File size: 2,521 Bytes
2fa4776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import random
from dataclasses import dataclass, field

import torch
import torch.nn as nn
import torch.nn.functional as F

import threestudio
from threestudio.models.background.base import BaseBackground
from threestudio.models.networks import get_encoding, get_mlp
from threestudio.utils.ops import get_activation
from threestudio.utils.typing import *


@threestudio.register("neural-environment-map-background")
class NeuralEnvironmentMapBackground(BaseBackground):
    @dataclass
    class Config(BaseBackground.Config):
        n_output_dims: int = 3
        color_activation: str = "sigmoid"
        dir_encoding_config: dict = field(
            default_factory=lambda: {"otype": "SphericalHarmonics", "degree": 3}
        )
        mlp_network_config: dict = field(
            default_factory=lambda: {
                "otype": "VanillaMLP",
                "activation": "ReLU",
                "n_neurons": 16,
                "n_hidden_layers": 2,
            }
        )
        random_aug: bool = False
        random_aug_prob: float = 0.5
        eval_color: Optional[Tuple[float, float, float]] = None

    cfg: Config

    def configure(self) -> None:
        self.encoding = get_encoding(3, self.cfg.dir_encoding_config)
        self.network = get_mlp(
            self.encoding.n_output_dims,
            self.cfg.n_output_dims,
            self.cfg.mlp_network_config,
        )

    def forward(self, dirs: Float[Tensor, "B H W 3"]) -> Float[Tensor, "B H W Nc"]:
        if not self.training and self.cfg.eval_color is not None:
            return torch.ones(*dirs.shape[:-1], self.cfg.n_output_dims).to(
                dirs
            ) * torch.as_tensor(self.cfg.eval_color).to(dirs)
        # viewdirs must be normalized before passing to this function
        dirs = (dirs + 1.0) / 2.0  # (-1, 1) => (0, 1)
        dirs_embd = self.encoding(dirs.view(-1, 3))
        color = self.network(dirs_embd).view(*dirs.shape[:-1], self.cfg.n_output_dims)
        color = get_activation(self.cfg.color_activation)(color)
        if (
            self.training
            and self.cfg.random_aug
            and random.random() < self.cfg.random_aug_prob
        ):
            # use random background color with probability random_aug_prob
            color = color * 0 + (  # prevent checking for unused parameters in DDP
                torch.rand(dirs.shape[0], 1, 1, self.cfg.n_output_dims)
                .to(dirs)
                .expand(*dirs.shape[:-1], -1)
            )
        return color