Spaces:
Build error
Build error
File size: 11,145 Bytes
b6090a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import argparse
import json
import sys
from pathlib import Path
import k_diffusion
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange, repeat
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from tqdm import tqdm
sys.path.append("./")
sys.path.append("./stable_diffusion")
from ldm.modules.attention import CrossAttention
from ldm.util import instantiate_from_config
from metrics.clip_similarity import ClipSimilarity
################################################################################
# Modified K-diffusion Euler ancestral sampler with prompt-to-prompt.
# https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
def get_ancestral_step(sigma_from, sigma_to):
"""Calculates the noise level (sigma_down) to step down to and the amount
of noise to add (sigma_up) when doing an ancestral sampling step."""
sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
return sigma_down, sigma_up
def sample_euler_ancestral(model, x, sigmas, prompt2prompt_threshold=0.0, **extra_args):
"""Ancestral sampling with Euler method steps."""
s_in = x.new_ones([x.shape[0]])
for i in range(len(sigmas) - 1):
prompt_to_prompt = prompt2prompt_threshold > i / (len(sigmas) - 2)
for m in model.modules():
if isinstance(m, CrossAttention):
m.prompt_to_prompt = prompt_to_prompt
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
if sigmas[i + 1] > 0:
# Make noise the same across all samples in batch.
x = x + torch.randn_like(x[:1]) * sigma_up
return x
################################################################################
def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
if vae_ckpt is not None:
print(f"Loading VAE from {vae_ckpt}")
vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
sd = {
k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
for k, v in sd.items()
}
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
return model
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cfg_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cfg_scale
def to_pil(image: torch.Tensor) -> Image.Image:
image = 255.0 * rearrange(image.cpu().numpy(), "c h w -> h w c")
image = Image.fromarray(image.astype(np.uint8))
return image
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--out_dir",
type=str,
required=True,
help="Path to output dataset directory.",
)
parser.add_argument(
"--prompts_file",
type=str,
required=True,
help="Path to prompts .jsonl file.",
)
parser.add_argument(
"--ckpt",
type=str,
default="stable_diffusion/models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt",
help="Path to stable diffusion checkpoint.",
)
parser.add_argument(
"--vae-ckpt",
type=str,
default="stable_diffusion/models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt",
help="Path to vae checkpoint.",
)
parser.add_argument(
"--steps",
type=int,
default=100,
help="Number of sampling steps.",
)
parser.add_argument(
"--n-samples",
type=int,
default=100,
help="Number of samples to generate per prompt (before CLIP filtering).",
)
parser.add_argument(
"--max-out-samples",
type=int,
default=4,
help="Max number of output samples to save per prompt (after CLIP filtering).",
)
parser.add_argument(
"--n-partitions",
type=int,
default=1,
help="Number of total partitions.",
)
parser.add_argument(
"--partition",
type=int,
default=0,
help="Partition index.",
)
parser.add_argument(
"--min-p2p",
type=float,
default=0.1,
help="Min prompt2prompt threshold (portion of denoising for which to fix self attention maps).",
)
parser.add_argument(
"--max-p2p",
type=float,
default=0.9,
help="Max prompt2prompt threshold (portion of denoising for which to fix self attention maps).",
)
parser.add_argument(
