1084 |
+
label = "Stem 2"
|
1085 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1086 |
|
1087 |
+
vrarch_button.click(vrarch_separator, [vrarch_audio, vrarch_model, vrarch_output_format, vrarch_window_size, vrarch_agression, vrarch_tta, vrarch_post_process, vrarch_post_process_threshold, vrarch_high_end_process, vrarch_batch_size, vrarch_normalization_threshold, vrarch_amplification_threshold], [vrarch_stem1, vrarch_stem2])
|
1088 |
+
|
1089 |
+
with gr.TabItem("Demucs"):
|
1090 |
+
with gr.Row():
|
1091 |
+
demucs_model = gr.Dropdown(
|
1092 |
+
label = "Select the model",
|
1093 |
+
choices = demucs_models,
|
1094 |
+
value = lambda : None,
|
1095 |
+
interactive = True
|
1096 |
+
)
|
1097 |
+
demucs_output_format = gr.Dropdown(
|
1098 |
+
label = "Select the output format",
|
1099 |
+
choices = output_format,
|
1100 |
+
value = lambda : None,
|
1101 |
+
interactive = True
|
1102 |
+
)
|
1103 |
+
with gr.Accordion("Advanced settings", open = False):
|
1104 |
+
with gr.Group():
|
1105 |
+
with gr.Row():
|
1106 |
+
demucs_shifts = gr.Slider(
|
1107 |
+
label = "Shifts",
|
1108 |
+
info = "Number of predictions with random shifts, higher = slower but better quality",
|
1109 |
+
minimum = 1,
|
1110 |
+
maximum = 20,
|
1111 |
+
step = 1,
|
1112 |
+
value = 2,
|
1113 |
+
interactive = True
|
1114 |
+
)
|
1115 |
+
demucs_segment_size = gr.Slider(
|
1116 |
+
label = "Segment size",
|
1117 |
+
info = "Size of segments into which the audio is split. Higher = slower but better quality",
|
1118 |
+
minimum = 1,
|
1119 |
+
maximum = 100,
|
1120 |
+
step = 1,
|
1121 |
+
value = 40,
|
1122 |
+
interactive = True
|
1123 |
+
)
|
1124 |
+
demucs_segments_enabled = gr.Checkbox(
|
1125 |
+
label = "Segment-wise processing",
|
1126 |
+
info = "Enable segment-wise processing",
|
1127 |
+
value = True,
|
1128 |
+
interactive = True
|
1129 |
+
)
|
1130 |
+
with gr.Row():
|
1131 |
+
demucs_overlap = gr.Slider(
|
1132 |
+
label = "Overlap",
|
1133 |
+
info = "Overlap between prediction windows. Higher = slower but better quality",
|
1134 |
+
minimum=0.001,
|
1135 |
+
maximum=0.999,
|
1136 |
+
step=0.001,
|
1137 |
+
value = 0.25,
|
1138 |
+
interactive = True
|
1139 |
+
)
|
1140 |
+
demucs_batch_size = gr.Slider(
|
1141 |
+
label = "Batch size",
|
1142 |
+
info = "Larger consumes more RAM but may process slightly faster",
|
1143 |
+
minimum = 1,
|
1144 |
+
maximum = 16,
|
1145 |
+
step = 1,
|
1146 |
+
value = 1,
|
1147 |
+
interactive = True
|
1148 |
+
)
|
1149 |
+
with gr.Row():
|
1150 |
+
demucs_normalization_threshold = gr.Slider(
|
1151 |
+
label = "Normalization threshold",
|
1152 |
+
info = "The threshold for audio normalization",
|
1153 |
+
minimum = 0.1,
|
1154 |
+
maximum = 1,
|
1155 |
+
step = 0.1,
|
1156 |
+
value = 0.1,
|
1157 |
+
interactive = True
|
1158 |
+
)
|
1159 |
+
demucs_amplification_threshold = gr.Slider(
|
1160 |
+
label = "Amplification threshold",
|
1161 |
+
info = "The threshold for audio amplification",
|
1162 |
+
minimum = 0.1,
|
1163 |
+
maximum = 1,
|
1164 |
+
step = 0.1,
|
1165 |
+
value = 0.1,
|
1166 |
+
interactive = True
|
1167 |
+
)
|
1168 |
+
with gr.Row():
|
1169 |
+
demucs_audio = gr.Audio(
|
1170 |
+
label = "Input audio",
|
1171 |
+
type = "filepath",
|
1172 |
+
interactive = True
|
1173 |
+
)
|
1174 |
+
with gr.Accordion("Separation by link", open = False):
|
1175 |
+
with gr.Row():
|
1176 |
+
demucs_link = gr.Textbox(
|
1177 |
+
label = "Link",
|
1178 |
+
placeholder = "Paste the link here",
|
1179 |
+
interactive = True
|
1180 |
+
)
|
1181 |
+
with gr.Row():
|
1182 |
+
