from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') categories = ('Dog', 'Cat') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['Dog.jpg', 'cat.jpg', 'dunno.jpg'] title = "Dogs V Cats Classifier" description = "A classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." interpretation='default' enable_queue=True intf = gr.Interface( fn=classify_image, inputs=image, outputs=label, examples=examples, title=title, description=description, interpretation=interpretation, enable_queue=enable_queue ) intf.launch(inline=False)