import gradio as gr
import torchaudio
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
import tempfile
import os
import logging
import torch
from pydub import AudioSegment
import io
import random
import spaces
#logging.basicConfig(level=logging.DEBUG)
# Check if CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Placeholder Utility Functions
#def peak_normalize(y, target_peak=0.97):
# return target_peak * (y / np.max(np.abs(y)))
#
#def rms_normalize(y, target_rms=0.05):
# return y * (target_rms / np.sqrt(np.mean(y**2)))
def preprocess_audio(waveform):
waveform_np = waveform.cpu().squeeze().numpy() # Move to CPU before converting to NumPy
# processed_waveform_np = rms_normalize(peak_normalize(waveform_np))
return torch.from_numpy(waveform_np).unsqueeze(0).to(device)
@spaces.GPU(10)
def generate_drum_sample():
model = MusicGen.get_pretrained('pharoAIsanders420/micro-musicgen-jungle')
model.set_generation_params(duration=10)
wav = model.generate_unconditional(1).squeeze(0) # Reducing dimensions if necessary
filename_without_extension = f'jungle'
filename_with_extension = f'{filename_without_extension}.wav'
audio_write(filename_without_extension, wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)
return filename_with_extension
@spaces.GPU(10)
def continue_drum_sample(existing_audio_path):
# Load the existing audio
existing_audio, sr = torchaudio.load(existing_audio_path)
existing_audio = existing_audio.to(device) # Ensure the existing audio is on the GPU if available
# Set fixed durations
prompt_duration = 2 # seconds
output_duration = 10 # seconds
# Calculate the slice from the end of the current audio based on prompt_duration
num_samples = int(prompt_duration * sr)
if existing_audio.shape[1] < num_samples:
raise ValueError("The existing audio is too short for the specified prompt duration.")
start_sample = existing_audio.shape[1] - num_samples
prompt_waveform = existing_audio[..., start_sample:]
# Assume model is already loaded and configured to generate drum samples
model = MusicGen.get_pretrained('pharoAIsanders420/micro-musicgen-jungle')
model.set_generation_params(duration=output_duration)
# Generate continuation
output = model.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True)
output = output.to(device) # Ensure the new output is on the same device as existing_audio
if output.dim() == 3: # [batch_size, channels, samples]
output = output.squeeze(0) # Remove batch dimension if present
if output.dim() == 1:
output = output.unsqueeze(0) # Mono to [1, samples]
# Combine the new output with the existing audio
combined_audio = torch.cat((existing_audio, output), dim=1)
# Move combined audio to CPU for saving
combined_audio = combined_audio.cpu()
# Save combined audio to a new file
combined_file_path = f'./continued_jungle_{random.randint(1000, 9999)}.wav'
torchaudio.save(combined_file_path, combined_audio, sr)
return combined_file_path
@spaces.GPU(90)
def generate_music(wav_filename, prompt_duration, musicgen_model, output_duration):
# Load the audio from the passed file path
song, sr = torchaudio.load(wav_filename)
song = song.to(device)
# Load the model
model_name = musicgen_model.split(" ")[0]
model_continue = MusicGen.get_pretrained(model_name)
# Setting generation parameters
model_continue.set_generation_params(
use_sampling=True,
top_k=250,
top_p=0.0,
temperature=1.0,
duration=output_duration,
cfg_coef=3
)
prompt_waveform = song[..., :int(prompt_duration * sr)]
prompt_waveform = preprocess_audio(prompt_waveform)
output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True)
output = output.cpu() # Move the output tensor back to CPU
# Ensure the output tensor has at most 2 dimensions
if len(output.size()) > 2:
output = output.squeeze()
filename_without_extension = f'continued_music'
filename_with_extension = f'{filename_without_extension}.wav'
audio_write(filename_without_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True)
return filename_with_extension
@spaces.GPU(90)
def continue_music(input_audio_path, prompt_duration, musicgen_model, output_duration):
# Load the audio from the given file path
song, sr = torchaudio.load(input_audio_path)
song = song.to(device)
# Load the model and set generation parameters
model_continue = MusicGen.get_pretrained(musicgen_model.split(" ")[0])
model_continue.set_generation_params(
use_sampling=True,
top_k=250,
top_p=0.0,
temperature=1.0,
duration=output_duration,
cfg_coef=3
)
original_audio = AudioSegment.from_mp3(input_audio_path)
current_audio = original_audio
file_paths_for_cleanup = [] # List to track generated file paths for cleanup
for i in range(1):
# Calculate the slice from the end of the current audio based on prompt_duration
num_samples = int(prompt_duration * sr)
if current_audio.duration_seconds * 1000 < prompt_duration * 1000:
raise ValueError("The prompt_duration is longer than the current audio length.")