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
|
1183 |
+
with gr.Row():
|
1184 |
+
demucs_download_button = gr.Button(
|
1185 |
+
"Download!",
|
1186 |
+
variant = "primary"
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
demucs_download_button.click(download_audio, [demucs_link], [demucs_audio])
|
1190 |
+
|
1191 |
+
|
1192 |
+
with gr.Row():
|
1193 |
+
demucs_bath_button = gr.Button("Separate!", variant = "primary")
|
1194 |
+
with gr.Row():
|
1195 |
+
demucs_info = gr.Textbox(
|
1196 |
+
label = "Output information",
|
1197 |
+
interactive = False
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
|
1201 |
+
with gr.Row():
|
1202 |
+
demucs_button = gr.Button("Separate!"), variant = "primary")
|
1203 |
+
with gr.Row():
|
1204 |
+
demucs_stem1 = gr.Audio(
|
1205 |
+
show_download_button = True,
|
1206 |
+
interactive = False,
|
1207 |
+
type = "filepath",
|
1208 |
+
label = "Stem 1"
|
1209 |
+
)
|
1210 |
+
demucs_stem2 = gr.Audio(
|
1211 |
+
show_download_button = True,
|
1212 |
+
interactive = False,
|
1213 |
+
type = "filepath",
|
1214 |
+
label = "Stem 2"
|
1215 |
+
)
|
1216 |
+
with gr.Row():
|
1217 |
+
demucs_stem3 = gr.Audio(
|
1218 |
+
show_download_button = True,
|
1219 |
+
interactive = False,
|
1220 |
+
type = "filepath",
|
1221 |
+
label = "Stem 3"
|
1222 |
+
)
|
1223 |
+
demucs_stem4 = gr.Audio(
|
1224 |
+
show_download_button = True,
|
1225 |
+
interactive = False,
|
1226 |
+
type = "filepath",
|
1227 |
+
label = "Stem 4"
|
1228 |
+
)
|
1229 |
+
with gr.Row(visible=False) as stem6:
|
1230 |
+
demucs_stem5 = gr.Audio(
|
1231 |
+
show_download_button = True,
|
1232 |
+
interactive = False,
|
1233 |
+
type = "filepath",
|
1234 |
+
label = "Stem 5"
|
1235 |
+
)
|
1236 |
+
demucs_stem6 = gr.Audio(
|
1237 |
+
show_download_button = True,
|
1238 |
+
interactive = False,
|
1239 |
+
type = "filepath",
|
1240 |
+
label = "Stem 6"
|
1241 |
+
)
|
1242 |
+
|
1243 |
+
demucs_model.change(update_stems, inputs=[demucs_model], outputs=stem6)
|
1244 |
+
|
1245 |
+
demucs_button.click(demucs_separator, [demucs_audio, demucs_model, demucs_output_format, demucs_shifts, demucs_segment_size, demucs_segments_enabled, demucs_overlap, demucs_batch_size, demucs_normalization_threshold, demucs_amplification_threshold], [demucs_stem1, demucs_stem2, demucs_stem3, demucs_stem4, demucs_stem5, demucs_stem6])
|
1246 |
+
|
1247 |
+
|
1248 |
+
with gr.TabItem("Credits"):
|
1249 |
+
gr.Markdown(
|
1250 |
+
"""
|
1251 |
+
audio separator UI created by **[Eddycrack 864] & [_noxty](https://huggingface.co/theNeofr).
|
1252 |
+
* python-audio-separator by [beveradb](https://github.com/beveradb).
|
1253 |
+
* Special thanks to [Ilaria](https://github.com/TheStingerX) for hosting this space and help.
|
1254 |
+
* Thanks to [Mikus](https://github.com/cappuch) for the help with the code.
|
1255 |
+
* Thanks to [Nick088](https://huggingface.co/Nick088) for the help to fix roformers.
|
1256 |
+
* Thanks to [yt_dlp](https://github.com/yt-dlp/yt-dlp) devs.
|
1257 |
+
* Separation by link source code and improvements by [Blane187](https://huggingface.co/Blane187).
|
1258 |
+
* Thanks to [ArisDev](https://github.com/aris-py) for porting UVR5 UI to Kaggle and improvements.
|
1259 |
+
* Thanks to [Bebra777228](https://github.com/Bebra777228)'s code for guiding me to improve my code.
|
1260 |
+
|
1261 |
+
|
1262 |
+
You can donate to the original UVR5 project here:
|
1263 |
+
[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/uvr5)
|
1264 |
+
"""
|
1265 |
+
)
|
1266 |
|
1267 |
+
app.queue()
|
1268 |
+
app.launch(share=True, debug=True)
|