File size: 2,259 Bytes
2fa4776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import random
from dataclasses import dataclass, field

import torch
import torch.nn as nn
import torch.nn.functional as F

import threestudio
from threestudio.models.materials.base import BaseMaterial
from threestudio.models.networks import get_encoding, get_mlp
from threestudio.utils.ops import dot, get_activation
from threestudio.utils.typing import *


@threestudio.register("no-material")
class NoMaterial(BaseMaterial):
    @dataclass
    class Config(BaseMaterial.Config):
        n_output_dims: int = 3
        color_activation: str = "sigmoid"
        input_feature_dims: Optional[int] = None
        mlp_network_config: Optional[dict] = None
        requires_normal: bool = False

    cfg: Config

    def configure(self) -> None:
        self.use_network = False
        if (
            self.cfg.input_feature_dims is not None
            and self.cfg.mlp_network_config is not None
        ):
            self.network = get_mlp(
                self.cfg.input_feature_dims,
                self.cfg.n_output_dims,
                self.cfg.mlp_network_config,
            )
            self.use_network = True
        self.requires_normal = self.cfg.requires_normal

    def forward(
        self, features: Float[Tensor, "B ... Nf"], **kwargs
    ) -> Float[Tensor, "B ... Nc"]:
        if not self.use_network:
            assert (
                features.shape[-1] == self.cfg.n_output_dims
            ), f"Expected {self.cfg.n_output_dims} output dims, only got {features.shape[-1]} dims input."
            color = get_activation(self.cfg.color_activation)(features)
        else:
            color = self.network(features.view(-1, features.shape[-1])).view(
                *features.shape[:-1], self.cfg.n_output_dims
            )
            color = get_activation(self.cfg.color_activation)(color)
        return color

    def export(self, features: Float[Tensor, "*N Nf"], **kwargs) -> Dict[str, Any]:
        color = self(features, **kwargs).clamp(0, 1)
        assert color.shape[-1] >= 3, "Output color must have at least 3 channels"
        if color.shape[-1] > 3:
            threestudio.warn(
                "Output color has >3 channels, treating the first 3 as RGB"
            )
        return {"albedo": color[..., :3]}