start_time = current_audio.duration_seconds * 1000 - prompt_duration * 1000
prompt_audio = current_audio[start_time:]
# Convert the prompt audio to a PyTorch tensor
prompt_bytes = prompt_audio.export(format="wav").read()
prompt_waveform, _ = torchaudio.load(io.BytesIO(prompt_bytes))
prompt_waveform = prompt_waveform.to(device)
# Prepare the audio slice for generation
prompt_waveform = preprocess_audio(prompt_waveform)
output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True)
output = output.cpu() # Move the output tensor back to CPU
if len(output.size()) > 2:
output = output.squeeze()
filename_without_extension = f'continue_{i}'
filename_with_extension = f'{filename_without_extension}.wav'
correct_filename_extension = f'{filename_without_extension}.wav.wav' # Apply the workaround for audio_write
audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True)
generated_audio_segment = AudioSegment.from_wav(correct_filename_extension)
# Replace the prompt portion with the generated audio
current_audio = current_audio[:start_time] + generated_audio_segment
file_paths_for_cleanup.append(correct_filename_extension) # Add to cleanup list
combined_audio_filename = f"combined_audio_{random.randint(1, 10000)}.mp3"
current_audio.export(combined_audio_filename, format="mp3")
# Clean up temporary files using the list of file paths
for file_path in file_paths_for_cleanup:
os.remove(file_path)
return combined_audio_filename
# Define the expandable sections
musicgen_micro_blurb = """
## musicgen_micro
musicgen micro is an experimental series of models by aaron abebe. they are incredibly fast, and extra insane. this one does goated jungle drums. we're very excited about these.
[ aaron's github](https://github.com/aaronabebe/)
[ musicgen-micro on huggingface](https://huggingface.co/pharoAIsanders420/micro-musicgen-jungle)
"""
musicgen_blurb = """
## musicgen
musicgen is a transformer-based music model that generates audio. It can also do something called a continuation, which was initially meant to extend musicgen outputs beyond 30 seconds. it can be used with any input audio to produce surprising results.
[ audiocraft github](https://github.com/facebookresearch/audiocraft)
visit https://thecollabagepatch.com/infinitepolo.mp3 or https://thecollabagepatch.com/audiocraft.mp3 to hear continuations in action.
see also https://youtube.com/@thecollabagepatch
"""
finetunes_blurb = """
## fine-tuned models
the fine-tunes hosted on the huggingface hub are provided collectively by the musicgen discord community. thanks to vanya, mj, hoenn, septicDNB and of course, lyra.
[ musicgen discord](https://discord.gg/93kX8rGZ)
[ fine-tuning colab notebook by lyra](https://colab.research.google.com/drive/13tbcC3A42KlaUZ21qvUXd25SFLu8WIvb)
"""
# Create the Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# the-slot-machine")
gr.Markdown("two ai's jamming. warning: outputs will be very strange, likely stupid, and possibly rad.")
gr.Markdown("this is an even weirder slot machine than the other one. on the left, you get to generate some state of the art lo-fi jungle drums at incredible speed thanks to aaron's new class of model, and if you want you can have it continue its own output. Then, you can either press the generate_music button to use the first 5 seconds as a prompt, or you can re-upload the audio into the continue_music section to have a fine-tune continue from the end of the jungle drum output, however long and insane it is. think of this as a very weird relay race and you're winning.")
with gr.Row():
with gr.Column():
generate_button = gr.Button("Generate Drum Sample")
drum_audio = gr.Audio(label="Generated Drum Sample", type="filepath", interactive=True, show_download_button=True)
continue_drum_sample_button = gr.Button("Continue Drum Sample")
with gr.Column():
prompt_duration = gr.Dropdown(label="Prompt Duration (seconds)", choices=list(range(1, 11)), value=5)
output_duration = gr.Slider(label="Output Duration (seconds)", minimum=10, maximum=30, step=1, value=20)
musicgen_model = gr.Dropdown(label="MusicGen Model", choices=[
"thepatch/vanya_ai_dnb_0.1 (small)",
"thepatch/budots_remix (small)",
"thepatch/PhonkV2 (small)",
"thepatch/bleeps-medium (medium)",
"thepatch/hoenn_lofi (large)",
], value="thepatch/vanya_ai_dnb_0.1 (small)")
generate_music_button = gr.Button("Generate Music")
output_audio = gr.Audio(label="Generated Music", type="filepath")
continue_button = gr.Button("Continue Generating Music")
continue_output_audio = gr.Audio(label="Continued Music Output", type="filepath")
# Connecting the components
generate_button.click(generate_drum_sample, outputs=[drum_audio])
continue_drum_sample_button.click(continue_drum_sample, inputs=[drum_audio], outputs=[drum_audio])
generate_music_button.click(generate_music, inputs=[drum_audio, prompt_duration, musicgen_model, output_duration], outputs=[output_audio])
continue_button.click(continue_music, inputs=[output_audio, prompt_duration, musicgen_model, output_duration], outputs=continue_output_audio)
iface.launch()