import gradio as gr import numpy as np import torch import random from diffusers import DiffusionPipeline from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" title = "GenAI StoryTeller" description = """ Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for Speech Translation, Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for Text-to-Speech and StabilityAI's [StableDiffusion](https://huggingface.co/stabilityai/sdxl-turbo) model for Image Generation """ # Load speech translation pipeline asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # Load text-to-speech processor from pretrained dataset processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Load diffusion pipeline for image generation if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) pipe = pipe.to(device) if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" # Limit the file size MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # Speech GenAI # Function for translating different language using pretrained models def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] # Function to synthesise the text using the processor above def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() # Main function def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) # Ensure int16 format return 16000, synthesised_speech # Function for text to speech def text_to_speech(text): synthesised_speech = synthesise(text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) # Ensure int16 format return 16000, synthesised_speech # Image GenAI # Text to Image def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image demo = gr.Blocks() # Audio translation using microphone as the input audio_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./english.wav"], ["./chinese.wav"]], title=title, description=description, ) # File translation using uploaded files as input file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./english.wav"], ["./chinese.wav"]], title=title, description=description, ) # Text translation using text as input text_translate = gr.Interface( fn=text_to_speech, inputs="textbox", outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description ) # Inputs for Image Generation prompt = gr.Text( label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt", container=False, ) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) result = gr.Image(label="Result", show_label=False) # Text to Image interface image_generation = gr.Interface( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result], title=title, description=description, ) # Showcase the demo using different tabs of the different features with demo: gr.TabbedInterface([audio_translate, file_translate, text_translate, image_generation], ["Speech to Text", "Audio to Text", "Text to Speech", "Text to Image"]) demo.launch()