"--min-cfg",
type=float,
default=7.5,
help="Min classifier free guidance scale.",
)
parser.add_argument(
"--max-cfg",
type=float,
default=15,
help="Max classifier free guidance scale.",
)
parser.add_argument(
"--clip-threshold",
type=float,
default=0.2,
help="CLIP threshold for text-image similarity of each image.",
)
parser.add_argument(
"--clip-dir-threshold",
type=float,
default=0.2,
help="Directional CLIP threshold for similarity of change between pairs of text and pairs of images.",
)
parser.add_argument(
"--clip-img-threshold",
type=float,
default=0.7,
help="CLIP threshold for image-image similarity.",
)
opt = parser.parse_args()
global_seed = torch.randint(1 << 32, ()).item()
print(f"Global seed: {global_seed}")
seed_everything(global_seed)
model = load_model_from_config(
OmegaConf.load("stable_diffusion/configs/stable-diffusion/v1-inference.yaml"),
ckpt=opt.ckpt,
vae_ckpt=opt.vae_ckpt,
)
model.cuda().eval()
model_wrap = k_diffusion.external.CompVisDenoiser(model)
clip_similarity = ClipSimilarity().cuda()
out_dir = Path(opt.out_dir)
out_dir.mkdir(exist_ok=True, parents=True)
with open(opt.prompts_file) as fp:
prompts = [json.loads(line) for line in fp]
print(f"Partition index {opt.partition} ({opt.partition + 1} / {opt.n_partitions})")
prompts = np.array_split(list(enumerate(prompts)), opt.n_partitions)[opt.partition]
with torch.no_grad(), torch.autocast("cuda"), model.ema_scope():
uncond = model.get_learned_conditioning(2 * [""])
sigmas = model_wrap.get_sigmas(opt.steps)
for i, prompt in tqdm(prompts, desc="Prompts"):
prompt_dir = out_dir.joinpath(f"{i:07d}")
prompt_dir.mkdir(exist_ok=True)
with open(prompt_dir.joinpath("prompt.json"), "w") as fp:
json.dump(prompt, fp)
cond = model.get_learned_conditioning([prompt["caption"], prompt["output"]])
results = {}
with tqdm(total=opt.n_samples, desc="Samples") as progress_bar:
while len(results) < opt.n_samples:
seed = torch.randint(1 << 32, ()).item()
if seed in results:
continue
torch.manual_seed(seed)
x = torch.randn(1, 4, 512 // 8, 512 // 8, device="cuda") * sigmas[0]
x = repeat(x, "1 ... -> n ...", n=2)
model_wrap_cfg = CFGDenoiser(model_wrap)
p2p_threshold = opt.min_p2p + torch.rand(()).item() * (opt.max_p2p - opt.min_p2p)
cfg_scale = opt.min_cfg + torch.rand(()).item() * (opt.max_cfg - opt.min_cfg)
extra_args = {"cond": cond, "uncond": uncond, "cfg_scale": cfg_scale}
samples_ddim = sample_euler_ancestral(model_wrap_cfg, x, sigmas, p2p_threshold, **extra_args)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x0 = x_samples_ddim[0]
x1 = x_samples_ddim[1]
clip_sim_0, clip_sim_1, clip_sim_dir, clip_sim_image = clip_similarity(
x0[None], x1[None], [prompt["caption"]], [prompt["output"]]
)
results[seed] = dict(
image_0=to_pil(x0),
image_1=to_pil(x1),
p2p_threshold=p2p_threshold,
cfg_scale=cfg_scale,
clip_sim_0=clip_sim_0[0].item(),
clip_sim_1=clip_sim_1[0].item(),
clip_sim_dir=clip_sim_dir[0].item(),
clip_sim_image=clip_sim_image[0].item(),
)
progress_bar.update()
# CLIP filter to get best samples for each prompt.
metadata = [
(result["clip_sim_dir"], seed)
for seed, result in results.items()
if result["clip_sim_image"] >= opt.clip_img_threshold
and result["clip_sim_dir"] >= opt.clip_dir_threshold
and result["clip_sim_0"] >= opt.clip_threshold
and result["clip_sim_1"] >= opt.clip_threshold
]
metadata.sort(reverse=True)
for _, seed in metadata[: opt.max_out_samples]:
result = results[seed]
image_0 = result.pop("image_0")
image_1 = result.pop("image_1")
image_0.save(prompt_dir.joinpath(f"{seed}_0.jpg"), quality=100)
image_1.save(prompt_dir.joinpath(f"{seed}_1.jpg"), quality=100)
with open(prompt_dir.joinpath(f"metadata.jsonl"), "a") as fp:
fp.write(f"{json.dumps(dict(seed=seed, **result))}\n")
print("Done.")
if __name__ == "__main__":
main()
|